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Blind Separation of Time/Position Varying Mixtures
Ran Kaftory and Yehoshua Y. Zeevi

Abstract— We address the challenging open problem of blindly
separating time/position varying mixtures, and attempt to
separate the sources from such mixtures without having prior
information about the sources or the mixing system. Unlike
studies concerning instantaneous or convolutive mixtures, we
assume that the mixing system (medium) is varying in
time/position. Attempts to solve this problem have mostly utilized,
so far, online algorithms based on tracking the mixing system
by methods previously developed for the instantaneous or con-
volutive mixtures. In contrast with these attempts, we develop a
unified approach in the form of staged sparse component analysis
(SSCA). Accordingly, we assume that the sources are either
sparse or can be “sparsified.” In the first stage, we estimate the
filters of the mixing system, based on the scatter plot of the sparse
mixtures’ data, using a proper clustering and curve/surface
fitting. In the second stage, the mixing system is inverted, yielding
the estimated sources. We use the SSCA approach for solving
three types of mixtures: time/position varying instantaneous
mixtures, single-path mixtures, and multipath mixtures. Real-
life scenarios and simulated mixtures are used to demonstrate
the performance of our approach.

Index Terms— Blind source separation (BSS), sparse
component analysis (SCA), time/osition varying mixing/unmixing.

I. INTRODUCTION

EXTENSIVE research has been devoted over the last
two decades to the subject of blind source separation

(BSS), especially in the context of independent component
analysis (ICA). The research mainly focused on the sta-
tionary, instantaneous, and convolutive theoretical aspects of
the problem and on practical applications. In the relevant
models, the sources are attenuated by a fixed factor, and/or
filtered by a fixed (in time/position) filter prior to being
mixed. Two important categories of the approaches to solving
the BSS problem of stationary mixtures are ICA and sparse
component analysis (SCA). ICA assumes that the sources are
statistically independent and, therefore, utilizes separation cost
functions based on the maximization of nonGaussianity [1],
negentropy [2], maximum likelihood [3], minimization of the
mutual information [4], [5], diagonalization of the cumulant
tensor [6], nonlinear decorrelation [7], and second order
statistics [8]. Blind separation using SCA assumes that the
sources are sparse or can be sparsified. The sources need not
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be statistically independent. This approach lends itself to a
geometric interpretation of the mixing coefficients, whereby
the mixing matrix entries can be retrieved from the scatter
plot of the sparsified mixtures [9].

In most real-life scenarios, the mixing system is not constant
as is in the case of instantaneous or convolutive model.
It is varying as a function of time or position. For example,
the attenuation of signals/images varies over time/position
thus creating time/position varying instantaneous mixtures.
The delay/shift or reverberation/blurring of a signal/image
may also vary over time/position, creating a time/position
varying single/multipath mixtures. Only few studies address
this generalized BSS problem. Most of them use the ICA
approach and assume a slow varying mixing system, thus,
enabling the use of an adaptive version of the algorithms
developed for the stationary cases.

In this paper, we extend and generalize the BSS problem
and provide a unified approach to blind separation of certain
classes of time/position varying mixtures that have not been
dealt with so far. To this end, we present a framework of staged
SCA (SSCA).

II. PROBLEM FORMULATION

We consider the case of separating Ns sources from Nz

linear time/position varying mixtures, where the number of
the sources and mixtures Ns = Nz is small. We use the vector
notation for the independent variables ξ = (ξ1, . . . , ξNξ ),
ξ ′ = (ξ ′

1, . . . , ξ
′
Nξ
), where Nξ is the number of indepen-

dent variables. Denoting Z = [z1(ξ ), . . . , zNz (ξ)] as a vec-
tor of the observed mixtures, and S = [s1(ξ ), . . . , sNs (ξ)]
as a vector of the sources, the observed mixtures are
generated from the sources by the linear time varying
transformation

Z = H � S + η (1)

where

H =
⎡
⎢⎣

h11(ξ , ξ
′) · · · h1Ns (ξ, ξ

′)
... hi j (ξ, ξ

′)
...

hNz 1(ξ, ξ
′) · · · hNz Ns (ξ, ξ

′)

⎤
⎥⎦

is a mixing matrix of filters, η is some unknown noise, and
the symbol � is defined as follows.

Definition 1: The symbol � denotes an integral operator
with multidimensional kernel function acting on a single or
multivariable function. This operator is used for representing
the linear filtering of a signal with a time/position varying
filter and composition of such time/position varying filters as
follows.

1057–7149/$31.00 © 2012 IEEE
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Fig. 1. Types of position varying image mixtures, where the system varies only along the x-axis. (a) Instantaneous case. (b) Single-path case. (c) Multipath
case. From left to right: the filter h11(x, x ′), result of filtering one of the sources with this filter, the filter h12(x, x ′), result of filtering the other source with
this filter, the mixture. Observe how the following properties of the filtered image changes along the x-axis: intensity for the instantaneous case, scale for the
single-path case, and blur for the multipath case.

1) Filtering with a filter (� : R
2Nξ � R

Nξ → R
Nξ )

h � s ≡
∞∫

−∞
h(ξ, ξ ′)s(ξ ′)dξ ′. (2)

2) Composition of filters (� : R
2Nξ � R

2Nξ → R
2Nξ )

g � h ≡
∞∫

−∞
g(ξ, ξ ′′)h(ξ ′′, ξ ′)dξ ′′ (3)

where g(ξ, ξ ′) and h(ξ , ξ ′) are time/position varying
filters used for filtering Nξ -dimensional signals.

Similar to the definition of [10], we distinguish between
three types of time/position varying mixtures.

1) Time/Position Varying Instantaneous Mixtures: In this
case, only the attenuation of the signals varies over
time/position. We also assume that the signals arrive
at the sensors instantaneously (in the case of images,
without position shifts) and that they do not reverberate,
nor do they have multiple reflections. The filters of the
mixing system are given explicitly as

hi j (ξ , ξ
′) = ai j (ξ )δ(ξ − ξ ′) (4)

where δ is the Dirac delta, and ai j (ξ) is the time/position
varying attenuation of the j th source with respect to
the i th sensor. Using the definition of hi j (ξ, ξ

′), (1)
produces the following results for the generation of the
time/position varying instantaneous mixtures:

zi (ξ) =
∑

j

ai j (ξ)s j (ξ)+ η(ξ). (5)

2) Time/Position Varying Single-Path Mixtures: In this case,
the attenuation and the delay/position shift of the sig-
nals/images change over time/position. This creates the
doppler effect or the zooming/streching of images. We
assume in this case, as in the instantaneous case, the
absence of reverberations/multipath/blurring. The filters
of the mixing system are given explicitly as

hi j (ξ, ξ
′) = ai j (ξ)δ(di j (ξ)− ξ ′) (6)

Fig. 2. SSCA method.

where di j (ξ ) is the time/position varying delay/position
shift of the j th source with respect to the i th sensor.
Using the definition of hi j (ξ, ξ

′), (1) yields the follow-
ing results for the generation of the time/position varying
single-path mixtures:

zi (ξ) =
∑

j

ai j (ξ )s j (di j (ξ))+ η(ξ). (7)

3) Time/Position Varying Multipath Mixtures: In this case,
the attenuation, delay/position shift, and reverbera-
tion/multipath/blur may change over time where the
function of hi j is arbitrary.

Fig. 1 provides a graphical (visual) interpretation of the above
three types of position varying mixtures. Two image sources
are mixed using different filters, hi j (x, x ′) which vary from
left to right. In the instantaneous case, only the attenuation
of each image varies. In the single-path mixture, varying the
position shift varies the scale of the images. In the case of
multipath mixtures, we use a variable low-pass filter, which
blurs the image differently from left to right.

III. SSCA

Without loss of generality, we consider a system of two
mixtures, z1(ξ), z2(ξ), of two sources, s1(ξ ), s2(ξ ) and adopt
the SSCA approach for solving the time/position varying BSS
problem as outlined in Fig. 2 and in the sequel.

A. Preprocessing: Sparsification

Sparse signals are defined as those signals whose value
differs significantly from zero only in a few instances of
time/position. The probability density function (PDF) of such
signals is modeled as an exponential [9] (also known as the
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generalized Gaussian). The joint distribution of uncorrelated
sparse signals is also approximately exponential. Therefore,
if one source is active in/at a certain instance/position, the
probability that any one of the other sources is active in the
same instance/position is very small. For signals which are not
naturally sparse, a proper sparsification transformation which
is invariant to the mixing matrix can be applied. Sparsification
is defined as follows.

Definition 2: Sparsification of a signal s(ξ ) is the process
of applying a transformation � to the nonsparse signal s(ξ )
that yields a sparse output �[s(ξ)].

We define invariance of the sparsification transformation to
the mixing matrix as follows.

