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Denoising-Enhancing Images on Elastic Manifolds
Vadim Ratner and Yehoshua Y. Zeevi

Abstract—The conflicting demands for simultaneous low-pass
and high-pass processing, required in image denoising and en-
hancement, still present an outstanding challenge, although a
great deal of progress has been made by means of adaptive
diffusion-type algorithms. To further advance such processing
methods and algorithms, we introduce a family of second-order
(in time) partial differential equations. These equations describe
the motion of a thin elastic sheet in a damping environment. They
are also derived by a variational approach in the context of image
processing. The new operator enables better edge preservation
in denoising applications by offering an adaptive lowpass filter,
which preserves high-frequency components in the pass-band
better than the adaptive diffusion filter, while offering slower
error propagation across edges. We explore the action of this pow-
erful operator in the context of image processing and exploit for
this purpose the wealth of knowledge accumulated in physics and
mathematics about the action and behavior of this operator. The
resulting methods are further generalized for color and/or texture
image processing, by embedding images in multidimensional
manifolds. A specific application of the proposed new approach to
superresolution is outlined.

Index Terms—Diffusion equations, image enhancement, image
resolution, image restoration, wave equations.

I. INTRODUCTION

I N PHYSICS, systems are represented as a collection of dis-
crete particles, interactions between which define the sys-

tems’ dynamical behavior. These interactions are elegantly rep-
resented by partial differential equations (PDEs), which have
been thoroughly explored in physics and mathematics during
the last centuries. Digital images are also most commonly rep-
resented as a collection of discrete elements (pixels). This sim-
ilarity to a physical system suggests that different image char-
acteristics may also be represented and altered by appropriate
PDEs, allowing the use of this powerful mathematical tool in
image processing. This explains why since the introduction of
the adaptive diffusion PDE to the field of image processing by
Perona and Malik (PM) [18], it became the subject of exten-
sive research. In recent years, methods inspired by the PM ap-
proach have been successfully applied to various image-pro-

Manuscript received June 02, 2010; revised October 25, 2010; accepted Feb-
ruary 11, 2011. Date of publication February 22, 2011; date of current version
July 15, 2011. This work was supported in part by Philips Consumer Lifestyle, in
part by a fellowship awarded to V.R, and in part by the Technion Olendorff-Min-
erva Center for Vision and Image Sciences. The first author was supported by an
Ollendorff-Minerva Fellowship. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Xilin Chen.

The authors are with the Department of Electrical Engineering, Tech-
nion-Israel Institute of Technology, Technion City, Haifa 32000, Israel (e-mail:
vad@tx.technion.ac.il; zeevi@ee.technion.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2011.2118221

cessing problems (see, for example, [3], [8], and [18]) and have
been even implemented in commercial products [4].

The main advantage associated with the implementation of
a PDE-based approach is that it allows space(position)-varying
image processing, while retaining linear computational com-
plexity. As a matter of fact, anisotropic diffusion-based pro-
cessing is equivalent to filtering the image with a Gaussian of
feature-dependent width. This allows, for example, preserving
edges while smoothing flatter areas of an image.

Another advantage of PDE processing manifests itself in
color image processing. Color images have been traditionally
represented as three separate channels, conveying color and
intensity information. Most of the research in the field of color
image processing focused on decorrelating the channels, so
that processing a channel does not affect information contained
in other channels, but full decorrelation has not been achieved.
Consequently, nonlinear processing and effects of noise result
in mismatch of the 3-channel signals, yielding colored fringe
artifacts. To cope with this and for other advantages in image
processing, Sochen, Kimmel, and Malladi [22] proposed a new
representation scheme, which enables processing of a color
image as a single entity, bypassing the issue of correlation
between channels. This representation, adopted in the present
study, considers an image as a manifold embedded in a com-
bined spatial-feature (color) non-Euclidean multidimensional
space [23].

The purpose of the present study is to introduce a new adap-
tive PDE-based method that can be applied to several prob-
lems in image processing, such as denoising and deblurring.
This method is based on a family of damped wave or telegra-
phers’ equations, still unexplored in the context of image pro-
cessing. These equations describe, for example, the motion of
a thin elastic sheet in damping environment. This type of PDE
was initially considered for its smoothing properties and for its
compatibility with the manifold color image representation (a
3-D manifold being easily described as a thin elastic sheet). We
will also show that the telegraphers’ equation can be derived
by variational methods. The most important advantage of using
this family of equations is that it enables better edge preserva-
tion when compared with diffusion-based approaches.

