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Abstract The Mumford-Shah functional and related algo-
rithms for image segmentation involve a tradeoff between a
two-dimensional image structure and one-dimensional para-
metric curves (contours) that surround objects or distinct re-
gions in the image.

We propose an alternative functional that is independent
of parameterization; it is a geometric functional given in
terms of the surfaces representing the data and image in
the feature space. The �-convergence technique is combined
with the minimal surfaces theory to yield a global general-
ization of the Mumford-Shah segmentation function.

Keywords Image segmentation · Measure-based metric ·
Geometric functional · Gamma-convergence · Minimal
surfaces

1 Introduction

Let g(x, y) be the intensity of the light signal impinging on a
planar image domain B at a point (x, y). The image g(x, y)

is expected to be discontinuous along the edges of the ob-
jects. The definition of the segmentation depends on whether
one approaches the problem at the level of the image as a
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whole or, alternatively, considers the image as a collection
of edge fragments. In the first case it is natural to consider
the partitioning of the image into smaller structures. In the
second case it becomes more natural to consider the prob-
lem of grouping of elements into larger structures. In both
cases, the following questions arise: (i) What exactly is the
goal of the segmentation process? (ii) Is segmentation feasi-
ble? These questions are important for understanding of the
above process. Without a clear conception of the task and
its requirements no satisfactory progress in this area can be
made.

The above dichotomy into local vs. global, and related
heuristic approaches, were later circumvented by the varia-
tional approach to segmentation, adopted by us and further
developed in this paper.

Morel and Solimini [35] showed that any heuristic seg-
mentation method may be translated into a variational one.
Variational formulations summarize all criteria concerning a
set of edges K in a single real-valued functional F(K). For
any set of edges or “segmentation” K there is an associated
value F(K) which states the merit of this segmentation. In
general, this functional is a trade off between fidelity and the
number of the segments involved. This leads to an obvious
comparison principle between any pair of possible segmen-
tations.

The Mumford-Shah variational model [36] turned into a
general framework for image segmentation. It defined the
segmentation problem as a joint smoothing/edge detection
problem as follows: given an image g, it seeks simultane-
ously a set K of discontinuities, the “edges” of g, decom-
posing the planar domain B (“pixel space”) to disjoint con-
nected open subsets Bi , i = 1 . . . n, so that B = Bi ∪ · · · ∪
Bn ∪ K , and a function u differentiable on ∪Bi , which is
allowed to be discontinuous across K . Morel and Solim-
ini [35] showed that many other segmentation algorithms
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are particular cases of Mumford-Shah functional or closely
related to it. Unfortunately, minimizing the Mumford-Shah
functional is a very difficult task because of the subtle
interaction of the two-dimensional term u and the one-
dimensional term |K|. It isn’t also obvious that the mini-
mizing problem is well posed.

There are also dynamic models which use the local infor-
mation along the deforming counters. The “snakes” model,
introduced by Kass, Witkin and Terzopoulos [24], provided
an accurate localization of edges near a given initializa-
tion of the curve. Caselles et al. [8] introduced a geomet-
ric flow segmentation model, overcoming successfully prob-
lems characteristic of snake method. A unification of both
the parametric and the level set geometric model, known
as the geodesic active contours, was suggested by Caselles
et al. [9]. In order to accelerate the motion of the geodesic
active contours, Goldenberg et al. [20] proposed to add an
additional force that comes from area minimization term and
motivated by the balloon force [16]. An attempt to merge
the active contours technique and Mumford-Shah functional
theory was made by Chan and Vese [14], who proposed a
minimal variance criterion (edgeless active contours). Chan,
Sandberg and Vese [13] proposed an extension to the vector
case, where the model can detect edges present in at least
one of the channels and not necessarily in all channels. The
geodesic contours model and edgeless active contours model
were integrated into a unified algorithm in the work of Kim-
mel [25]. At first, the arclength term in [14] was replaced
by the more general weighted arclength term, also known in
the geodesic active contour functional [9] as a data sensitive
regularization term. This yielded better results in most cases
and simplified the regularization used by Chan and Vese
[14]. Second, the alignment term as part of other driving
forces of an active contour was added. The above combined
approach which accounts for both the gradients between re-
gions and region’s homogeneity, may produce better results
for various images.

The geometric framework developed by Sochen et al.
in [44] is conceptually close to ours. They introduced the
set of tools for enhancing while preserving either the multi-
channel edges or their texture features. The images are
treated as manifolds (surfaces in the 2D case) embedded
in a higher dimensional space-feature manifold. The man-
ifold metric is a free “parameter” of the framework. For the
induced metric the norm becomes simply the area or the vol-
ume of the image manifold, and the flow is towards minimal
surface solution. Minimizing the area over the space of map-
pings, Sochen et al. in [45] obtained the area minimization
direction given by applying the second order differential op-
erator of Beltrami on the feature coordinates, which in fact is
a generalization of the Laplacian associated with flat spaces.
In fact, for the grey level case the above operator describes
the mean curvature flow of the image surface divided by the

determinant of induced metric. The extension of the above
approach for non-Euclidean embedding space was treated
by Sochen and Zeevi in [46]. Another example of induced
metric may be taken from [42]: Sagiv, Sochen and Zeevi
proposed a novel approach for texture segmentation, which
enables the use the geodesic active contours mechanism in
the Gabor spatial feature space of images, by generalizing
the edge indicator function. Following the model [8] devel-
oped for grey level images, Sagiv, Sochen and Zeevi [43]
generalized it to texture segmentation model. The energy
functional to be minimized can be seen as a natural exten-
sion of the functional in [25], where the term which accounts
for the arc-length of the curve is replaced by the geodesic
length of the curve, weighted by the gradient information.