Definition 3: A sparsification transformation � is invariant
under mixing by the matrix, H , if

� [H � S] = H �� [S]. (8)
The required preprocessing, according to the SSCA approach,
implements an invariant sparsification transformation on both
sides of (1), yielding the following separation problem:

� [Z ] = H �� [S]. (9)

B. First Stage of the Separation Process: Mixing Matrix
Estimation

In the noiseless case, all the time/position instances where
in the first sparsified source is active and the other is not-active
satisfy the relations

�[z1] = h11 ��[s1], �[z2] = h21 ��[s1]. (10)

We define the new position-varying filter, g1 such that

�[z2] = g1 ��[z1]. (11)

Equations (10) and (11) yield

h21 = g1 � h11. (12)

Similarly, for all the time/position instances in which the
second sparsified source is active and the first is not, we define
g2 as �[z2] = g2 ��[z1] and obtain h22 = g2 � h12.

Even for the noisy case, it is possible to filter the
time/position instances (usually by introducing some thresh-
old) over which one of the sources can be regarded as active
with respect to the not-active source, and where the noise
is negligible.1 The filters g1 and g2 are found by using a
scatter plot of the sparse mixtures’ data. A proper method
of clustering these instances and curve/surface estimation is
used to estimate g1 and g2 out of the these active/not-active
samples of �[z1] and �[z2].

The first step of the SSCA is completed by substituting h21
and h22 with g1 � h11 and g2 � h12. This yields the following
BSS problem:

�[z1] = h11 ��[s1] + h12 ��[s2] + η1

�[z2] = (g1 � h11) ��[s1] + (g2 � h12) ��[s2] + η2. (13)

1After the sparsification preprocessing, the SNR is improved.

Using the associativity property of the operator � yields

�[z1] = h11 ��[s1] + h12 ��[s2] + η1

�[z2] = g1 � (h11 ��[s1])+ g2 � (h12 ��[s2])+ η2. (14)

Denoting s′
1 ≡ h11 � s1 and s′

2 ≡ h12 � s2, and recalling
the invariance property of the sparsification operator, (14) is
rewritten as

�[z1] = �[s′
1] + �[s′

2] + η1

�[z2] = g1 ��[s′
1] + g2 ��[s′

2] + η2 (15)

or in the context of the vector notation of (1)

�[Z ] = H ′ ��[S′] + η (16)

where

H ′ =
[

1 1
g1 g2

]

and 1 is the identity filter (an ideal all-pass filter) which is
defined as: 1 ≡ δ(ξ − ξ ′).

We conclude this exposition with the analysis of a closely
related BSS problem, wherein the filters g1 and g2 of the
mixing matrix have already been estimated. The sources s′

1
and s′

2 are filtered versions of s1 and s2, filtered by the
time/position varying filters h11 and h12, respectively. It is
proven in [11] that this is the upper bound on the quality of
estimating the sources.

C. Second Stage of the Separation Process: Solving the Inverse
Problem

The task of the second stage of the SSCA is to solve the
inverse problem of Z = H ′ � S′ + η, and estimate the sources.
A “naive” approach would be to directly invert the system

Ŝ′ = H ′−1 � Z (17)

where

H ′−1 ≡ (g1 − g2)
−1 �

[
g2 −1

−g1 1

]
.

However, matrix inversion and the calculation of the deter-
minant is feasible only for commutative rings, which is not the
general case of sets of time/position varying filters. Even for a
subset of time/position varying filters, which commute, direct
inversion requires the inversion of the difference filter g1 −g2.
This filter can be singular or badly conditioned, in which case,
its inverse amplifies the noise and yields noisy estimation of
the sources. To overcome this problem, we use a variational
method which is effective in both cases of noncommutative
mixing time/position varying filters and singular or badly
conditioned mixing matrix. Instead of inverting the system
which amplifies the noise, a cost function is defined

J = ‖Z − H ′ � Ŝ′‖ +wR(Ŝ′) (18)

where R(·) is a regularization operator, which suppresses the
amplification of the noise2 and w is a weighting parameter.
The minimization of this cost function using the Euler–
Lagrange equations yields an estimation of the separated
sources.

2See Section VI-C for an example of a regularization operator, (52).
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Fig. 3. Conditional probability that one source is active and the other is not
(and the noise is negligible) given the thresholds th1, th2, and the observed
mixture plotted for several values of σ given sparse signal distribution with
μ = 1.5 and ν = 2. Observe how the probability is symmetric nondecreasing
function of the absolute value of the observed mixtures.

IV. CONDITIONS WHICH ENABLE THE USE OF THE SSCA

In order to successfully apply the SSCA approach in sep-
aration of time/position varying mixtures, proper conditions
must be fulfilled. In this section, we outline the conditions
which concern the sparsity of the sources signals, signal-
to-noise ratio, the filters of the mixing matrix, sparsification
transformation, and the mixing matrix itself.

A. Conditions on the Noise and Signal Sources

The first step of the SSCA requires to filter time/position
instances where one sparsified source is active while the others
are not, and the noise is negligible. In the sequel, we show that
for sparsified sources this probability increases as the absolute
value of the observed mixture increases. For clarity, we show
this for a mixture of two sources. We define the following
criteria for the above instances.

Definition 4: A time/position instance ξ
0

in which one
sparsified source can be regarded as active and the other is
not is defined as follows:∣∣∣∣∣

hi1 ��[s1(ξ 0
)]

hi2 ��[s2(ξ 0
)]

∣∣∣∣∣ > th1 (19)

where the ratio on the left-hand side is termed contributing-
signal-to-interfering-signal ratio (CSISR) and th1 is a sub-
jective threshold, which depends on the robustness of the
algorithm for estimating the filters of the mixing matrix as
well as the filters themselves.

Definition 5: A time/position instance ξ
0

in which the
sparsified noise is negligible with respect to the mixture of
the two sparsified sources is defined as

∣∣∣∣
hi1 ��[s1(ξ0

)] + hi2 ��[s2(ξ0
)]

�[ηi ]
∣∣∣∣ > th2 (20)

where the ratio on the left-hand side is termed contributing
signals-to-noise ratio (CSNR) and th2 is a subjective thresh-
old, which depends on the robustness of the algorithm for
estimating the filters of the mixing matrix as well as the filters
themselves.

The PDF of a sparsified source is modeled as an exponen-
tial [12], pdf(�[s]) = ke−μ|�[s]|1/ν , where μ is a positive
parameter, ν ≥ 1, and k = (

∫∞
−∞ e−μ|�[s]|1/ν )−1 is a normal-

ization parameter [9].

We assume that the noise is not sparse even after applying
the sparsification transformation. Therefore, we can assume
that the PDF of the noise is Gaussian with zero mean:
pdf(�[η]) = ke−(�[η]2/2σ 2

), where σ is the standard deviation
of the noise, and k = (1/

√
2πσ) is a normalization parameter.

Proposition 1: The conditional probability that one sparsi-
fied source is active and the other is not, where the noise
is negligible in some time/position instance ξ

0
, given the

observed sparsified mixture �[zi (ξ0
)], and the thresholds th1

and th2, is

p
(

CSISR > th1,CSNR > th2 | �[zi ] = �[zi (ξ0
)]
)

=

m2∫
m1

l2∫
l1

e− (�[zi (ξ0)]−ζ)2
2σ2 −|ζ−φ|1/νi1μT

i1−|φ|1/νi2μT
i2 dφdζ

∞∫
−∞

∞∫
−∞

e
− (�[zi (ξ0)]−ζ)2

2σ2 −|ζ−φ|1/νi1μT
i1−|φ|1/νi2μT

i2 dφdζ

+

m2∫
m1

l4∫
l3

e
− (�[zi (ξ0)]−ζ)2

2σ2 −|ζ−φ|1/νi1μT
i1−|φ|1/νi2μT

i2 dφdζ

∞∫
−∞

∞∫
−∞

e− (�[zi (ξ0)]−ζ)2
2σ2 −|ζ−φ|1/νi1μT

i1−|φ|1/νi2μT
i2 dφdζ

(21)

where T in μT
i j stands for the transpose of μi j . For ζ ≥ 0

l1 ≡ ζ

1−th1
, l2 ≡ ζ

1+th1
, l3 ≡ ζ th1

th1+1 , l4 ≡ ζ th1

th1−1

and for ζ < 0, l1 and l2 are interchanged and so are l3 and l4.
If zi (ξ0

) ≥ 0

m1 = �[zi (ξ0
)]th2

th2+1 , m2 = �[zi (ξ0
)]th2

th2−1

and, if zi (ξ 0
) < 0, m1 and m2 are interchanged. (for the proof

see [11].)
Fig. 3 depicts the conditional probability of sparsified signal

distribution, with μ = 1.5 and ν = 2 plotted as a function
of �[zi (ξ 0

)] for several values of σ . It is observed that
the probability is a monotonic nondecreasing function of
|�[zi(ξ 0

)]|. This result is also valid for the case of a mixture
of more than two sources. Therefore, as a rule of thumb, it
is possible to use a proper threshold on the observed mixture
such that the probability that only one source is active, and the
noise is negligible, is high. In such instances, the estimation
of the filters of the mixing matrix is possible. The number of
such instances, which is required for the correct estimation of
the filter is discussed in reference to the context of conditions
required for the filters estimation.