This paper presents the development of the new method from
continuous PDE theory to a complete, ready-to-implement,
discrete superresolution algorithm. Numeric implementation
issues are addressed and manifold representation is adopted
for color image processing. Since the most widely used PDE
image-processing scheme is based on the diffusion equation,
comparisons are primarily made with diffusion-based schemes.

The paper is organized as follows. Section II derives the tele-
graph-diffusion (TeD) equation and explores some of its prop-
erties. Section III presents several spatially varying versions of
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TeD. Section IV introduces the elastic manifold image represen-
tation. Section V addresses numerical issues. Section VI derives
a single-image super-resolution scheme based on the aforemen-
tioned methods, and experimental results (Section VII) are then
followed by conclusions.

II. TELEGRAPH-DIFFUSION EQUATION

A. Problem Definition

Consider an image degraded by random Gaussian additive
blurring noise. Improving the quality of such an image with ref-
erence to one image attribute results in a compromise in ref-
erence to other image attributes. Most filtering-based denoising
schemes yield simultaneous noise reduction and image blurring.
The latter occurs because image components, such as edges
and textures, span similar high-frequency spectrum to that of
noise, which is filtered by the denoising algorithm. For the same
reason, sharpening or deblurring of an image also has an unde-
sired side effect of noise enhancement. The main goal of the
enhancing algorithms is therefore to further improve the de-
sired processes of deblurring and denoising simultaneously. To
achieve this goal, an operator is required, which allows adap-
tive local control of the restoration process in accordance with
image structure. To identify such a process (operator), we turn
to physics.

Processes that describe interactions between particles have
been explored in physics for centuries. These processes have
been successfully modeled by PDEs. Various mathematical
tools are available for the analysis and solution of these PDEs in
the continuous and discrete domains. Finding the right analogy
between image processing and a physical process should,
therefore, allow us to apply these tools in the solution of the
image-processing problem at hand. One of these approaches,
proposed by Perona and Malik in [18], considers an image to
be a particle density map and the denoising process—random
particle motion controlled by locally varying temperature. In
this paper, we explore elastic deformation as an alternative
process that exhibits smoothing qualities and allows local
control. We show that it has several important advantages over
diffusion in the context of image processing.

B. Elastic Sheet Approach

Let us consider a degraded grayscale input image, repre-
sented by the function . A triplet defines a
surface, which may be treated as a thin elastic sheet placed in a
damping environment. If we enforce some boundary conditions
(e.g., zero spatial derivatives on the boundaries) and allow the
elastic deformation process to continue for a given (short) time
period , we obtain (under some assumptions of elasticity and
damping) a function (process) , which evolves to
become a smoothed image . The elastic deformation process
is represented by the PDE

(2.1)

where and are the elasticity and damping coefficients, re-
spectively. The coefficients and vary across the image and
over time to achieve denoising, while leaving meaningful fea-
tures intact. We assume the image is rectangular for the sake of

simpler presentation and consider the case where the time and
the parameters and are bounded

The following conditions are imposed:

that is, the image is assumed to be fixed in time before the
process begins. Outside the boundaries of the image, the con-
tinuation of the boundary values applies.

The parabolic-hyperbolic equation (2.1), known in engi-
neering and in physics as a damped wave or telegrapher’s
equation, is often encountered in various fields besides physics
(e.g., in statistics [5], [11]; finance [2]; transmission of signals
over telegraph wires (hence the terminology); and many more
[9], [31]). It has also been thoroughly investigated from a
mathematical viewpoint [1], [7], [17], [29].

We coined the term TeD for the operator presented by (2.1)
because of its resemblance of the PM version of the diffusion
equation (i.e., the second and the third terms)

(2.2)

where is the diffusivity coefficient and since it combines, in a
way, the wave and diffusion equations. It is interesting to note
that (2.1) converges to the diffusion equation after a very long
time [7], [30], although this regime is of no interest in the context
of image processing. Given positive and bounded coefficients,
TeD converges to a unique bounded solution [17]. It thereby
provides a basic form of denoising by uniformly smoothing the
entire image. This quality of the elastic process is further devel-
oped in the sequel to enable edge preservation and enhancement.

C. Process Optimization

Equation (2.1) can also be reached by means of the varia-
tional approach. Variational methods have been widely used in
image processing ever since their introduction in the context of
image processing by Mumford and Shah ([15]) as a mathemat-
ical method for image segmentation. In particular, total varia-
tion (TV) was used by Rudin, Osher, and Fatemi to derive the
diffusion-based methods in [21], producing the required image
by minimizing the surface of the resulting (grayscale) image ,
over the image domain

(2.3)

Euler-Lagrange (EL) minimization of the measure (energy)
yields the following condition:

(2.4)
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which, when solved by gradient descent, yields the nonlinear
diffusion equation.