A novel and powerful approach has emerged from the
mathematical theory of approximation of functionals via
�-convergence. The idea was to approximate the functional
by a different, parameter-dependent, functional that is ex-
pected to be more regular. As a result, the minimizer of ap-
proximating functional should approximate the minimizer
of original one, while enjoying greater regularity. The above
technique, merged with the Beltrami framework [44] was
originally presented in [27] as two different approaches pos-
sible in the treatment of the segmentation function. First,
the edge indicator function E was defined on the image
surface manifold. Here the Polyakov action [39] was used
as an adaptive smoothing metric for both the color co-
ordinates and the segmenting function. In the second ap-
proach the edge indicator function was defined over the im-
age plane. The metric was as before, the induced metric,
but this time the Polyakov action was used only for the
feature coordinates. In the above work the generalized �-
convergence technique was applied to Mumford-Shah func-
tional with reference to two aspects: multi-channel images
were analyzed and the L2 norm in the smoothness term
was replaced by the Polyakov action. Eventually, in [4] and
[5] the Mumford-Shah functional was generalized to color
images, for segmentation and restoration purposes respec-
tively, using the “image as a manifold” interpretation, while
the length term remained the same.

We propose an alternative to the Mumford-Shah func-
tional (Sect. 2). The concept behind this alternative is a
geometric functional which is independent of parameteri-
zation, and can be implemented in terms of the geometry
of surfaces representing the data and image in the feature
space. Starting with the original version of the Mumford-
Shah segmentation functional given in [36] and using the
theory of minimal surfaces, we bring the full construction of
our functional. The minimization problem for relaxed func-
tional with parametric representation is treated (Sect. 3) and
the detailed solution of the minimization problem for the re-
laxed functional with non-parametric representation is pre-
sented (Sect. 4).
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2 Measure-Based Metric Function for the
Segmentation Functional

2.1 Preliminary Analysis

Mumford and Shah [36] proposed the functional

FMS(u,K) =
∫

B\K
|∇u|2 + |K| + α

∫
B

|u − g|2, (2.1)

where K ⊂ B is a one dimensional set which represents
the edges, and |K| is the length of this set (understood as
the one-dimensional Hausdorff measure of K). A minimizer
{u,K} of FMS thus produces the required image u as well
as the edges K .

We propose an alternative functional. The concept behind
this alternative is an object which is independent of parame-
terization, i.e a geometric functional which may be given in
terms of the geometry of surfaces representing the data and
image in the feature space (see below). Considering the im-
age u as a two-dimensional surface, we shall replace the first
two terms of (2.1) by the area of this surface. This allows
sharp discontinuities (edges) of the image in the form of sur-
face folding. This idea is not new (see, e.g., [44]). However,
to make the third term of (2.1) fit the geometrical descrip-
tion, we must replace it by another metric D(g,u) repre-
senting the distance between the two surfaces.

To motivate this change, we point out that the term∫ |u − g|2 connects locally the image u(b) for each b ∈ B

to the data g at the same point b. Thus, this term implicitly
assumes that there is a one-to-one correspondence between
points of the data to points of the image. It is well known
that this is never the case, since defocusing and mapping er-
rors imply that each pixel point is influenced by a domain
rather than by a single point of the data.

Moreover, the proposed change allows us to replace the
deterministic data g by a random one. For this we replace
g(b) by a positive measure μb(dy)db where y is a parame-
terization of the feature fiber (see below). Further, to differ-
ent pixels there may correspond different amount of data, so∫

μb(dy) ≤ 1 for each pixel b where strong inequality and
even zero value may not be excluded for some of the pixels.

Our objective is to define a distance D(μ,U) between the
data measure μ and the image surface U .

Before proceeding, let us define the feature space. Let Y
be a set representing the possible data at a single pixel b ∈ B .
It may be considered as a real number (the brightness) or a
vector (if several color channels are present or, for example,
a Gabor-wavelet filter, see [26]). We shall assume here that
Y = R

m. The feature space is, then, defined as the cylinder
E := B ×Y ⊂ R

m+2. The data g is represented as a measure
μ supported in E.

To define an image u, let us consider the two-dimensional
unit disc S : {|s| < 1} diffeomorphic to B . We represent the

image as a mapping U : S → E such that U(∂S) ⊂ ∂B × Y
is projected onto ∂B . Coordinates in the feature space are
described by z := {b, y}.

The feature space E is endowed with a metric

dz2 = γ db2 + dy2 :=
m+2∑
i,j=1

hi,j dzidzj ,

where db2 = db2
1 + db2

2, dy2 =∑m
i=1 dy2

i are the Euclidean
metric in R

2 and R
m, respectively, while γ > 0 represents

the relation between the geometric (pixel-domain) and fea-
ture metrics. Here

hi,j =
⎧⎨
⎩

γ, 1 ≤ i = j ≤ 2
1, 3 ≤ i = j ≤ m + 2
0, i �= j

.

With this setting, the embedding U(S) into E is endowed
with the induced metric

�i,j (U) = UT
si

hUsj for i, j = 1,2.

Setting |�(U)| := |�1,1(U)�2,2(U) − �2
1,2(U)|1/2, the sur-

face area of U(S) is

A(U) =
∫

S

|�(U)(s)|ds. (2.2)

Let us now replace the first two terms of (2.1) by (2.2), and
the last term by a distance D(μ,U) between the embedded
surface U(S) and the data measure μ:

F(U) = A(U) + αD2(μ,U). (2.3)

By our convention, the distance D should only depend on
the image U(S) and not on a particular parameterization.
With this assumption, we replace A(U) by the quadratic
form

Ã(U) = 1

2

∫
S

Tr
(∇U(s)T h∇U(s)

)
ds, (2.4)

where Tr(·) is a trace of a given matrix. Note that

Ã(U) ≥ A(U), (2.5)

which reduces to an equality if the parameterization of U is
conformal, namely

�1,1(U) = �2,2(U), �1,2(U) = �2,1(U) = 0.

We replace F(U) by

F̃ (U) = Ã(U) + αD2(μ,U) (2.6)

and obtain by (2.5)

F̃ (U) ≥ F(U), (2.7)
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and equality if the embedded U is a conformal mapping
from S to E.

For parametric representation of an image used in this
section we cannot exclude the possibility that the optimal
image is folded over the pixel space B . If this is the case,
then some pixels of the image over B may have multiple
values.