B. Conditions on the Filters of the Mixing Matrix

The first step of the SSCA approach, requires the existence
of gi and its estimation based on samples of the observed
measurements. Assuming that gi exists, we can obtain only
samples of the filter using a threshold over which we can
assume a high probability for only one source to be active,
and the noise to be negligible. These samples are distributed
randomly and depend on both the source signals and the
noise. If we assume that we know the filter gi up to some
finite number Nk of unknown parameters, and the function
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is injective, then we need at least the same number (Nk )
of samples of that filter, in order to obtain the unknown
parameters. If the filter is unknown, a Taylor approximation
can be derived using some Nk -order polynomial function

ĝi (ξ1, . . . , ξNξ , ξ
′
1, . . . , ξ

′
Nξ )

=
Nk∑

k1=0

· · ·
Nk∑

kNk =0

Nk∑

k′
1=0

· · ·
Nk∑

k′
Nk

=0

αk1,...,kNk ,k
′
1,...,k

′
Nk
(ξ1−ξ10)

k1

· · · (ξNξ −ξNξ0
)kNk (ξ ′

1−ξ ′
10
)k

′
1 · · · (ξ ′

Nξ −ξ ′
Nξ0
)
k′

Nk . (22)

It takes (Nk + 1)2Nξ samples to calculate the unknowns α
parameters by the Lagrangian interpolation formula, [13].

A nonparametric approach for estimating gi out of its
samples would require the following condition.

Proposition 2: If gi (ξ, ξ
′) is band-limited to a region �,

it can be uniquely represented by nonuniformly distributed
samples satisfying the Nyquist rate, on the average, as long
as the samples are not on the zero-crossing contours of any
member of the set of all functions band-limited to � (the proof
is given in [14]).

In practice, the function gi is usually known up to a finite
number of parameters, using some prior knowledge regarding
the physics of the mixing system. In other cases, it can be
assumed that it is smooth and therefore band-limited to a small
region �, which allows the use of a nonparametric function
estimation by means of a low average sampling rate.

By definition, g1 = h21 �h−1
11 and g2 = h22 �h−1

12 , therefore,
the filters g1 and g2 exist only if h−1

11 and h−1
12 exist. We now

provide the conditions for the existence of an inverse filter by
using the frequency analysis of time/position varying systems.

Zadeh [15] was the first to present an approach suitable
for the analysis of linear time-varying systems in the context
of frequency analysis. His transform has rarely been used
[16] but it is useful for our purposes. We consider the linear
time/position varying system representation as the superpo-
sition integral: z(ξ) = h(ξ, ξ ′) � s(ξ ), where h(ξ, ξ ′) is the
system response at the instance ξ to the impulse δ(ξ − ξ ′).
Zadeh defined the frequency response of the time/position
varying system, to a unit impulse applied at ξ = ξ

0
as

HZ (ξ 0
, ω) =

∞∫

−∞
h(ξ

0
, ξ ′)e− jω(ξ

0
−ξ ′)T dξ ′. (23)

Zadeh’s transform can be used for the synthesis of variable
systems by using the system frequency response, as indicated
by the following proposition.

Proposition 3: The output of the system z(ξ) = h(ξ , ξ ′) �
s(ξ ) can be calculated using the system frequency response

z(ξ ) = 1

2π

∞∫

−∞
HZ (ξ , ω)SF (ω)e

jωξT
dω (24)

where SF (ω) is the Fourier transform of s(ξ): SF (ω) =∫∞
−∞ s(ξ)e− jωξT

dξ (for the proof, see [11] or [17]).
It is important to find the frequency response of a compo-

sition of time/position varying filters. The following Theorem

provides the relations between the frequency response of a
system to the frequency response of its components.

Lemma 4: The Zadeh frequency response of the system:
f = g�h, is given by the Zadeh frequency responses, GZ (ξ , ω)
and HZ (ξ , ω) as

FZ (ξ , ω) =
n∑

i=0

1

i !
∂ iGZ (ξ, ω)

∂( jω)i
∂ iHZ (ξ, ω)

∂ξ i
(25)

where n is the order of the differential system representing the
SISO system (for a proof see [18]).

A condition establishing relationship between the Zadeh
frequency responses of the filter and its inverse is defined by
the following theorem.

Theorem 5: The time/position varying filter h(ξ , ξ ′) has an
inverse g(ξ, ξ ′) only if GZ (ξ , ω), which is the Zadeh frequency
response of g(ξ, ξ ′), satisfies the equation

n∑
i=0

∂ iGZ (ξ , ω)

∂( jω)i
∂ iHZ (ξ, ω)

∂ξ i
= 1 (26)

where n is the order of the differential equation (for the proof
see [11]).

Therefore, the filters g1 and g2 exist only if h−1
11 and h−1

12
exist and fulfil (26), where h and g are substituted by h11 or
h12 and h−1

11 or h−1
12 , respectively.

C. Conditions on the Sparsification Transformation

A sufficient condition for the existence of a sparsification
transformation is its invariance to the mixing matrix. We
provide a weaker explicit condition sufficient for a subset
of sparsification transformations, which can be regarded as
filtering with a time/position varying filter: � [H � S] = � �
(H � S).

Recalling Definition 3 with this subset of transformations,
the invariance to the mixing matrix means that � � (H � S) =
H � (� � S), or explicitly for a 2 × 2 mixing system

� � (hi1 � s1 + hi2 � s2) = hi1 � (� � s1)+ hi2 � (� � s2) .
(27)

This implies that a transformation which is invariant to the
mixing matrix is commutative over �.

Proposition 6: The operator � along with the set of 2Nξ -
dimensional time/position varying filters perform a noncom-
mutative operation: g � h 
= h � g, where g and h are
time/position varying filters (for the proof see [11]).

Therefore, in general, by substituting g with � and h with
hi1, � �hi1 
= hi1 ��. A similar noncommutative operation is
obtained for hi2. But, using the Zadeh transform, we can find
a subset of transformations which do commute.

Corollary 7: The filters h and g commute, if their relative
Zadeh frequency responses obey

n∑
i=0

1

i !
∂ iGZ (ξ , ω)

∂( jω)i
∂ iHZ (ξ, ω)

∂ξ i

=
n∑

i=0

1

i !
∂ iHZ (ξ , ω)

∂( jω)i
∂ iGZ (ξ, ω)

∂ξ i
. (28)
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The proof follows directly from Lemma 4. This result
implies that filters which have a fixed-in-ξ Zadeh fre-
quency response, commute with similar filters [this is because
(∂ iHZ (ξ, ω))/(∂ξ

i ) = 0 and (∂ iGZ (ξ , ω))/(∂ξ
i ) = 0]. Filters

which have a fixed-in-ω Zadeh frequency response, commute
with similar filters (this is because (∂ iGZ (ξ, ω))/(∂( jω)i ) = 0
and (∂ iHZ (ξ, ω))/(∂( jω)i ) = 0).

Therefore, the filters � and hi1 or hi2 commute if the
condition of (28) is fulfilled by substituting g and h with �
and hi1 or hi2, respectively.

D. Conditions on the Mixing Matrix

The second step of the SSCA requires the solution of the
inverse problem of Z = H � S. It can be accomplished by
means of (17), by using the inverse of H . However, matrix
algebra, which includes the calculation of the determinant and
the inverse of a matrix, is defined only over a commutative
ring. In our case, we show that in general, the set of 2Nξ -
dimensional time/position varying filters together with addition
and the operator � (which substitutes multiplication) constitute
a noncommutative ring and, therefore, matrix algebra cannot
be performed.

A ring of elements is defined with two binary operators:
“addition” and “multiplication.” It requires the elements to
constitute a commutative group over “addition” and a monoid
over “multiplication.”

Theorem 8: The set of 2Nξ -dimensional time/position vary-
ing filters, and the two binary operators of addition and �
(which serves as “multiplication”) constitute a noncommuta-
tive ring (for the proof see [11]).

Nevertheless, it is possible to find a subset of 2Nξ -
dimensional time/position varying filters which commute with
each other, using Corollary 7. These filters are regarded as
their centralizer, where the centralizer is defined as follows.

Definition 6: The centralizer of an element, h, of a monoid
associated with the operator �, is the set of all the elements
gi in that monoid which obey: h � gi = gi � h.