The two minimization steps of 1) Euler-Lagrange optimiza-
tion and 2) a subsequent iterative solution (by, for example, gra-
dient descent) lend themselves to an evolutionary process that
satisfies the EL condition. It is advantageous to consider the evo-
lution as the final goal and incorporate the time axis into the
minimization domain. This approach yields a process suitable
for the chosen functional in a single minimization step. Let us
consider the smoothing process over a finite time interval .
Since minimal surface is still desired, we require that the total
surface over time will be as small as possible

(2.5)
Since the initial image is fixed, this should lead
to smoothing over time.

Another requirement is that the total change over the entire
image should not exceed the noise level

(2.6)

where is the noise variance. Since is not differentiable,
we use a more adequate condition

(2.7)

where is some positive constant.
By using Lagrange multipliers, we can derive the following

minimization problem:

(2.8)

which yields the following EL equation:

(2.9)

To guarantee convergence, an energy dissipation term may be
added. This term can be derived from the condition

(2.10)

where is a monotonic increasing function of time , forcing
the rate of change to decrease over time. The choice of
transforms (2.9) to

(2.11)

Fig. 1. Spatial frequency response of a linear 1-D diffusion (2.13) depicted for
� � � (dashed red) and telegraph-diffusion operators, depicted for 3 sets of
parameters (see insert).

where , are constants. Experiments show that in discrete
settings, using as the second derivative coefficient
instead of , for small positive or zero (i.e., decou-
pling the coefficients of the first and second derivatives (in time)
of ) improves the results.

We have thus shown that the TeD equation can be derived
by optimizing the entire adaptive process, so that the resulting
image is smooth and close to the original. The resulting equa-
tion fits the elastic model (2.1), with reduced correlation (force)
between pixels that belong to different objects (i.e., lying across
an edge).

D. Operator Analysis

To gain further insight into the behavior of the TeD equation,
we first consider the linear telegrapher’s equation (i.e., constant
elasticity and damping coefficients). A 1-D elastic deformation
can be represented as convolution with kernel , the spatial
frequency representation of which is (F denoting the Fourier
transform)

(2.12)

where all of the coefficients are non-negative, unless stated oth-
erwise. The kernel can be derived by Fourier transforming of
(2.1) in the time domain and then solving the resulting poly-
nomial. The 1-D kernel (Fig. 1) is presented for convenience.
Higher dimensional kernels are obtained by simply substituting
the squared spatial frequency with .

The spatial frequency response (2.12) resembles, at first, an
all-pass filter. With time, the side lobes (stop-band ripples) of

decrease in amplitude, while the main lobe (pass-band) de-
creases in width, rendering to become a low-pass. As
increases, the main lobe width decreases and the amplitude of
the side lobes remains unchanged. For negative , the filter en-
hances high frequencies in a way similar to the linear backward
diffusion filter. Increasing reduces the side-lobe amplitude and
increases the main lobe width. For negative , the side lobes be-
come larger than the main lobe, resulting again in a high-fre-
quency-enhancing filter. As the kernel formula indicates, nega-
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Fig. 2. Step smoothed by the adaptive TeD (dashed) and adaptive diffusion
(dotted). The plots are line samples of a 2-D denoised image. The TeD edge
transitioning from high to low intensity is much sharper (i.e., higher slope) and
of higher contrast than that of the diffusion-processed edge.

TABLE I
COMPARISON BETWEEN TED AND DIFFUSION,

A FIXED NUMBER OF ITERATIONS

Columns (left to right): initial (noisy) PSNR, noise standard deviation (sigma),
diffusion PSNR, diffusion PSNR variance, TeD PSNR, and its variance.

tive is equivalent to negative time. “Slowing time,” however,
is equivalent to a reduction of damping and elasticity.

The TeD equation thus presents a way to locally adjust the
frequency components of an image by offering a wide range
of filters, from low-pass, which is useful in denoising (if the
noise is most noticeable in high frequencies), to high-frequency-
enhancing filters, which are useful for the sharpening of edges.