In Sect. 2.2 we introduce the distance function D(μ,ν)

and the associated metric D(μ,U). The proposed defini-
tion of D has the following advantages: (i) it is lower semi-
continuous in a proper topology, thus guarantees the exis-
tence of a minimizer, (ii) it can be relaxed into a form which
is convenient for numerical implementation. In Sect. 2.3 we
study the functionals F and F̃ over suitable domains. In par-
ticular, we show that a minimizer of F̃ exists and is a confor-
mal mapping, hence it is also a minimizer of F . In Sect. 2.4
we introduce the relaxation of D into Dβ for β > 0 such
that limβ→0 Dβ = D is in the sense of �-convergence. This,
in particular, will enable us in Sect. 2.5 to relax F̃ into F̃β ,
whose �-limit at β → 0 coincides with F̃ .

2.2 The Distance Function and Parameter Dependent
Metric

Recall the Hausdorff distance dH between two closed sets
A,B ⊂ E

dH (A,B) =
√

sup
v∈B

inf
u∈A

|u − v|2 +
√

sup
u∈A

inf
v∈B

|u − v|2.

It is tempting to define the distance between a pair of mea-
sures by

D(μ,ν) = dH (supp(μ), supp(ν)).

However, it turns out that, by this definition, D is not C∗
lower semi-continuous with respect to ν in the weak topol-
ogy of measures. So we define

d(A,B) =
√

sup
v∈B

inf
u∈A

|u − v|2

and

D(μ,ν) = d(supp(μ), supp(ν)). (2.8)

Note that D(μ,ν) = 0, if supp(ν) ⊆ supp(μ). We shall later
consider the measure μ as representing the data, while ν

representing the image. In general, the data can be non-
deterministic, so μ could be supported on a set of positive
Lebesgue measure in the feature space. On the other hand,
the measure ν is always supported on a two-dimensional
manifold. The condition supp(ν) ⊆ supp(μ) represents for
us an image that fits the data.

We shall see below that D is C∗ lower semi-continuous
with respect to ν (but not with respect to μ). Indeed, the data

μ is fixed, so we have to care only about the dependence
on ν, which represents the image on which we minimize.

Given a continuous function f on E, let

sup
ν

(f ) = sup
v∈supp(ν)

f (v). (2.9)

Similarly

inf
μ

(f ) = inf
u∈supp(μ)

f (u). (2.10)

To show the next fact, we use the Portmanteau Theorem
([3], Sect. 1.2, Theorem 2.1), which, in our present notation,
reads respectively in a following manner:

Theorem 2.1 Let νn, ν be the measures in C∗. The follow-
ing conditions are equivalent:

• νn ⇀ ν in C∗.
• limn→∞

∫
f dνn = ∫

f dν for all bounded, uniformly
continuous real f .

• lim supn→∞ νn(F ) ≤ ν(F ) for all closed F .
• lim infn→∞ νn(G) ≥ ν(G) for all open G.

For proof see [3].
We now claim:

Lemma 2.1 For fixed, continuous f , supν(f ) is lower semi-
continuous under the topology of weak C∗ convergence.

For proof see Appendix A.1.
Assume from now, that μ is compactly supported in E.

Setting f (v) = infu∈supp(μ) |u − v|2, we obtain as a corol-
lary:

Corollary 2.1 For fixed, compactly supported μ, D(μ,ν) is
lower semi-continuous with respect to ν under the topology
of weak C∗ convergence.

Proof Follows immediately from Lemma 2.1 and the fact
that f (v) is continuous. �

We now replace the measure ν by a mapping U . Let l

be a measure on the parameter space S (say, the uniform
Lebesgue measure). We denote the measure ν associated
with an embedding U ∈ H

1(S,E) by νU and define it by
the pullback

νU (σ ) = l
(
U−1(σ ∩ U(S))

)

for every Borel measurable set σ ⊂ E. In terms of its action
on a test function φ ∈ C0(E) the above measure is defined
in the following way:

〈νU ,φ〉 =
∫

S

φ(U(s))ds. (2.11)

Next we establish the useful property of the measure νU .
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Proposition 2.1 If Un converges weakly to U in H
1(S,E),

then νUn converges weakly in C∗ to νU .

Proof The proposition is equivalent to

lim
n→∞

∫
S

φ(Un(s))ds =
∫

S

φ(U(s))ds (2.12)

for any φ ∈ C0(E). Any function in C0(E) may be approx-
imated by C1

0(E) function, thus it is enough to show (2.12)
for φ ∈ C1

0(E). It is obvious that

∣∣∣∣
∫

S

φ(Un(s))ds −
∫

S

φ(U(s))ds

∣∣∣∣
≤
∫

S

|φ(Un(s)) − φ(U(s))|ds

≤ max
E

|∇φ|
∫

S

|Un(s) − U(s)|ds

≤ max
E

|∇φ| ·√|S| ·√‖Un − U‖L2 .

From the compact embedding of H
1 into L

2 we obtain that
the right-hand part tends to 0 when n → ∞. �

We conclude immediately that (2.11) extends to any U ∈
H

1(S,E) and define

D(μ,U) := D(μ,νU ).

We now claim:

Corollary 2.2 The metric D(μ,U) is weakly lower semi-
continuous with respect to U in the H

1 topology.

Proof Follows immediately from Corollary 2.1 and Propo-
sition 2.1. �

2.3 Existence of the Minimizer of Functional F̃

The natural domain for the functional F̃ (2.6) is the space
H

1(S,E). However, a minimizer of F̃ over this set is trivial,
since for the constant map U = z0 with z0 ∈ supp(μ) we cer-
tainly have F̃ (U) = 0. To avoid this, we need to implement
a proper boundary condition for H

1(S,E).
By the interpretation of this functional, a natural require-

ment is that U should be a mapping of S onto a disc-like set
in E whose boundary U(CS), CS := ∂S is the “frame” of the
image, given by a Jordan curve on the cylinder C := ∂B×Y.
However, this curve must not be specified a-priori, since we
assume no a-priori knowledge on the boundary of this im-
age. Referring to the classical theory of minimal surfaces,
this suggests to consider the cylinder C as a free boundary
and to limit the domain of F̃ to a subset of H

1(S,E) com-
posed of mappings whose boundary values are contained in

the identity of the homotopy class π1 of the cylinder C. In
fact, such a boundary class can be defined in a generalized
sense for H

1 (see [17], Chap. 5). However, this class is not
closed under the weak topology of H

1, and this presents
a major difficulty for the proof that a limit of minimiz-
ing sequence preserves the boundary condition (see [17],
Chap. 5.1, Theorem 4 for a counter-example).