Therefore, matrix algebra can be performed for the subset
of Filters, which constitute the centralizer of themselves. As a
consequence, the inverse of a matrix can be calculated using
the following corollary.

Corollary 9: If the elements of H , a matrix of Nz −by−Ns ,
Nz = Ns time/position varying filters, belong to the centralizer
of the matrix filters, and if H is invertible, then the inverse of
H is given by

H −1 = det(H )−1 �

⎡
⎢⎣

c11 · · · c1Ns
...

. . .
...

cNz 1 · · · cNz Ns

⎤
⎥⎦ (29)

where ci j is the matrix cofactor and det(H )−1 is the inverse
of the determinant det(H ). The determinant of a matrix of
time/position varying filters is calculated the same as in matri-
ces of scalars where the operator � substitutes multiplication.
The result of calculating the determinant is also a time/position
varying filter and so is its inverse. (Corollary 9 is proved by
Cramer’s rule of linear algebra.)

As a result, a matrix of Nz − by − Nz time/position varying
filters, H , is invertible only if the determinant of H is
invertible. Nevertheless, the existence of H −1 is a necessary
condition for solving directly the inverse problem, but not
sufficient. The matrix H can be ill-conditioned, meaning a
small change in the input results in a large change of the
output.

Looking at the inverse problem of the second stage in (16),
we can observe that for the noisy case[

ŝ′
1

ŝ′
2

]
= (g1 − g2)

−1 �

[
g2 −1

−g1 1

]
�

[
z1
z2

]

=
[

s′
1

s′
2

]
+ (g1 − g2)

−1 �

[
g2 −1

−g1 1

]
�

[
η1
η2

]

=
[

s′
1 + (g1 − g2)

−1 � g2 � η1 − (g1 − g2)
−1 � η2

s′
2 − (g1 − g2)

−1 � g1 � η1 + (g1 − g2)
−1 � η2

]

(30)

where η1 and η2 denote the noise in the respective sensors.
Therefore, if the filter (g1 − g2)

−1 or any of the composed
filters (g1 − g2)

−1 � g2 or (g1 − g2)
−1 � g1 amplify the noise,

the error of estimation due to the noise is large.
We assume that η is a white Gaussian noise that results

from a stationary stochastic process. Filtering such noise with
a time/position varying filter results in a nonstationary process.
Therefore, the error in estimating the sources can be small for
some time/position instances or large for others. In the Zadeh
transform domain, we can state the following proposition.

Proposition 10: The time/position varying power spec-
tral density of the white Gaussian noise filtered by the
time/position varying filter g(ξ, ξ ′) is NSD|GZ (ξ , ω)|, where
NSD is the noise spectral density (the proof is given in [11]).

Consequently, amplification of the noise occurs whenever
|GZ (ξ , ω)| ≥ 1. The conditions for solving directly the inverse
problem using the inverse of the mixing matrix H ′−1 are
therefore:

1) |Z{(g1 − g2)
−1}| ≤ 1;

2) |Z{(g1 − g2)
−1 � g1}| ≤ 1;

3) |Z{(g1 − g2)
−1 � g2}| ≤ 1;

where Z{·} stands for the Zadeh frequency response. Whenever
the conditions for solving directly the inverse problem are not
fulfilled, the variational approach can be used.

V. METHODS AND RESULTS FOR BLIND SEPARATION OF

TIME/POSITION VARYING INSTANTANEOUS MIXTURES3

For this section, we assume that the filters of the mixing
matrix have the form of (4). We also assume the following.

1) The model of the instantaneous filters of the mixing
matrix is arbitrary, but known up to a finite number of
parameters.

2) Apart from some instances, the zero-order Taylor
approximation of the instantaneous filters around some
instance in a small window, is sufficient to represent the
filter over that window.

3) The sources are sparse or can be sparsely represented
using an appropriate transform.

3Some of the methods and the results of this section were presented in [19].



110 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 1, JANUARY 2013

A. Sparsification Using Wavelet Packets and Short Time
Fourier Transform (STFT)

The Zadeh transform of the filters of the mixing matrix, hi j ,
is denoted as follows:

HZi j (ξ , ω) =
∞∫

−∞
ai j (ξ )δ(ξ − ξ ′)e jω(ξ−ξ ′)T dξ ′ = ai j (ξ ). (31)

Observe that the Zadeh frequency response of the filters
of the mixing matrix is independent of ω. Therefore, using
Corollary 7, every sparsification transformation which also has
a Zadeh frequency response independent of ω, is an element
of the centralizer. Elements of the centralizer commute with
the filters of the mixing matrix, and are therefore invariant to
the mixing matrix. Unfortunately, all the known linear sparsifi-
cation transformations which can be written as a time/position
varying filter extract, usually, the high frequencies of the
signals. This implies that they have an ω-dependent frequency
response and, therefore, are not members of the centralizer,
nor are invariant to the mixing matrix.

Nevertheless, we can utilize the second assumption of this
section and estimate the filters of the mixing matrix over a
small window around some instances (where the assumption
holds) as though they are fixed (in ξ ) filters. The Zadeh
frequency response of such fixed filters is independent of ξ .
With reference to Corollary 7, if we assume that the filters
of the mixing matrix obey (∂ iHZ (ξ, ω)/∂ξ

i ) = 0 then
they are commutable with sparsification filters, which obey
(∂ iGZ (ξ, ω)/∂ξ

i ) = 0 [which means that they are also fixed
(in ξ ) filters]. Therefore, every sparsification transformation
which can be written as a fixed (in ξ ) filter, is a member of
the centralizer and, therefore, commutes and is invariant to the
mixing matrix over these instances.

The STFT can be used for sparse representation of audio
and other harmonic signals, whereas wavelet packets can be
used for images [20]. The STFT window size or the support of
the filter in the wavelet packets decomposition, can be chosen
such that the assumption of a fixed (in ξ ) filter in a small
window holds. This produces an invariant transform, since the
STFT and the wavelet packet decomposition can be regarded
as fixed (in ξ ) filters and in a small window the filters of the
mixing matrix can also be regarded as fixed (in ξ ).

B. Parametric Estimation of the Filters of the Mixing Matrix

We assume for the rest of this section, that the mixtures
are of 1-D signals. In the case of images, the columns are
concatenated to form a single vector. If we group the instances,
{ξl}, where one of the sources is active and the other is not,
using some threshold, the values of gi for these instances are
according to (11)

gi (ξl) ≈ �[zi (ξl)]
�[z1(ξl)] . (32)

As a result, the filter g also has the form of gi(ξ, ξ
′) =

ai (ξ)δ(ξ − ξ ′). According to the first assumption, the filters
of the mixing matrix are known up to a finite number of
parameters, which means that: ai (ξ) ≡ ai (αik ; ξ), where αik
are the unknown parameters.

We wish to construct a unified framework for clustering
time/position instances originated from the same sensor for
estimating the αik parameters. This unified framework is
necessary since correct estimation of αik solves the cluster-
ing problem and vice versa, correct clustering estimates the
parameters αik .

Suppose that we take Nm time/position instances
ξ0, . . . , ξNm −1 in which a signal was detected above the
threshold. For each individual instance ξl , we define the ratio
ri (ξl ) ≡ �[zi (ξl )]/�[z1(ξl )]. Since r1 ≡ 1, the range of the
index i for the rest of this section is limited to i > 1.

Clearly, if we identify and group the instances, {ξl}, where
one of the sources is active and the other is not (meaning
the other source and the noise are negligible), then we get
according to (32) and the definition of ri

ri (ξl) ≈ gi(ξl) ≡ ai (αik ; ξl). (33)

A maximum likelihood approach for estimating αik would be
to maximize

arg max
αik

J(αik ) ≡ arg max
αik

P
(
ri (ξ0), . . . , ri (ξNm−1) |αik

)
(34)

where P
(
ri (ξ0), . . . , ri (ξNm −1) | αik

)
stands for the probabil-

ity of observing Nm instances of the ratio ri given the αik
parameters.

Using Bayes’ rule, we can calculate the conditional proba-
bility of (34) by

P
(
ri (ξ0), . . . , ri (ξNm −1) | αik

)

= P
(
αik | ri (ξ0), . . . , ri (ξNm −1)

)
P
(
ri (ξ0), . . . , ri (ξNm−1)

)

P(αik )
.

(35)

Since prior information regarding the distribution of αik is
not available, a uniform distribution is assumed. Omitting
P(αik ), which is in the same for every αik , and omitting
P
(
ri (ξ0), . . . , ri (ξNm −1)

)
, which does not depend on αik ,

does not affect the maximization of (35) with respect to αik .
Therefore, estimating αik by using the maximum likelihood
approach corresponds to maximizing

arg max
αik

J(αik ) ≡ arg max
αik

P
(
αik | ri (ξ0), . . . , ri (ξNm −1)

)
.