E. Why TeD?

The shape of the linear operator highlights one of the ad-
vantages inherent in the TeD, compared with diffusion-based
methods. Linear diffusion is analogous to convolution with a
Gaussian lowpass filter (derived similar to TeD), represented
in the spatial frequency domain by

(2.13)

It is clearly observed that the TeD kernel (Fig. 1) is much closer
to an ideal low-pass (a rectangle in the frequency domain) than
the diffusion kernel. The pass-band in the case of TeD is flatter
and the transition between the pass-band and stop-band (the
“roll-off”) is steeper, with characteristics that are desirable in
filter design. These qualities of the TeD kernel contribute to
the preservation of high frequencies in edges, yielding sharper
edges and higher edge contrast than those resulting from diffu-
sion denoising (Fig. 2 and Table I).

Another important difference between the characteristics of
the two equations is error propagation speed. The essence of the

Fig. 3. Log of step response of linear TeD and diffusion (left) and adaptive
TeD and diffusion (right). The 50� 50 input image consisted of a single step at
� � ��. The plots depict line samples of the original 2-D functions degraded to
similar values of PSNR (the �-axis being the spatial coordinate X). These plots
show that information “leaks” across the edge much faster in linear diffusion
than in linear TeD (higher values of the response for � � ��, where, ideally,
�� is expected). The difference is even more profound in the case of adaptive
algorithms.

latter is the speed of a propagation of a reaction to a disturbance.
A weakness of the diffusion equation is that it has unbounded
propagation speed (i.e., theoretically) in any nonzero time in-
terval, and nonzero reaction to an impulse at the origin propa-
gates to the entire image (although not equally). For an intuitive
insight into the importance of this quality, we turn again to the
linear operator. The reaction of the diffusion operator to an im-
pulse, for any time 0 is a Gaussian function of the distance
from the focal point of the disturbance, which is nonzero ev-
erywhere. The case of variable coefficients is even worse, since
the diffusivity is artificially increased over flat areas ([18]), in-
creasing the propagation effect. This quality of the diffusion
equation is highly undesirable in image-processing applications,
since it imposes a correlation between naturally uncorrelated
features, such as different objects in an image.

This problem was dealt with a long time ago in the area of the-
oretical physics, where infinite information propagation speed is
also undesirable. An improved mode1 that accounts for inertia
results in the telegrapher’s equation (see, for example, [2] and
the references therein, or [14]). In the latter case, the speed of
propagation is (Fig. 3).

Diffusion and TeD also differ in the discrete domain. The
explicit time discretization scheme (approximating continuous
process by dividing it into small linear time steps) requires small
time steps to remain stable, which increases computational ef-
fort. The numeric stability requirement for 1-D linear discrete
diffusion equation is , while that of linear
discrete TeD is (CFL condition [30] with

being the diffusivity in diffusion and elasticity in
TeD). In other words, TeD allows a larger time step.

Computational complexity of the algorithm is similar to that
of diffusion (i.e., , being the number of input elements
and is the number of iterations of the PDE solver).

A discrete model of elastic surface was proposed indepen-
dently of this work by Pollak et al. in [19], where the authors
represented pixels as a grid of masses, connected by springs.
Unlike the model proposed here, in their paper, Pollak et al. did
not use a damped model, but rather reset the masses’ speed after
short intervals of time . The PDE resulting from their model
is therefore a first-order diffusion equation.
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Fig. 4. Comparison of the PM-TeD and FAB-TeD performance in denoising of
an image. Leftmost column: original image (top) and noisy (PSNR 28.0) image
(bottom). Middle column: PM-TeD denoising result and error (PSNR �����).
Rightmost column: FAB-TeD denoising result and error (PSNR �����). The
FAB-denoising error image contains many less details than the PM denoising
error.

III. SPATIALLY VARYING TED

A. Basics

By defining spatially (and temporally) varying elasticity and
damping coefficients, it is possible to locally control the degree
of smoothing. In this paper, we primarily address the case of
the varying elasticity coefficient, although initial experiments
have shown that variation of the damping coefficient can further
improve performance.

To introduce our method, we consider an image as an elastic
sheet (3-D manifold). The initial structure of the sheet represents
the noisy input image . To improve SNR and preserve edges,
the sheet is made to be more elastic (higher ) over smooth
areas and more rigid (lower ) around edges. An example of
this elasticity coefficient is

(3.1)
similar to coefficients proposed for the diffusion operator (see,
for example, [8]), where is an edge detector (absolute gradient
of the processed image throughout this paper). An image that
results from the application of the basic TeD operator (Fig. 4)
consists mostly of flat surfaces separated by sharp edges; a car-
toon-like representation of the original image. This type of rep-
resentation is useful, for example, in image segmentation.

Elasticity functions and their properties are presented in [20].
In this paper, we focus our analysis and application on forward-
and-backward (FAB) coefficients, introduced by Gilboa et al. in
[8] and on directional coefficients (Weickert et al. [25], [26]).