Fortunately, the free boundary in our case is the cylin-
der and we may use separation of variables to circumvent
this problem. Let U : S → E be written in the form U :=
{UB,UY} where UB : S → B and UY : S → Y. Consider
the functional (2.6) written as:

F̃ (UB,UY) = 1

2

∫
S

[
γ Tr

(∇UB(s)T ∇UB(s)
)

+ Tr
(∇UY(s)T ∇UY(s)

)]
ds + αD2(μ,U).

(2.13)

This representation allows us to define the domain of UY as
H

1(S,Y) without any boundary condition:

DOMY := {UY ∈ H
1(S,Y)}. (2.14)

The mapping UB , on the other hand, must map S onto B

such that UB |CS
: CS → CB := ∂B is a homeomorphism.

This corresponds to treating UB as in a Plateau problem with
non-free boundary condition. Following the general wisdom
for this type of problems, we need the technical 3-point con-
dition (see [17], p. 235) and set:

DOMB := {UB ∈ H
1(S,B) ∩ C0(CS,CB) | UB |CS

:
CS → CB is a homeomorphism

such that UB(si) = ζi for i = 1,2,3, where

s1, s2, s3 are three distinct points on CS,

while ζ1, ζ2, ζ3 are three distinct points on CB

with the same ordering}. (2.15)

To show the next fact, we use the ε-conformal mapping the-
orem of Morrey ([34], pp. 814–815) which, in our present
notation, reads:

Theorem 2.2 For a mapping U ∈ H
1(S,E) ∩ C0(CS,C),

for every ε > 0 there exists a C2 homeomorphism τε from S

onto itself which satisfies

Zε := U ◦ τε ∈ H
1(S,E) ∩ C0(CS,C)

and

Ã(Zε) ≤ A(U) + ε,

where A and Ã are defined as in (2.2) and (2.4) respectively.
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For proof see [34].
The following theorem is the main goal of this section.

Theorem 2.3 If μ has a compact support in E then a min-
imizer of F̃ is attained in the domain DOM := DOMB ×
DOMY. Moreover, any minimizer U is a minimizer of F

(2.3) as well.

For proof see Appendix A.2.

2.4 Relaxation of the Distance Function

In this section we define the relaxed distance D, denoted by
Dβ for a small parameter β > 0. We also show that D is the
�−limit of Dβ as β ↘ 0.

Definition 2.1 Let (S, d) be a separable metric space and let
Fn : S → [0,+∞], n = 1,2, . . . be a sequence of functions.
The sequence Fn is said to �-converge to F : S → [0,+∞]
if the following two conditions hold for all f ∈ S:

∀fn → f lim inf
n→∞ Fn(fn) ≥ F(f ), and

∃fn → f lim sup
n→∞

Fn(fn) ≤ F(f ).

First let define a relaxation of the supν and infμ function-
als (2.9) and (2.10). Given β > 0, set

β
sup
ν

(f ) = β ln

[∫
E

ef (v)/βν(dv)

]
,

β

inf
μ

(f ) = −β ln

[∫
E

e−f (u)/βμ(du)

]
.

Lemma 2.2 For a fixed continuous function f in E and
fixed Borel measures μ and ν supported in E:

lim
β→0

β
sup
ν

(f ) = sup
ν

(f ), (2.16)

lim
β→0

β

inf
μ

(f ) = inf
μ

(f ). (2.17)

Moreover, if νn converges C∗ to ν and βn → 0 from above
(βn ≥ 0), then

lim inf
n→∞

βn
sup
νn

(f ) ≥ sup
ν

(f ). (2.18)

For proof see Appendix A.3.
Let define now

qβ(v) :=
β

inf
μ

(|u − v|2)

= −β ln

[∫
E

e−|u−v|2/βμ(du)

]
(2.19)

and

β
sup
ν

(qβ) = β ln

[∫
E

eqβ(v)/βν(dv)

]
. (2.20)

Now, inserting (2.19) into (2.20) we define the relaxation
Dβ of D as:

Dβ(μ,ν) =
√

β ln

[∫
E

ν(dv)∫
E e−|u−v|2/βμ(du)

]
.

Using Lemma 2.2 we obtain:

Corollary 2.3 D(μ, ·) is the �−limit of Dβ(μ, ·) as β →
0 from above, if considered as a functional of the second
argument. That is:

lim
β→0;β>0

Dβ(μ,ν) = D(μ,ν),

lim inf
n→∞ Dβn(μ, νn) ≥ D(μ,ν),

where βn → 0 from above and νn ⇀ ν in C∗.

Proof Follows immediately from Lemma 2.2 and the fact
that qβ(v) is continuous. �

Remark Corollary 2.3 still holds if we assume β → 0 from
below. However, in this case, the �− limit is not to D as
defined by (2.8), but to D1(μ, ν) = d1(supp(μ), supp(ν))

where

d1(A,B) =
√

inf
v∈A

sup
u∈B

|u − v|2.

In particular,

lim
β→0; β>0

Dβ(μ,ν) �= lim
β→0; β<0

Dβ(μ,ν)

in general(!). It is easy to see that D1 is also C∗ lower semi-
continuous with respect to ν. However, it is not a good dis-
tance function. Note that D1(μ, ν) > 0 if supp(ν) is not a
single point and supp(ν) ⊂ supp(μ), while D(μ,ν) = 0 un-
der the above conditions.