(36)
In order to evaluate the conditional probability

P
(
αik | ri (ξ0), . . . , ri (ξNm −1)

)
, we first construct a density

estimation to get the value of ai(αik ; ξl) on a specific instance,
given the measurements �[zi (ξl)] and �[z1(ξl)]. It can be
done using a kernel density estimation

f̂ (ai , ξ | �[zi (ξl)],�[z1(ξl)])
= 1

Nm Lr Lξ
K

(
ai − ri (ξl)

hr
,
ξ − ξl

hξ

)
(37)

where K is a multivariate kernel density estimator, and Lr , Lξ
are the kernel supports along the a and ξ axes, respectively.
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Using the law of total probability, f̂ (ai , ξ) can be found by
calculating

f̂ (ai , ξ) =
Nm−1∑
l=0

f̂ (ai , ξ |� [zi (ξl)],�[z1(ξl )])

×P(�[zi (ξl)],�[z1(ξl)]). (38)

We interpret the probability P(�[zi (ξl)],�[z1(ξl )]) as a
measure of the correctness of calculating ai (ξl) using (32).
If the noise is at least one order of magnitude smaller than
the observed signals, the approximation of (32) holds. If the
noise parameters can be estimated, for example in the case
of normal distributed noise with a known variance σ 2, the
probability of the noise being an order of magnitude smaller
than the measurement �[zi (ξl)] or �[z1(ξl )], is4

P(�[zi (ξl)],�[z1(ξl)])

≡ min

⎧⎪⎨
⎪⎩

|li |∫

−|li |

1

σ
√

20π
e− v2

20σ2 dv,

|l1|∫

−|l1|

1

σ
√

20π
e− v2

20σ2 dv

⎫⎪⎬
⎪⎭
(39)

where li = �[zi (ξl)].
We want to evaluate the conditional probability of ai (ξ),

being represented by αik parameters, given the ratio of the
measurements ri (ξ0), . . . , ri (ξNm −1), i.e., (36).

It should be pointed out with reference to the definition of
the density f̂ (ai , ξ), that all the points belonging to the group
of instances {ξl}, in places where ri (ξl ) ≈ ai (ξl ), are samples
of a single curve. This is due to the fact that ai(αik ; ξl) is a
function of ξ and for each value of ξ , ai is single valued.

Therefore, we can calculate the probability of (36) by
integrating along the above curve. This can be done by using
a line integral over a scalar field, being the density f̂ (ai , ξ)

J(αik ) ≡ P
(
αik | ri (ξ0), . . . , ri (ξNm −1)

)

=
ξ2∫

ξ1

f̂ (ai (αik ; ξ), ξ)
√

1 + [a′
i(αik ; ξ)]2dξ (40)

where a′
i stands for the derivation with respect to ξ , and ξ1,

ξ2 are the observation start and stop time/position instance,
respectively.

The optimization can be executed by means of the Newton
method as follows.

1) Take as an initial guess a vector of α(0)ik
parameters.

2) Use the vector α(m)ik
obtained from the previous step, and

construct the gradient vector ∇J(α
(m)
i jk
) and the Hessian

matrix HessJ(α
(m)
ik
), using

∂J(α
(m)
ik
)

∂α
(m)
ik

=
∂P

(
α
(m)
ik

| ri (ξ0), . . . , ri (ξNm −1)
)

∂α
(m)
ik

∂2
J(α

(m)
ik
)

∂α
(m)
ik
∂α

(m)
i j

=
∂2 P

(
α
(m)
ik

| ri (ξ0), . . . , ri (ξNm −1)
)

∂α
(m)
ik
∂α

(m)
i p

.

(41)

4In the case where the noise parameters are unknown, we assume a uniform
distribution for (�[zi (ξl )],�[z1(ξl )]).

3) Update the estimated parameters

α
(m+1)
ik

= α
(m)
ik

− Hess−1
J
(α
(m)
ik
)∇J(α

(m)
ik
). (42)

4) Repeat steps 2 and 3 until convergence.

The initial points can be selected by using an approach
similar to the application of the Hough transform in image
processing [21]. A few remarks with reference to the imple-
mentation are in order.

1) The indefinite integral of (40) should be solved. In order
to make this easier, we propose using the Epanechnikov
kernel [22] as the kernel K in (37) which is used in
evaluating f̂ (ai , ξ). The Epanechnikov kernel is defined
as follows:

K (x, y) =
{ 2
π (1 − x2 − y2), (x2 + y2) ≤ 1
0, otherwise.

(43)

2) If ai(αik ) renders the indefinite integral of (40) to
become unsolvable, an approximation for ai (αik ) should
be used.

3) It is usually preferable to define g′
i(ξ) ≡ arctan(gi(ξ)) in

order to eliminate the noise amplification accompanying
the calculation of �[zi (ξ)]/�[z1(ξ)]. The definition
of ri (ξl) to be inserted in (37) should be accord-
ingly changed to ri (ξl) ≡ arctan(�[zi(ξl )]/�[z1(ξl )]).
Subsequent to optimizing for the αik parameters and
finding g′

i(ξ), gi (ξ) can be found using gi(ξ) =
tan(g′

i (ξ)).

C. Source Estimation

As we have already shown, the Zadeh’s frequency response
of the elements of the mixing matrix is independent of ω
and, therefore, these elements belong to their centralizer.
This means that the elements of the matrix are commutative,
permitting the application of the matrix algebra mentioned in
Corollary 9. As long as the determinant a1(ξ)− a2(ξ) 
= 0,5

the system is invertible and (17) can be used to estimate the
sources.

D. System for Generating Position Varying Instantaneous
Image Mixtures

In the process of imaging through a semi-reflector, such as a
plain glass window, the reflected image is superimposed on the
transmitted one. The left optical setup shown in Fig. 4 depicts
an optical system assembled in our lab for generating position
varying instantaneous mixture of images. The glass is used
as a mixer of transmitted and reflected obtained images. The
position varying mixing is achieved by changing the lighting
condition of the transmitted image. First, mixture is acquired
using room lighting whereas a second mixture is acquired
using an extra nonuniform illumination.

5In instances, where a1(ξ) − a2(ξ) � 1 the system is singular or badly
conditioned and the variational method should be used.
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(a) (b)

Fig. 4. Optical system generating (a) spatial varying instantaneous mixtures
and (b) spatial varying single-path mixtures. Two pictures are positioned
opposite to each other while a semi-reflective glass is mounted along the
optical axis of one of them. In the case of instantaneous mixtures, the first
mixture is generated using a uniform lighting. A second mixture is generated
using a nonuniform illumination. In the case of single-path mixtures, the first
and second mixtures are acquired from slightly different camera positions.

E. Results

We tested our approach on simulated and real mixtures.
For the simulated mixtures, two mixtures were obtained from
two audio signals. The signals were sampled at a rate of
32K samples/sec, and mixed using the following time varying
instantaneous filters:

H =
[

1 1
1.1t + 0.6 −1.7t + 2

]
.

The filters change the attenuation of the signals linearly as
a function of time. Random noise with normal distribution
was added to the mixtures, yielding a peak-signal (mixture)-
to-noise ratio (PSNR) of 20 dB. The mixtures were sparsified
using STFT with window duration of 1/4 of a second. The
sparsity, measured by the Gini Index (which was found to
be the best measure for sparsity, by [23]), increased from
0.28 to 0.51. For the parametric mixing system estimation,
we estimated the probability density using the Epanechnikov
radially symmetric kernel. The indefinite integral of (40) was
solved and the intersections of the support of the kernel with
the curve were found using MATLAB solver. The optimization
scheme was implemented using MATLAB, and the algorithm
was initialized by several starting points and converged to two
local maxima. The system was directly inverted by calculating
the inverse of the mixing matrix, H −1. Fig. 5 depicts the
signals of mixtures of two voices. On the top left are the spec-
trograms obtained by using a STFT with a window duration of
1/4 second. Shown on the top right are the separated estimated
sources. On the top middle, we can see the kernel estimated
probability density. The audio mixtures and separated sources
can be found at http://visl.technion.ac.il/∼kaftory/TIP. The
CSISR of the top examples of Fig. 5 increased from 4 dB
and −4 dB, for the two mixed sources, to 28 dB and 32 dB
after the separation.

The setup depicted in Fig. 4 was used for generating real
mixtures. The mixtures were acquired with a Nikon D100
digital camera controlled by a computer. The PSNR for the
noisiest mixture, which was estimated by taking consecutive
identical pictures, was 40 dB. We define g′

i (ξ) ≡ arctan(gi (ξ))
and assume that a second order polynomial is the estimated
Taylor expansion of g′

i(ξ). Since images are not naturally
sparse, we used the Haar wavelet packet for sparsification.