B. Forward-and-Backward (FAB) Processes

Edge preservation or even enhancement by adaptive TeD may
be further improved by allowing local sharpening processes.
These can be achieved by reversing the smoothing process
around edges by means of negative coefficients. When selective
sharpening is required, a combined FAB-TeD is desirable.
It can be implemented by varying either the elasticity or the
damping coefficients. The latter will be addressed elsewhere.
An interesting option to explore is the combination of smooth
positive elasticity and discrete positive/negative damping (pos-
itive over smooth areas, negative around edges).

Unlike the case of the damping coefficient, negative elasticity
is not equivalent to negative time. Nevertheless, it still sharpens
the image, increasing slope and contrast of edges, and even
creating Mach-bands around the edges (overshoots in step-like
edges, further increasing edge contrast). Fig. 4 presents the re-
sults of applying FAB-TeD with elasticity defined by

(3.2)

where controls the amplitude of the maximum, is the width
of the negative lobe, is the position of the minimum, and is
the amplitude of the minimum. Good choices (empirically found
[8]) for (m,n) are (4,2). It is important to note that negative coef-
ficients introduce instability that should degrade the image after
long periods of time. The instability, however, is insignificant
in short-time evolutions, which are of interest in an image de-
noising enhancement.

C. Coherence Enhancing Filtering

Nonlinear PDE-based methods allow space-varying pro-
cessing, but they are still isotropic (i.e., they display no
directional dependency when viewed on a small enough scale).
For every pixel, the strength of smoothing changes according
to its proximity to an edge, but the smoothing is symmetric
in all orientations. When dealing with oriented structures, not
only does the strength of smoothing need to be controlled by
image features, but also its orientation. A method proposed by
Weickert [25]–[28] achieves that by manipulating eigenvalues
of a smoothed structure tensor (3.5), enhancing diffusion along
the edges and reducing, or even reversing it across edges (i.e.,
perpendicular to the edge orientation) [25]. This is obtained
by replacing the spatial term in diffusion and TeD
equations by

(3.3)

In the case of a grayscale image, is a 2 2 matrix, which
contains structural information about the image. It is defined as
follows:

(3.4)

where are eigenvectors of the smoothed structure tensor ,
pointing in the direction of the steepest descent and its orthog-
onal counterpart

(3.5)

The eigenvalues are as follows:

(3.6)
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Fig. 5. Tensor processing. (a) Original image. (b) Tensor-diffusion denoising.
(c) Tensor TeD denoising. (d)–(f) zoomed lower-right corners of (a)–(c) (g)
gray-level values obtained along the crosscut of the main diagonal of (a) (solid
gray), (b) (solid red), and (c) (dashed blue). The original image was denoised
by the two methods to achieve similar PSNR of the upper left quadrant (lower
frequencies). While both methods reduced the quality of the lower right quad-
rant (higher frequencies), TeD has preserved a much better structure detail then
the diffusion-based algorithm (compare (e) and (f)). This is, in particular, notice-
able in (g), where one can easily see that the diffusion-related signal deteriorates
faster than the TeD-processed signal.

where is a small parameter controlling diffusion in the direc-
tion of (i.e., across edges). The eigenvalue controls
smoothing in the direction of strongest coherence, i.e., . It is

also possible to use negative [8], applying inverse TeD across
edges. The negative is useful in the enhancement of edges.

This scheme yields the following 3 3 convolution mask for
the computation of (3.3) [26], where , , , and are the com-
ponents of the matrix , as shown in the equation at the bottom
of the page.

Comparing the performance of the tensor-diffusion and the
tensor-TeD (Fig. 5), one observes that the latter yields better
results. One reason is the better edge preservation. Orientation
sensitivity of the TeD denoising scheme also contributes to its
performance.

IV. COLOR MANIFOLD FRAMEWORK

The TeD is now generalized to the consideration of color (or
multispectral) image processing, to provide a unified framework
for the spatially varying methods presented before. One way to
adopt the TeD method and use it on color images is to process
each color channel separately. This method, although simple
and easy to implement, disregards correlation between color
channels. The result is, therefore, far from optimal and is af-
fected by the color representation scheme that one implements.
For example, in RGB, color-space color artifacts are created and
in YCrCb, color-space overall saturation is decreased [20]. Fur-
ther, due to nonlinear processing of the three channels, the three
images do not cohere into one unified image and color artifacts
appear around the edges.