2.5 Relaxation of the Original Functional

Here we introduce an implementation of the relaxed distance
function Dβ and define a corresponding version of the met-
ric Dβ(μ,U), U ∈ H

1(S,E). This enables us to introduce
the relaxation of F̃ (2.6) by

F̃β(U) = 1

2

∫
S

Tr
(∇U(s)T h∇U(s)

)
ds + αD2

β(μ,U).

(2.21)
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We set the β-distance between a mapping U : S → E to
a measure μ as

Dβ(μ,U) := Dβ(μ,νU )

=
√

β ln

[∫
S

ds∫
E

e−|U(s)−z|2/βμ(dz)

]
. (2.22)

Thus

D2
β(μ,U) = β ln

[∫
S

�β(U)(s)ds

]
,

where

�β(U)(s) = 1∫
E

e−|U(s)−z|2/βμ(dz)
.

We now claim:

Corollary 2.4 D(μ, ·) is the �-limit of Dβ(μ, ·) as β → 0
from above.

Proof Follows immediately from Corollary 2.3 and Propo-
sition 2.1. �

We may now write explicitly the functional (2.21):

F̃β(U) = 1

2

∫
S

Tr
(∇U(s)T h∇U(s)

)
ds

+ αβ ln

[∫
S

�β(U)(s)ds

]
. (2.23)

The following theorem is the main goal of this section.

Theorem 2.4 For any β > 0, the functional (2.23) attains a
minimizer Uβ ∈ DOM . The sequence of minimizers {Uβ} is
bounded in H

1(S,E). Any weak limit U in H
1, s.t.

Uβ

β→0
⇀ U ∈ DOM, (2.24)

is a minimizer of F (2.3) and F̃ and is a conformal embed-
ding of S into E.

For proof see Appendix A.4.

The functional F̃β equipped with the relaxed distance Dβ

is no longer parameter independent. In particular, its mini-
mizers are not conformal mappings. However, it is converg-
ing to parameter independent functional F̃ as β → 0.

3 Parametric Representation

3.1 Variational Formulation and Euler-Lagrange Equation
for the Relaxed Functional

Let consider a parametric representation of the image U . In
this case also U(S) := {UB,UY}, where UB is the projec-

tion of U on the pixel space B and UY is the projection of U

on the feature fiber Y. We also separate the scale γ into γ1

for the area term and γ2 for the metric. For such formulation
the area term of functional (2.23) is given as in (2.4):

Ã(U) = 1

2

∫
S

Tr
(∇U(s)T h∇U(s)

)
ds

= 1

2

∫
S

(‖Us1‖2
γ1

+ ‖Us2‖2
γ1

)
ds,

where

‖V ‖γ =
√√√√γ (V 1)2 + γ (V 2)2 +

m+2∑
k=3

(V k)2

=
√

γ (V B)2 + (V Y)2.

Let now define the relaxed metric term Dβ,γ2(μ,U). The
parameter dependent metric (2.22) attributes the measure ds

to the image U , and it is written as

D2
β,γ2

(μ,U) = β ln

[∫
S

�β,γ2(U)(s)ds

]
, (3.1)

where

�β,γ2(U)(s) = 1∫
E

e
−‖U(s)−z‖2

γ2
/β

μ(dz)
. (3.2)

For a parametric formulation we represent the data μ(dz)

as μb(dy)db. If, in addition, we restrict ourselves to a de-
terministic data G ∈ L

∞(B,Y), meaning μb(dy) := δ(y −
G(b)), and utilize the decomposition U = (UB,UY) of
(2.13), we obtain

�β,γ2(U)(s) =
[∫

B

exp
(−β−1(γ2|UB(s) − b|2

+ |UY(s) − G(b)|2))db

]−1

. (3.3)

Finally, the corresponding functional is:

Fβ
γ1,γ2

(U) = 1

2

∫
S

(‖Us1‖2
γ1

+ ‖Us2‖2
γ1

)
ds

+ αβ ln

[∫
S

�β,γ2(U)(s)ds

]
, (3.4)

where �β,γ2(U)(s) is given as in (3.3).
The Euler-Lagrange equations associated with the func-

tional Fβ
γ1,γ2 can be calculated directly from

DFβ
γ1,γ2

(U) ◦ W := d

dη
Fβ

γ1,γ2
(U + ηW)

∣∣∣∣
η=0

≡ 0,
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for any admissible perturbation W . Using the decomposition

U = (UB,UY) as in (2.13) we readily calculate DFβ
γ1,γ2(U)

to obtain
⎧⎨
⎩

�UB = γ2
γ1

· 2α∫
S �β,γ2 (U)(s)ds

f B(U)

�UY = 2α∫
S �β,γ2 (U)(s)ds

f Y(U)
, (3.5)

where

f (U) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f B(U) := (�β,γ2(U)(s))2

×∫
B

e−β−1
[
γ2|UB(s)−b|2+|UY(s)−G(b)|2]

× (UB(s) − b)db,

f Y(U) := (�β,γ2(U)(s))2

× ∫
B

e−β−1
[
γ2|UB(s)−b|2+|UY(s)−G(b)|2]

× (UY(s) − G(b))db.

(3.6)

The natural boundary conditions are different for both
components of U . While UY admits no further constraints
via (2.14), it satisfies the homogeneous Neumann conditions

∂UY

∂�ν
∣∣∣∣
∂S

= 0 on ∂S, (3.7)

where ν is the normal to ∂S. The boundary condition asso-
ciated with UB , on the other hand, is a nonlinear one since
(2.15) implies that

UB : ∂S → ∂B. (3.8)

3.2 Interior Regularity of the Minimizer of Relaxed
Functional

In Sect. 2.5 we have proved that for any β > 0, the func-
tional (3.4) attains a minimizer Uβ ∈ DOM , i.e. the system
(3.6) has a weak solution Uβ ∈ H

1(S,E). We now address
the question of regularity of such a minimizer. In fact, in this
section we intend to show the infinite interior differentiabil-
ity of the minimizer Uβ .