The sparsest node (node 1, 3) was chosen. This increased
the Gini Index from 0.44 to 0.57. Again, for the parametric
mixing system estimation, we estimated the probability density
using the Epanechnikov radially symmetric kernel density
estimation. We initiated our algorithm with several starting
parameters and the algorithm converged to two local maxima.
The system was inverted directly by calculating the inverse of
the mixing matrix, H −1.

Fig. 5(b) depicts results obtained in separation of reflection
from a transmitted image. The mixtures were generated by
the system shown in Fig. 4(a). The mixtures of the images
are shown in Fig. 5(b.i). One mixture was acquired under
normal room-lighting condition, and the other acquired with
the addition of nonuniform lighting to the transmitted image.
The estimated separated sources are shown in Fig. 5(b.iii). The
mutual information of the mixtures is 0.3 and 0.15 for the
separated sources. The kernel-estimated probability density,
obtained by selecting pixels corresponding to wavelet packet
coefficients exceeding the threshold, is shown on the middle.

VI. BLIND SEPARATION OF TIME/POSITION VARYING

SINGLE-PATH MIXTURES6

Here, we assume that the filters of the mixing matrix have
the form of (6), where there is no attenuation (ai j (ξ ) = 1).
In this section, we use as an example, two mixtures of a
transmitted image and a phantom reflected from a curved semi-
reflector, acquired from slightly different locations. When the
semi-reflector is not flat, as is the case in a front windshield of
a car or the canopy of a cockpit, the reflected image is usually
distorted. Furthermore, the distortion of the reflection varies as
a function of the viewing position [26]. We model these image
mixtures in the context of a position varying single-path BSS
and assume the following.

1) The model of the single-path mixing coefficient, di j (ξ )
in (6) is arbitrary but smooth.

2) The dependency of the reflection and the transmission
coefficients on the viewing angle is negligible. There-
fore, the image intensity does not change when the
camera position varies.

3) The image sources contain edges or other features.
Considering two different mixtures and representing them

in matrix form, the BSS problem can be written explicitly as[
zλ1

zλ2

]
=

[
h R1 h D1

h R2 h D2

]
�

[
Rλ
Dλ

]
+ η (44)

where zλ1 and zλ2 are the mixtures observed from two different
camera positions. h R and h D , defined by

h R(ξ, ξ
′) ≡ δ

(
ξ ′ − MR(ξ )

)
h D(ξ, ξ

′) ≡ δ
(
ξ ′ − MD(ξ)

)

(45)

where MR and MD are mappings between the reflected
image coordinate system and the transmitted image coordinate
system to the camera system, respectively [24]. We explicitly
define the filters gi of (12) as

h R2 = gR � h R1 , h D2 = gD � h D1 . (46)

6Some of the methods and the results of this section were published in
[24] and [25].
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(a)

(b)

(a.i) (a.ii) (a.iii)

(b.i) (b.ii) (b.iii)

Fig. 5. (a) Two audio signals of a man’s and a woman’s voices are mixed. (a.i) Spectrograms of the two audio mixtures. (a.ii) Kernel-estimated probability
density. The black lines indicate the estimated curves gi (αik ; ξ). (a.iii) Spectrograms of the estimated separated sources. (b) Mixtures produced by the
setup depicted on Fig. 4(a). (b.i) Mixture of the images obtained in room lighting and with the addition of nonuniform lighting to the transmitted image.
(b.ii) Kernel-estimated probability density. The black lines indicate the estimated curves g′

i (αik ; ξ). (b.iii) Estimated image sources.

Solving for gR and gD yields

gR = δ
(
ξ ′ − MR2 (ξ )+ MR1 (ξ)

)

gD = δ
(
ξ ′ − MD2 (ξ)+ MD1(ξ )

)
. (47)

A. Sparsification Using Scale Invariant Feature Transform
(SIFT)

The Zadeh transform of one of the elements of the mixing
matrix is

HZ R (ξ, ω) =
∞∫

−∞
δ
(
ξ ′ − MR(ξ)

)
e

j
(
ω(ξ−ξ ′)T

)
dξ

= e
j
(
ω(ξ−MR(ξ))

)
.

(48)

Since it is a function of both ω, and ξ , finding its centralizer
is a challenging task. None of the common sparsification
transformations, which can be accounted for by conventional
filters, belongs to the centralizer and is invariant to the mixing
system. There exists, however, the SIFT [27], which cannot
be accounted for by a filter, but is most suitable for our
purpose of sparsification. It can be observed that the zero-
order Taylor approximation of the filters of the mixing matrix,
calculated around some point, is a translation of that point.
The first-order scales the image about this point, while the
second and higher order, produce nonlinear stretching of this
image point. Therefore, the filters of the mixing matrix can be
approximated by local affine transforms. The SIFT is invariant
to local affine transforms, and can literally commute with the
mixing matrix. The SIFT transforms an image into a large
collection of local feature vectors, based on the appearance
of an object of special points of interest (keypoints). Each
feature vector is translation, rotation, and scale invariant, as
well as invariant to illumination changes and 3-D projection.
The feature vectors are highly distinctive and can, therefore,

be regarded as a sparse representation, where only a small
percentage of the pixels are chosen. Since the special points
of interest (keypoints) are translation, rotation, and scale
invariant, they can be identified and matched between two
different images of the same scene.7 Such matching points of
interest are referred to as “matching keypoints.”

B. Mixing Matrix Estimation

Consider for example a pair of images, one of which is
a locally-distorted version of the other. The difference in
location of the matching keypoints, ξ

0
− ξ

1
, for the x and

y axes, can be used in the process of estimating a surface,
which corresponds to the mapping of one image to the other.
Suppose one observes in one of the mixtures, at some position
ξ

0
, the existence of a SIFT point of interest (keypoint), which

is similar8 to a SIFT corresponding point found in the other
mixture in the position ξ

1
. Suppose that the keypoint belongs

to the transmitted image. MD1(ξ)− MD2(ξ ) is the difference
(measured in pixels) between the mapping of a point in the
transmitted image to the first and second observed images.
Therefore, for the matching keypoints, this value is MD1(ξ)−
MD2(ξ) = ξ

0
− ξ

1
. Recalling (47), the value of gD(ξ ) is

known for this keypoint. For matching keypoints which belong
to the reflected image, the value of gR is known. Therefore,
by scatter-plotting the location difference of the matching
keypoints, two surfaces can be estimated. One corresponds
to gD and the other to gR . We can usually assume that the
transmitted image is not distorted but may be slightly shifted
between the mixtures, and solve the problem of clustering
the keypoints to gR or gD. It is done by first grouping all
the matching keypoints of which their relative offsets are
consistent with a small, close to zero shift, and assigning them
to the surfaces of gD . The remaining keypoints are assigned

7See [27] for a complete illustration of the method.
8Refer to [27] for the matching criteria.
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to gR and used in estimating the surface of gR by utilizing
a surface fitting technique. If we have a priori information
about the curvature of the semi-reflector, we can assume a
parametric surface fitting model for the surface estimation.
Otherwise, we can assume that the surface is smooth and apply
a nonparametric surface fitting with smoothing constraints.

C. Variational Source Estimation

From the Zadeh’s transform of the filters of the mixing
matrix in (48), one may conclude that the elements of the
mixing matrix do not commute. Therefore, a direct inver-
sion of the mixing system is not feasible. We implement a
variational framework for solving the problem. Recalling the
BSS problem

zλ1 = R′
λ + D′

λ + η1

zλ2 = gR � R′
λ + gD � D′

λ + η2 (49)

we filter both sides of the first equation with the position
varying filter gR and subtract it from the second equation.
This yields the following equation, to be solved for D′

λ:
zλ2 − gR � zλ1 = (gD − gR) � D′

λ + η (50)

where we used the distributivity property of �.
A variational approach to solving (50) is by minimizing the

cost functional

J =‖ zλ2 − gR � zλ1 − (gD − gR) � D′
λ ‖2 +wR(D′). (51)

The regularization operator, R(D′), that we use for color
images, is based on the Beltrami flow. Sochen et al., [28],
interpret an image as a manifold (surface) embedded in a high
dimensional space, where x and y are two spatial coordinates
of this space, and the intensity at each of the λ channels
is represented as an additional dimension. Hence, a color
image, such as the reflected or the transmitted image, is a
manifold embedded in a 5-D space. From this viewpoint,
image regularization can be interpreted as a process that
minimizes the surface area of this manifold. The surface area
of an image is measured by the Polyakov action [29]. It is
given for the transmitted image by

R(D′) =
∫∫

�

√
det(GD)dxdy (52)

where GD is a 2×2 matrix. Each of the matrix entries, depends
on the spatial location. Their values are given [30] by

gD11 = 1 + ρ2
∑
λ

(
∂D′

λ

∂x

)2

gD12 = gD21 = ρ2
∑
λ

∂D′
λ

∂x

∂D′
λ

∂y

gD22 = 1 + ρ2
∑
λ

(
∂D′

λ

∂y

)2

(53)

where ρ is a parameter for scaling the intensity dimensions.
It is useful not to use the Polyakov action, but to use a modified

version (by multiplying it by a positive function) where its
derivative is the Beltrami flow which is defined as

Beltrami ≡ 1√
det(GD)

Div
[√

det(GD)(GD)
−1∇D′

λ

]
(54)

where ∇D′
λ is the spatial gradient of D′

λ and Div is the
divergence operator.