An alternative approach is to embed the three color
channels of the image in a manifold. Instead of separate
channels, the image is then represented as a 2-D surface

embedded in
a 5-D spatial-color manifold [16], [23]. This allows simulta-
neous processing of the three channels in a unified manner and
lends itself to the application of a variety of tools offered by
manifold representation and by the geometric approach. In this
case, the variables represent spatial information and

represent color and intensity. To further highlight
this approach, several important relevant issues are adopted
from Sochen et al. [22], [23]. A more detailed theoretical
background is available in [16].

A. Metric and Distance

Let us first define the terminology. A general definition of
distance element over manifold is

(4.1)
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where is the th element of a vector and is a
metric defined in . In the example of with Euclidean
distance, is a 2 2 unity matrix, resulting in the familiar
Euclidean distance . The metric
defines, in this case, an inner product on

(4.2)

where is a matrix with elements , and is the inner
product of vectors in with metric .

Let be an embedding of a submanifold in a manifold

(we will mostly use for the image coordinates and
for the space-feature manifold). The distance element

on the image is calculated as before, with the following metric
on :

(4.3)

where is the metric on , and is called the induced
metric.

B. Manifold Image Representation

The embedding manifold with
Euclidean metric was used in [22] and [23].
Choosing as the spatial and color components,

,
yields good results. The aforementioned choices determine the
following structures of the induced metric (note that from now
on is omitted from , since it is the only metric that is
of interest to us):

(4.4)

Having defined the distance element, the following surface min-
imization functional is defined:

(4.5)

where, for convenience, we have replaced by .
The minimization of the aforementioned functional (also

known as Polyakov action) with respect to the image compo-
nents yields the Beltrami flow [22]

(4.6)

where is one of the color channels , , or . For gray-scale
images, the process degenerates to

(4.7)

which is very similar to the tensor diffusion of Weickert [25],
except that the eigenvalues of the Weickerts structure tensor
(smoothed induced metric) are replaced by general functions,
while here they are replaced by their inverses. In fact, using in-
verse eigenvalues may cause instability in numerical solutions.
This may be overcome by merging the two methods by using
the induced metric as a structure tensor for color images.

By exploiting the similarities between TeD and diffusion
equations, one can derive the following TeD-based smoothing
operator (by adding a second derivative in the time of to
4.7, similar to the way TeD 2.1 can be seen to be derived from
diffusion 2.2)

(4.8)

where “det” marks the matrix determinant. The experimental
comparison between manifold TeD image processing and sepa-
rate channel processing can be found in [20].

V. NUMERIC SCHEMES

Discretization schemes and their convergence so far have re-
ceived limited attention in the context of PDE image processing.
Weickert et al. in [27], presented one of these schemes, which
differs from the basic approach in that it offers unconditional
stability. Its application to the TeD method will be presented.

To simplify matters, we first discuss a 1-D case, where is
the th element (spatial coordinate ) of vector (input
at time ). We also assume constant damping . Basic
discrete representation of (2.3) is as follows ( and being the
temporal and spatial steps):

(5.1)

This representation defines the following iterative, explicit (For-
ward Euler), update scheme of :

(5.2)

where is the input vector and is a matrix corresponding to
the spatial derivative operators and coefficients at time .

An advantage of the forward Euler scheme is that it is straight-
forward and can well approximate the continuous process with
any given accuracy by using small enough time steps. This is
also the major drawback of the explicit scheme—it requires
small time steps to converge to a stable solution and is therefore
very demanding computationally. To compare this, the most
stable solution is the implicit solution. It uses data from time
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Fig. 6. Comparison of explicit (upper right) and two iterations of semi-implicit
(bottom) denoising of a noisy image (upper left).

step to perform the spatial calculations (coefficients and
derivatives) in the right-hand side of the equation

(5.3)

It is numerically stable for any time step, allowing a single iter-
ation solution. However, it requires the solution of nonlinear
equations, where is the number of elements in , owing to
the fact that depends on . An intermediate scheme
closely related to backward Euler (BE) discretization was pro-
posed in the context of image processing by Weickert et al. in
[27], resulting in the following discrete equation:

(5.4)

which can be rewritten, assuming pixel dimension and
unity matrix , as

(5.5)

In this case, is a tridiagonal matrix, which enables efficient
(linear complexity) inversion of (which
is a tridiagonal matrix) by using the Thomas algorithm [27].
Although it requires additional calculations, the scheme retains
linear complexity and is more stable than the standard approach,
allowing larger time step and fewer iterations (reduction by
order of magnitude). Although the tradeoff between quality and
processing time (number of iterations, time-step size) still exists
(i.e., for larger time steps), there is a noticeable reduction in
image quality (Fig. 6), even a single iteration produces visually
acceptable results.