Theorem 3.1 If Uβ is a weak solution of (3.5) subjected to
the boundary conditions (3.7)–(3.8) and, in addition, is a
minimizer of (3.4) on DOM , then Uβ ∈ C∞(S,E).

Note that it does not imply boundary regularity. We prove
Theorem 3.1 below.

Proposition 3.1 Let Uβ ∈ H
1(S,E) be a minimizer of the

functional (3.4), then Uβ ∈ L
∞(S,E), if G ∈ L

∞(B,Y).
Moreover, ‖UY

β ‖∞ ≤ ‖G‖∞ .

Proof It is obvious that UB
β ∈ L

∞(S,B). Suppose by con-

tradiction that UY
β /∈ L

∞(S,Y). Denote R = ‖G‖∞ and de-
fine the retraction

ŨY
β (s) :=

⎧⎨
⎩

R
UY

β (s)

|UY
β (s)| , |UY

β (s)| ≥ R,

UY
β (s), |UY

β (s)| < R

ŨB
β ≡ UB

β .

From the definition of retraction it is obvious that

∥∥∥∥
∂ŨY

β

∂s1

∥∥∥∥
2

γ1

+
∥∥∥∥
∂ŨY

β

∂s2

∥∥∥∥
2

γ1

<

∥∥∥∥
∂UY

β

∂s1

∥∥∥∥
2

γ1

+
∥∥∥∥
∂UY

β

∂s2

∥∥∥∥
2

γ1

(3.9)

and

|ŨY(s) − G(b)| ≤ |UY(s) − G(b)|,

thus,

�β,γ2(Ũβ)(s) < �β,γ2(Uβ)(s). (3.10)

Taking together (3.9) and (3.10), we obtain that

Fβ
γ1,γ2

(Ũβ) < Fβ
γ1,γ2

(Uβ),

which contradicts the assumption that Uβ is the minimizer

of Fβ
γ1,γ2(U). �

We now prove upper estimates for �β,γ2(Uβ) and
(
∫
S
�β,γ2(Uβ)(s)ds)−1. Assume, as in the Proposition 3.1,

that ‖G‖∞ = R and consequently, ‖UY
β ‖∞ ≤ R. Denoting

r = 1
2 diam(B) and using

γ2|UB
β (s) − b|2 + |UY

β (s) − G(b)|2 ≤ 4(γ2r
2 + R2),

we have

�β,γ2(Uβ)(s) ≤ 1∫
B

e−4(γ2r
2+R2)/βdb

= 1

|B|e
4(γ2r

2+R2)/β, (3.11)

in particular �β,γ2(Uβ) ∈ L
∞(S). Taking into account the

following inequality

γ2|UB
β (s) − b|2 + |UY

β (s) − G(b)|2

≥ (1 − ε)
(
γ2|UB

β (s)|2 + |UY
β (s)|2)

+ (1 − ε−1)
(
γ2|b|2 + |G(b)|2),

for ε = 1
2 we obtain
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�β,γ2(Uβ)(s) ≥ e
|Uβ(s)|2γ2

/2β

∫
B

e(γ2|b|2+|G(b)|2)/βdb

≥ 1∫
B

e(γ2r
2+R2)/βdb

= 1

|B|e(γ2r
2+R2)/β

,

and thus,

(∫
S

�β,γ2(Uβ)(s)ds

)−1

≤ |B|
π

e(γ2r
2+R2)/β . (3.12)

(3.5) and (3.6) now imply:

Corollary 3.1 Let Uβ ∈ L
∞(S,E). Then f (Uβ) ∈ L

∞(S).

To show the next fact, we use the interior H
2-regularity

theorem (see [18], Sect. 6.3.1, Theorem 1), which, in our
present notation, reads:

Theorem 3.2 Assume that u ∈ H
1(S) is a weak solution of

the elliptic PDE

�u = f in S,

and f ∈ L
2(S). Then u ∈ H

2
loc(S).

For proof see [18].
It follows that there exists the weak solution Uβ ∈

H
1(S,E) of (3.5), s.t.

Uβ ∈ H
2
loc(S,E).

We now use the higher interior regularity theorem ([18],
Sect. 6.3.1, Theorem 2) and general Sobolev inequalities
theorem ([18], Sect. 5.6.3, Theorem 6), which, in our present
notation, read respectively in a following manner:

Theorem 3.3 Assume that u ∈ H
1(S,E) is a weak solution

of the elliptic PDE

�u = f in S,

and f ∈ H
n(S). Then u ∈ H

n+2
loc (S).

For proof see [18].

Theorem 3.4 Let S be a bounded open subset of R
2,

with C1 boundary. Assume u ∈ H
n
loc(S), n ≥ 2. Then u ∈

Cn−2(S).

For proof see [18].
The following proposition includes an induction assump-

tion and its proof.

Proposition 3.2 Assume that there exists a weak solu-
tion Uβ of (3.5), s.t. Uβ ∈ H

n
loc(S,E) ∩ Cn−1(S,E). Then

Uβ, �β,γ2(Uβ) and e
−β−1[γ2|UB

β (·)−b|2+|UY
β (·)−G(b)]2

for all
b ∈ B are in H

n+1
loc (S,E) ∩ Cn(S,E).

For proof see [28].

Proof of Theorem 3.1 We now repeatedly apply the Propo-
sition 3.2 for n = 2,3, . . . to deduce the infinite differentia-
bility of Uβ in the interior. �

3.3 Some Properties of the Minimizer of Original
Functional

In this section we shall discuss some local properties of the
minimizer U of original functional (2.13):

F̃ (U) = 1

2

∫
S

Tr
(∇U(s)T h∇U(s)

)
ds + αD2(μ,U).

Actually, we intend to show here, that U is locally Lipschitz
continuous in S. We shall base our reasoning on Character-
ization of W 1,∞ Theorem ([18], Sect. 5.8.2(b), Theorem 4),
that, in our present notation, read as follows:

Theorem 3.5 Let S be open and bounded, with ∂S of class
C1. Then U : S → E is Lipschitz continuous if and only if
U ∈ W 1,∞(S,E).