The properties of using the Beltrami flow for the restoration
of color images are investigated thoroughly in [31] and [32].
Some of these properties are:

1) forcing the color channels to spatially align and therefore
to suppress color distortions;

2) reducing the noise;
3) preserving the image edges.
Minimizing J, is accomplished by reaching dJ/d D′

λ = 0
∑

λ
(gD − gR)

T �
(
zλ2 − gR � zλ1 − (gD − gR) � D′

λ

)

+ w√
det(GD)

Div
[√

det(GD)(GD)
−1∇D′

λ

]
= 0 (55)

where (gD − gR)
T is the position varying filter obtained

by switching the place along the coordinates ξ and ξ ′.
Equation (55) is a nonlinear partial differential equations
(PDE). Rather than solving it directly, we use the fixed point
lagged diffusive method, used in [33]. By means of this
method, the PDE can be solved by lagging the nonlinear
term of the Beltrami operator one iteration behind. Then, for
example, by knowing D′(t)

λ in some iteration t , D′(t+1)
λ can

be found by solving a linear PDE, while applying a conjugate
gradient minimization scheme.

In operator form, we obtain the following operator
definitions:
L (D′(t)

λ )D
′(t+1)
λ ≡ (gD − gR)

T � (gD − gR) � D′(t+1)
λ

− γ√
det(GD(t))

Div
[√

det(GD(t))(GD(t))
−1∇D′(t+1)

λ

]
(56)

and
K ≡ (gD − gR)

T �
(
zλ2 − gR � zλ1

)
. (57)

Equation (55) can be written using the above operator defini-
tion as

L(D′(t)
λ )D

′(t+1)
λ − K = 0. (58)

A direct solution of these equations, as required by each
minimization step, would be

D′(t+1)
λ = L(D′(t)

λ )
−1K. (59)

Since it is difficult to find and invert L(D′(t)
λ )

−1, the step
d D′(t)

λ is introduced

D′(t+1)
λ = D′(t)

λ + d D′(t)
λ . (60)

The step d D′(t)
λ can be found by solving

L(D′(t)
λ )d D′(t)

λ = K − L(D′(t)
λ )D

′(t)
λ . (61)

Equation (61) can be solved by using the conjugate gradient
method.

A similar restoration process with the Beltrami operator,
was used in [34] for the unmixing and restoration of color
images taken through a scattering medium.
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D. System for Generating Position Varying Single-Path
Mixtures

Optical systems that yield position varying image mixtures
are depicted in Fig. 4. Shown on the right-hand side is a curved
semi-reflector used as a mixer between a transmitted image
and a reflection. The position-varying single-path mixing is
imposed by the curvature of the semi-reflector. Two different
mixtures are acquired by moving the camera to slightly
different positions, which results in approximately the same
transmitted image, but different distortions of the reflected
image.

E. Results

We tested our approach on simulated and real mixtures.
For the simulation, we implemented a simulator based on ray-
tracing and used it to simulate a superposition of a reflected
and transmitted image. Two observation points were used
to obtain two slightly different mixtures. The shape of the
semi-reflector was chosen to be a sphere, thus, producing a
reflection with a fisheye-lens effect. We also assumed that
the semi-reflector is very thin, to avoid distortions of the
transmitted image. Finally, Gaussian noise was added to the
mixtures, yielding a PSNR of 25 dB. For the real mixtures, the
setup depicted in Fig. 4 was used. Instead of a semi-reflector
made out of glass, we curved a thin polycarbonate sheet. The
mixtures were acquired with a Nikon D100 digital camera
interfaced with a computer. The PSNR for the noisiest mixture,
which was estimated by taking consecutive identical pictures,
was 40 dB.

The mixtures were sparsified using a SIFT software.9

Keypoint matching was performed using the same software
with a threshold on the vector angles from the nearest to sec-
ond nearest neighbor of 0.6 (see the software for the threshold
details). We use the parametric surface fitting on the simulated
mixtures and a nonparametric on the experiments, by first
calculating the location difference of corresponding SIFT
keypoints. We take advantage of the fact that the transmitted
image is not distorted. Thus, the location difference between
the corresponding SIFT keypoints is constant. We estimate this
constant by finding the maximum of the histogram of the loca-
tion differences. After removing all the features corresponding
to this constant, a second degree polynomial surface fitting is
applied.

Fig. 6 depicts the results. The mixtures of the images
are shown on the left. The estimated surfaces obtained
by the parametric surface fitting are shown in the middle.
The separated, estimated, sources are shown on the right. The
estimated sources are well separated.

The mutual information of the images, which was 2.7 and
1.3 for the mixtures in the simulation and the experiment,
respectively, was reduced to 0.8 and 0.6, respectively, after
the separation.

9SIFT MATLAB code can be downloaded from
www.cs.ubc.ca/~lowe/keypoints.

VII. BLIND SEPARATION OF TIME VARYING

MULTIPATH MIXTURES

We limit ourselves to filters which are time-varying,
attenuated-and-delayed, versions of constant channel distor-
tions

hi j (t, τ ) = ai j (t) fi j (di j (t)− τ ) (62)

where ai j is a time-varying attenuation, fi j is a finite impulse
response filter and di j is a time-varying delay function. In this
section, we assume the following.

1) Apart from some instances, the zero-order Taylor
approximation of the Zadeh transform of the multipath
mixing coefficients, around some instances confined to
a small window, is sufficient to represent the coefficients
in that window.

2) The sources are either sparse in their native domain,
or can be sparsely represented in the time-frequency
domain.

We assume that these filters have finite support, with a
maximum support of size 2L M . We can, therefore, find a
window of size 2LT , LT � L M , around the time instance t ,
in which hi j (t, τ < t − LT ) = 0 and hi j (t, τ > t + LT ) = 0.
Consequently, we can state that

hi j (t, τ ) = hi j (t, τ )wind(t − τ ) (63)

where wind(t − τ ) denotes a unit window function centered
at τ = t with support of 2LT .

The BSS problem can be written as

zi (t) =
∑

j

∞∫

−∞
hi j (t, τ )wind(t − τ )s j (τ )dτ + η

=
∑

j

∞∫

−∞
hi j (t, τ )s j (t, τ )dτ + η (64)

where we define s(t, τ ) ≡ wind(t − τ )s(τ ). We note that s(t)
can be calculated by s(t) = ∫∞

−∞ δ(t − τ )s(t, τ )dτ .
Using Zadeh’s frequency response, (64) can be written as

zi (t) = 1

2π

∑
j

∞∫

−∞
HZi j (t, ω)SFj (t, ω)e

jωtdω (65)

where HZi j (t, ω) is the Zadeh frequency response of hi j , and
SFj (t, ω) is the Fourier transform of s j (t, τ ) along the τ axis.

The BSS problem can be written in the Zadeh time-
frequency domain as

ZZi (t, ω) =
∑

j

HZi j (t, ω)SFj (t, ω)+ η̃ (66)

where η̃ is the time-frequency representation of the Gaussian
noise, assumed to be constant. We can regard ZZi (t, ω) as the
frequency representation of the output of the mixing system
given an input at the instance t using the filters hi j (t, τ ), with
the addition of some noise constant. Clearly, in a similar way
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Fig. 6. (a) Simulated and (b) experimental single-path image mixtures obtained by a round semi-reflector. Left: Image mixtures. Middle: Estimated surfaces
obtained by surface fitting of matching SIFT keypoints. Right: The estimated image sources.

to (65), zi (t) can be found using the inverse Zadeh transform
of ZZi (t, ω)

zi (t) = 1

2π

∞∫

−∞
ZZi (t, ω)e

jωt dω. (67)

The modified BSS problem can be written in the Zadeh
domain as

ZZi (t, ω) =
∑

j

GZi j (t, ω)S ′
Fj
(t, ω)+ η̃ (68)

where GZi j (t, ω) = HZi j (t, ω)H−1
Z1 j
(t, ω) and S ′

Fj
(t, ω) =

HZ1 j (t, ω)SFj (t, ω), where a method for finding the sources
s′

1(t) and s′
2(t) out of S ′

F1
(t, ω) and S ′

F2
(t, ω) is by calculating

s′(t) =
∞∫

−∞
S ′

F (t, ω)e
jωtdω.