The semi-impicit scheme works well with vector signals. The
generalization of the algorithm to higher dimensions is, how-
ever, not trivial. The naïve approach of vectorizing (raster scan,
Hilbert scan) the input image and applying the BE scheme re-
sults in nonzero values outside the main three diagonals of ,
increasing the matrix inversion complexity to

(5.6)

Fig. 7. PSNR (� axis) obtained by semi-implicit TeD as a function of the
number of iterations (� axis), based on a number of natural images. These
data demonstrate that for larger time-steps (fewer iterations), the PSNR of
the denoised image decreases. This implies that larger time steps yield less
consistent semi-implicit schemes.

where corresponds to the partial spatial derivative operator
along dimension . The matrix is
obviously not tridiagonal, a structure which does not allow using
efficient inversion methods. Weickert et al. [27] proposed a solu-
tion that approximates the -dimensional semi-implicit scheme
by performing the update separately along each axis. The 2-D
input image is raster scanned twice per iteration—along the
and axes, and the two resulting vectors are updated

(5.7)
where the vector is generated by raster scanning the image

along dimension . This approximation of the BE scheme is
unconditionally stable ([27]) (i.e., small changes in the input
produce small changes in the output). It does, however, become
inconsistent for very large timesteps (Fig. 7) (i.e., when large
time steps are used, no matter how fine is the grid (pixel size),
the continuous solution does not fulfill the discrete scheme). Our
experiments have shown that the semiimplicit scheme achieves
results similar to explicit for as few as two iterations. For a single
iteration, however, artifacts of inconsistency begin to appear,
decreasing the PSNR (Fig. 7).

VI. SUPERRESOLUTION

Let us consider an image that is obtained by blurring/sub-
sampling of an original image . The essence of the super-
resolution problem consists of restoring based on and/or
enhancing certain image attributes (e.g., edges). Most existing
superresolution algorithms require, as an input, multiple images

obtained from different sources or a video sequence. Some
require prior learning from a sequence of (similar) images [6].
There are, however, cases where only a single image is available,
which one would still wish to enhance. Since blurring/subsam-
pling results in loss of high-frequency information, the super-
resolution problem poses an impossible task. A related task can,
however, be dealt with efficiently (i.e., the problem of increasing
the resolution of in such a way that the processing will yield
a natural-looking enhanced image ([8]). This is closely related
to recently proposed methods of smart interpolation [13], [32].
Although no image-specific information is available that will
replace the lost high-frequency components, we can make sev-
eral assumptions based on the current understanding of human
vision, on how a general natural image should look like. For
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Fig. 8. Example of a single image superresolution result. Note the general im-
pression of enhancement as well as the fine detail that emerges in various regions
of the enlarged image by the applications of the FAB TeD processing scheme.
Careful inspection of the image reveals that this subjective impression of en-
hancement is primarily due to sharpening of edges and thin lines. Below are
samples of the 2-D Fourier transforms of the subsampled image (green) and the
result (blue). The resulting image has a wider bandwidth then the subsampled
image, indicating increased sharpness .

example, it should have sharp edges, which separate relatively
smooth regions. These assumptions may be considered, in a
way, as being equivalent to prior information (Fig. 8).

Based upon the aforementioned assumptions, we propose a
single image superresolution, or image fidelity enhancement
scheme. It consists of two steps:
Step 1) increasing an image to a desired size;
Step 2) improving the quality of the resulting image.

The first step requires simple interpolation (bicubic or spline
since both achieve good results). It results in a larger number
of pixels, but a blurry image. The second step incorporates two
tasks: 1) selective sharpening of meaningful edges and thin lines

and 2) reduction of noise-like artifacts caused by the interpola-
tion (e.g., ringing effects). We have already observed that these
conflicting demands are accommodated well by the FAB TeD
operator. The proposed scheme is as follows:

Step 1) consists of possible preprocessing (such as TeD de-
noising) and interpolation. Step 2) requires inclusion of addi-
tional information that may be available (e.g., edge information,
segmentation, areas of increased sharpness, or texture). This in-
formation can be incorporated in the calculation of coefficients.

Note that we do not pay special attention to noise in the initial,
low-resolution image for two reasons: 1) TeD-based denoising
can be applied before Step 1) and 2) low-resolution noise is
further reduced along with the ringing effects by processing the
interpolated image.