For proof see [18].
Let U be a minimizer of the functional F̃ (U). By the

compactness of supp(μ) and the definition of D(μ,U) we
obtain that U is bounded in L

∞(S,E). We tend to show
now that ∇U is also bounded in L

∞(S,E). To conclude
this, we go back to Sect. 2.5 and remind the definition of the
sequence of functionals Fβ,γ2 converging in �-sense to the
original functionals F̃ (U). By Theorem 2.4, the sequence
of its minimizers Uβ weakly converges in H

1(S,E) to the
minimizer of original functional U . In particular, ∇Uβ con-
verges weakly L

2(S,E) to ∇U .
Next, we utilize the gradient estimates for Poisson’s

equation ([19], Sect. 3.4, Theorem 3.9):

Theorem 3.6 Let u ∈ C2(�) satisfy Poisson’s equation,
�u = f , in �. Then

sup
�

dx |Du(x)| ≤ C
(

sup
�

|u| + sup
�

d2
x |f (x)|

)
,

where dx = dist(x, ∂�).

For proof see [19].
The following theorem is the main goal of this section.
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Theorem 3.7 Let U be a minimizer of functional (2.13) in
the domain DOM . Then U is locally Lipschitz continuous
in S.

For proof see Appendix A.5.

4 Non-parametric Representation

4.1 Variational Formulation and Euler-Lagrange Equation
for the Relaxed Functional

Let consider a non-parametric representation of the im-
age U . In this representation we set S ≡ B and U(S) :=
{UB,UY} given by UB : B → B is the identity. Thus, the
image is given in terms of a graph UY := f : B → Y.

Considering the image U in terms of a graph of function
f does not allow existence of edges in form of the surface
folding. Moreover, in case of non-parametric formulation
we cannot use the majorant area functional Ã(U) as defined
in (2.4). For such formulation the area functional is given as
in (2.2):

A(U) =
∫

S

|�(U)(s)|ds =
∫

B

√
γ 2 + γ |∇f |2db.

We also separate the scale γ into γ1 for the area term and
γ2 for the metric. In order to unify the limits γ1 → 0 and

γ1 → ∞ we normalize the area term by
1+√

γ1√
γ1

. Thus, the
corresponding functional is

Fβ
γ1,γ2

(f ) = (1 + √
γ1)

∫
B

√
γ1 + |∇f |2db

+ αD2
β,γ2

(μ,f ).

We define now the relaxed metric term Dβ,γ2(μ,f ). For
non-parametric formulation we represent the data μ(dz) as
μb(dy)db. Under the above assumption, the parameter de-
pendent metric (2.22) attributes the measure db to the image
f , and it is written as

D2
β,γ2

(μ,f ) = β ln

[∫
B

�
f
β,γ2

(b)db

]
, (4.1)

where

�
f
β,γ2

(b) = 1∫
Y

∫
B

e−[|f (b)−y|2+γ2|b−b′|2]/βdb′μb′(dy)
.

(4.2)

In addition, the following analysis is performed for deter-
ministic data, thus �

f
β,γ2

(b) in (4.2) is given as

�
f
β,γ2

(b) = 1∫
B

e−[|f (b)−g(b′)|2+γ2|b−b′|2]/βdb′ . (4.3)

Finally, the corresponding functional is:

Fβ
γ1,γ2

(f ) = (1 + √
γ1)

∫
B

√
γ1 + |∇f |2db

+ αβ ln

[∫
B

�
f
β,γ2

(b)db

]
, (4.4)

where �
f
β,γ2

(b) is given as in (4.3).
The Euler-Lagrange equation associated with the func-

tional (4.4) is given by

−div

(
(1 + √

γ1)∇f√
γ1 + |∇f |2

)
+ 2α�

f
β,γ2

(b)∫
B

�
f
β,γ2

(b)db
f

− 2α(�
f
β,γ2

(b))2

∫
B

�
f
β,γ2

(b)db

×
∫

B

g(b′)e−[|f (b)−g(b′)|2+γ2|b−b′|2]/βdb′

= 0 (4.5)

subjected to the Neumann boundary condition

∂f

∂ �n = 0 on ∂B. (4.6)

Note that the above non-parametric case (4.5) is similar
to anisotropic diffusion approach (see, for example, [38]).

The function G(∇f ) = (1+√
γ1)√

γ1+|∇f |2 in the first term of the

left-hand part of (4.5) may be considered as edge indicator
(penalty) function.

4.2 Segmentation of Grey-Level Images: Choice of
Parameters, Limiting Cases and Numerical Results

The numerical implementation of two-dimensional problem
is fully described in Appendix B. In this section we are go-
ing to point out the influence of parameters β,α, γ1, γ2 on
the segmentations results. To demonstrate the performance
of the proposed method, two natural images were used (see
Fig. 1) in our numerical experiments. We remind that β is
the convergence parameter and the minimizer of the origi-
nal (the limit) functional is achieved when β → 0. We also
note that the limit β → 0 of (4.4) yields

F0
γ1,γ2

(f ) = (1 + √
γ1)

∫
B

√
γ1 + |∇f |2db

+ α sup
b∈B

inf
b′∈B

[|f (b) − g(b′)|2 + γ2|b − b′|2],

which is the original functional for deterministic images.
Thus, for our calculations, β is taken sufficiently small. We
show the role of parameters α and γ1 on the examples of
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Fig. 1 Real-life test images of a
leopard and a zebra

leopard and zebra images respectively, tested in some previ-
ous works, especially in [43]. The parameter α, as in case of
Mumford-Shah functional, measures the trade off between
a good fit of the solution f to data g and the regularity of
the solution f . The result obtained for the leopard image
(Fig. 2) in case α = 185 is comparable to that obtained by
Sagiv, Sochen and Zeevi (see [43]).