A. Sparsification Using STFT

As stated earlier, ZZi (t, ω) is the time-frequency represen-
tation of the mixtures in the Zadeh transform domain. In a
similar way to the STFT, and as one of the assumptions men-
tioned in the Introduction, ZZi (t, ω) is a sparse representation
of audio and other harmonic signals.

Utilizing the assumption stated in the Introduction, we
can find some windows of size 2L L , over which the zero-
order Taylor approximation is sufficient to represent the Zadeh
transform of the filters in these windows. We set the size of LT

such that L L > LT +L M , where 2LT is the size of the window
used for calculating s j (t, τ ), and 2L M is the maximum support
of the filters of the mixing matrix.

It is shown in [11] that if the frequency content of the
sources does not change over the same window where the
zero-order Taylor approximation is sufficient to represent
the Zadeh transform of the filters of the mixing matrix, the
STFT with windows of size 2L L of the observed mixtures
zi (t), provides an estimation to ZZ (t, ω).

Since this estimation is sparse, the STFT under the assump-
tions can be regarded as a sparsification transformation.

B. Mixing Matrix Estimation

Sparse signals represented in the time-frequency space
enable the estimation of the mixing system, since there are
many frequencies and time instances, over which only one
source is active. Therefore, Gi j (t, ω) can be found from

GZi j (t, ω) ≈ ZZi (t, ω)ZZ1(t, ω)
−1. (69)

The Zadeh frequency responses of filters of the type used
in this section, are

HZi j (t, ω) = ai j (t)FFi j (ω)e
− jω(t−di j (t)) (70)

where FFi j (ω) is the Fourier transform of the fixed filter
fi j (t − τ ).

The value of the filter Gi j (t, ω) is therefore

GZi j (t, ω) = ai j (t)FFij (ω)e
− jω(t−di j (t))

a1 j (t)FF1 j (ω)e
− jω(t−d1 j(t))

. (71)

The filter GZi j (t, ω) is a complex function. Therefore,
instead of finding it directly, we estimate its amplitude and
phase separately. We define the angle ψi (t, ω) as follows:

ψi (t, ω) = tan−1

( ∣∣ZZi (t, ω)
∣∣

∣∣ZZ1(t, ω)
∣∣
)
. (72)

According to the assumptions related to properties of
sources that are sparse in their time-frequency domain rep-
resentation, there are time instances tn and frequencies ωm

where only one source is active. We scatter-plot the points
ψ1(tn, ωm) and ψ2(tn, ωm) for some fixed ω as a function of
t . The points lie on one of the curves ψ̃1 j (t, ω) or ψ̃2 j (t, ω),
where ψ̃i j (t, ω) is defined as follows:

ψ̃i j (t, ω) = tan−1

(
ai j (t)

∣∣FFi j (ω)
∣∣

a1 j (t)
∣∣FF1 j (ω)

∣∣
)
. (73)

Note that the above curve is continuous, since ψ̃i j (t, ω) does
not depend on the value of the source j . Therefore, if we
assume that ai j (t) is a continuous functions of t , ψ̃i j (t, ω)
is also a continuous function of t , bounded between 0 and
π/2. We should note that we use the inverse tangent of the
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Fig. 7. Audio signal of a man’s voice is mixed with the sound of a siren generated according to a semi-realistic scenario. (a) Spectrograms of the two audio
mixtures. (b) Amplitude and phase of the filters of the mixing matrix. (c) Spectrograms of the estimated separated sources.

ratio ai j (t)
∣∣FFij (ω)

∣∣/a1 j (t)
∣∣FF1 j (ω)

∣∣ in order to suppress the
amplification of the noise in the cases where the denominator
is close to zero. We define the phase shift�φi (t, ω) as follows:

�φi (t, ω) = 
 ZZi (t, ω)− 
 ZZ1(t, ω) (74)

where the symbol 
 denotes the phase. We scatter-plot the
points�φ1(tn, ωm) and�φ2(tn, ωm) on a graph for some fixed
ω as a function of t . The points lie on one of the curves
�φ̃1 j (t, ω) and �φ̃2 j (t, ω), where �φ̃i j (t, ω) is defined as
follows:
�φ̃i j (t, ω) = 
 FFi j (ω)− 
 FF1 j (ω)+ ω(di j (t)− d1 j (t)).

(75)
In this case too, the above curve is continuous, since
�φ̃i j (t, ω) does not depend on the value of the source j .
Therefore, if we assume that di j (t) is a continuous function
of t , �φ̃i j (t, ω) is also a continuous function of t , bounded
between 0 and 2π with a 2π fold.

It is observed that the values of the filters GZi j can be
found by

GZi j (t, ω) = tan
(
ψ̃i j (t, ω)

)
e j�φ̃i j (t,ω). (76)

The objective is, therefore, to find the curves out of the
cluttered points. This can be done either by using a parametric
or nonparametric estimation using methods described in the
previous sections.

C. Source Estimation

In the time-frequency domain, the filters GZi j (t, ω) of the
above form, are commutative. Therefore, a direct inversion
of the problem is feasible. In cases where GZ22(t, ω) −
GZ21(t, ω) � 1, the system is singular or badly conditioned.
A variational methods should then be used. Two variational
methods–one in the combined time-frequency domain and the
other in the time domain are presented in [11].

D. Results

We tested our approach on simulated audio signals in a
semi-realistic acoustic scenario, in which a reporter is speaking
to a two-microphone array, while an emergency vehicle is
passing nearby. The functions ai j (t) and di j (t) are calculated
for this scenario as

ai j (t) = 1

qi j (t)
, di j (t) = t − qi j (t)

c
(77)

where c is the speed of sound and qi j is the distance between
the j th source to the i th sensor. The signals recorded from the

reporter and the emergency vehicle were sampled with anti-
aliasing filter at the rate of 4K samples/second. We assumed
that the microphones were close to each other; therefore,
the time invariant atmospheric transfer function obeys f11 =
f21 and f12 = f22. Finally, Gaussian noise was added to
the mixtures, yielding a signal (mixture)-to-noise ratio of
20 dB. The value of Zi (t, ω) was obtained using a windowed
Fourier transform with a window of length 400 samples. This
increased the Gini Index from 0.43 to 0.67.

We scatter-plot the points ψ(tn , ωm) for the time and fre-
quencies, where the absolute values of the windowed Fourier
transform of the mixtures are above the threshold. It is done for
each ω as a function of t . Since according to the assumptions,
this ratio should be the same for all ω, we take the maximum of
the histogram and plot it as a function of time. We use the para-
metric curve fitting assuming a polynomial of various degrees,
until a good approximation to the curves ψ̃i j (t, ω) is achieved.
We then scatter-plot the points �φ(tn, ωm)/ωm for the time
and frequencies, where the absolute values of the windowed
Fourier transform of the mixtures are above the threshold.
These points are independent of ω. We use the parametric
curve fitting, assuming a polynomial of various degrees, until
a good approximation to the curves �ψ̃i j (t, ω)/ω is achieved.

Fig. 7 depicts the results. The estimation of ψ̃i j (t, ω) and
�φ̃i j (t, ω)/ω using a polynomial fit are shown in Fig. 7(b).
We use ψ̃i j (t, ω) and �φ̃i j (t, ω) to construct GZi j (t, ω) by

GZi j (t, ω) = tan
(
ψ̃i j (t, ω)

)
e j�φ̃i j (t,ω). (78)

The system is inverted using the variational approach in the
time-frequency domain. The spectrogram of the mixtures is
depicted on Fig. 7(a), whereas the estimation of ψ̃i j (t, ω) and
�ψ̃i j (t, ω)/ω are depicted in the middle and the estimated
sources are depicted in Fig. 7(b). The mutual information of
1.6 of the mixtures, was reduced significantly to 0.7 for the
separated sources.

VIII. CONCLUSION

We proved that in the general case, the filters of the mixing
matrix do not commute and therefore inversion of the mixing
system using matrix algebra is not feasible. However, we found
in the Zadeh time-frequency domain, the conditions under
which filters are commutative and, consequently, an inverse
filter exists.

Instead of using an online form of instantaneous or convo-
lutive BSS, we use the SSCA approach in a batch processing
manner. We studied the conditions which allow the appli-
cation of the SSCA, and showed that using an appropriate
sparsification operator enables the estimation of the mixing
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system, as long as a proper threshold was imposed, so that
the above-threshold instances are frequent enough and have
a good signal-to-noise ratio. Estimation of the mixing system
enables the system inversion, which can be done directly by
matrix inversion. For cases where matrix algebra cannot be
used, or where the system is badly conditioned, we developed
a variational approach for solving the inverse problem.

The demonstration of our SSCA approach along with the
methods for sparsification and parametric and nonparametric
mixing matrix estimation showed the feasibility of using the
SSCA for the solution of various time/position varying BSS
problems. This was demonstrated on simulated and experimen-
tal data, obtained from three types of mixtures representing
many real-life applications.
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