VII. EXPERIMENTS

Since the performance of diffusion-based methods has been
well established in the literature ([3], [8], [25]) and since the
diffusion and TeD equations are very closely related, we first
compare the performance of basic nonlinear diffusion and TeD
schemes, implementing the elasticity coefficients according to
(3.1). We then test the performance of the semi-implicit numeric
scheme in the context of TeD.

There are several difficulties in comparing even such similar
denoising methods as diffusion and TeD, since one can obtain
less stable and more accurate schemes even for the same coeffi-
cient functions. Further, similar coefficients affect the two equa-
tions differently. We therefore compare the performances as fol-
lows. First, we compare the best results that can be achieved
by each of the two methods given similar resources (Table I);
we use similar coefficient schemes, with parameters adjusted so
that the best peak signal-to-noise ratio (PSNR) is achieved in a
fixed number of iterations (the same number for TeD and diffu-
sion), with the largest time-step size that yields a stable solution
for each algorithm (e.g., for the initial noise PSNR of 20 dB,
the diffusion parameters used were 50, 0.25, and for

25, 1.5, 0.5). Second, we compare the
number of iterations required to reach a certain PSNR by the two
algorithms (Table II). We find the parameters (3.1) and (2.1)
that result in the minimal number of iterations required to reach
some fixed PSNR values, thus comparing the resources required
by each method. We can compare the performance of TeD and
diffusion by comparing the number of iterations that each algo-
rithm requires since the amount of calculations per pixel during
an iteration of the algorithms is practically the same (the differ-
ence is one multiplicative and two additive operations per pixel,
which is negligible compared to the total number of operations
per pixel, which is around 20 additive and 20 multiplicative op-
erations).

The results (Table I) indicate that for lower initial noise levels
(PSNR above 20 dB), TeD outperforms diffusion by more than
2 dB. This is a significant difference, considering the fact that
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TABLE II
COMPARISON OF TED AND DIFFUSION FOR A SET FINAL VALUE OF PSNR

Columns (left to right): initial (noisy) PSNR, noise standard deviation (sigma),
final PSNR, number of diffusion iterations and number of TeD iterations re-
quired to reach the PSNR.

the PSNR is measured across the entire image, while the advan-
tage of TeD is noticeable mainly around the edges (which also
convey most of the image information). For higher noise levels,
the advantage of TeD is less significant. This may be attributed
to the fact that high noise alters the high-frequency components
of edges to such an extent that they become irrecoverable by
the proposed methods. Some realizations of the random noise
make some details irrecoverable. While diffusion removes these
details altogether, TeD recovers them when possible. This may
explain the increased variance of the TeD results for lower noise
levels. In general, we have seen that the worst results of TeD on
synthetic and natural images are still the same or better than
those of diffusion. The results also indicate (Table II) that TeD
reaches a set PSNR value faster (in fewer iterations).

To test the performance of semi-implicit TeD, we restore a
noisy (PSNR 26.4) kingfisher image. To obtain a reference re-
sult, we perform 50 iterations of explicit TeD denoising for a
time step of 0.1 and different values of and . The best set
of parameters (determined experimentally) is 4, 100
(for gray levels between 0 and 255). These parameters yield a
PSNR of 30.8 (Fig. 6). We then proceed to denoise the image
by semi-implicit methods by using 4, between 1 and 100,
for different time steps and max iterations (Figs. 6 and 7). It
is observed that there is a slight decrease in PSNR as the time
step increases. As expected, semiimplicit results approach those
achieved by the explicit scheme for smaller time steps.

Additional experimental results and images are available at
http://visl.technion.ac.il/TED-page/.

VIII. CONCLUSION

The new family of PDE image-processing operators, which
differs from existing ones by the incorporated second-order time
derivative, enables better preservation of edges and small de-
tails, by offering an adaptive bandpass filter with better charac-
teristics than those of existing PDE-based methods. The new op-
erators were derived by the intuitive approach (smoothing prop-
erties of damped elastic motion) and by variational methods.
Most of the research on existing, diffusion-based operators ap-
plies also to the new family of TeD equations. Considering the
variational basis of the TeD equation, other applications in var-
ious areas of image processing and computer vision, where dif-
fusion equation is currently used, such as segmentation, become
attractive.

Convergence of the continuous TeD was proven by Nakao
[17]. Initial analysis, supported by computational results, in-
dicates that the proposed discrete image-processing scheme is
stable. However, rigorous stability and consistency analysis still
remain to be performed on the new family of equations. The pro-
posed enhancement scheme, including superresolution, can be
generalized to deal with (medical and other) volumetric data as
well as video. These results will be presented elsewhere, along
with the application of variable damping coefficients.
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