We define now two limiting cases for the functional (4.4):
Fβ

0,γ2
(f ) and Fβ∞,γ2(f ), when γ1 → 0 and γ1 → ∞, respec-

tively. As γ1 tends to 0, one can obtain

Fβ

0,γ2
(f ) = TV(f ) + αβ ln

[∫
B

�
f
β,γ2

(b)db

]
,

where

TV(f ) ≡
∫

B

|∇f |db

is the Total Variation (TV) norm, originally introduced by
Rudin et al. in [41]. On the other hand, γ1 → ∞ yields

Fβ∞,γ2(f ) ≈ H 1(f ) + αβ ln

[∫
B

�
f
β,γ2

(b)db

]

up to the constant, where

H 1(f ) ≡
∫

B

|∇f |2db

is Sobolev space norm (see [49]). We remark that the T V

norm allows discontinuities in f , thus making it superior
to the H 1 regularization in cases where f can have sharp
edges. As is shown above, the parameter γ1 being defined
as representing the scale difference between pixel domain
and feature fiber, also determines the kind of regularization
for function f , defining the various regularization norms.
The results for various cases of parameter γ1 may be seen
in Fig. 3.

The role of parameter γ2, which similarly to parameter γ1

being defined as representing the scale difference between
pixel domain and feature fiber, is completely different. Here
the case of interest is the limit γ2 → ∞. It is easily verified

that, as γ2 → ∞,

lim
γ2→∞�

f
β,γ2

(b) = C
γ2

β
· e|f (b)−g(b)|2/β,

where C stands for a generic constant. Thus, the limit γ2 →
∞ yields

Fβ
γ1,∞(f ) = lim

γ2→∞ Fβ
γ1,γ2

(f )

≈ (1 + √
γ1)

∫
B

√
γ1 + |∇f |2db

+ αβ ln

[∫
B

e|f (b)−g(b)|2/βdb

]
− αβ lnβ (4.7)

up to the constant multiplied by β . Finally, we note that the
limit β → 0 of (4.7) yields

F0
γ1,∞(f ) = lim

β→0
Fβ

γ1,∞(f ) = (1 + √
γ1)

∫
B

√
γ1 + |∇f |2db

+ α sup
b∈B

|f (b) − g(b)|2.

It follows that the parameter γ2 determines the local neigh-
borhood of the pixel b, which gives the valuable contribution
to the final segmentation image. The smaller γ2 is, the larger
neighborhood of the given pixel influences on its grey level
in the output image.

Finally, we present the ideal segmentation for the full ze-
bra image (see Fig. 4), comparable to that obtained by Sagiv,
Sochen and Zeevi (see [43]). It is the best result we got for
this image. We do not know, at this stage, if the choice of the
parameters α,γ1, γ2 and β is optimal for this image. How-
ever, the effect of the finite parameter γ2 is demonstrated.

4.3 Ultrasound Image Segmentation

Ultrasound imaging is a common, relatively inexpensive and
safe modality. It is widely used in medical diagnostics. It al-
lows high acquisition rates and provides images in real-time,
but the images are corrupted by the high level of speckle
noise. Although the imaging capabilities of modern ultra-
sound machines are increasing, noise remains a problem
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Fig. 2 Leopard segmentation
outputs and outlined original
images:
β = 0.1, γ1 = 0, γ2 = ∞;
α = 185 in the upper row and
α = 500 in the lower row

Fig. 3 Zebra segmentation
outputs:
α = 330, β = 0.1, γ2 = ∞;
γ1 = 0 in the upper row on the
left, γ1 = 10 in the upper row on
the right, γ1 = ∞ in the lower
row on the left and outlined
original image for the last case

when trying to devise image processing techniques. In fact,
noise makes it difficult to accurately identify edges, since
in some regions the noise produces artificial edges, while
in other regions there are no echoes present and the edges
seem ambiguous. In such low-quality images (which are

very common in ultrasound imaging), generic algorithms do
not identify the border accurately.

Several algorithms have been reported, which could help
identify edges in ultrasound images [2, 11, 16, 22]. Studies
that are focused on the processing of cardiac ultrasound im-
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Fig. 4 Zebra segmentation
output and outlined original
image: α = 30 000, β = 10−6,
γ1 = 0, γ2 = 75 000

ages [1, 15] are also of value, since many of the methods are
similar. In addition, a modified version [40] for identifying
the lumen-thrombus border in case of aortic aneurysm was
developed. Some of these studies are based on active con-
tours [23] or deformable contour [31], some on the snakes
algorithm [24], that defines an objective function, also called
energy function, which is minimized to obtain the estimated
border.

We attempt here to apply our objective function (i.e. re-
laxed functional) to the ultrasonic images of liver contain-
ing some kind of tumor. Ultrasound imaging of the liver
is a standard part of a checkup by the specialist in inter-
nal medicine. These images are convenient to work with
due to their high availability and use in the medical com-
munity. The liver is a fairly homogenous organ, in the sense
that any given cross-section tends to be fairly uniform. This
makes identification of abnormalities somewhat easier. On
the other hand, the main difficulty in tumor identification is
the fact that the tumor on hepatic ultrasonic images may be
presented at different grey levels with respect to other liver
tissues. It means that it may be of brighter (see Fig. 5) or
darker (see Fig. 7) grey levels then the healthy tissue of liver,
or to include wide variety of existing grey levels (see Fig. 6).

The segmentation algorithm is exactly as described in
Appendix B, excluding the thresholding of accepted seg-
mentation image by graythresh MATLAB function: Canny
edge detector [7] is applied directly to the algorithm output
image. Figures 5–7 present the examples of segmented tu-
mor in hepatic ultrasonic images. In all the cases we used
TV regularization norm (γ1 = 0) in order to achieve sharper
edges and localized metric term (γ2 = ∞) in order to reduce
the computation time.

On the Fig. 7 in addition to tumor, one may see also the
segmented kidney and gallbladder.

5 Discussion and Conclusions

The importance of the functional, proposed in this study,
as an alternative to the widely analyzed and implemented
functional of Mumford and Shah, is due to the fact that it

is independent of parameterization. It is a geometric func-
tional given in terms of the geometry of imbedded surfaces
representing the data and image in the feature space. By
combining the �-convergence technique with minimal sur-
face theory our approach yielded a global generalization of
the Mumford-Shah segmentation functional. Likewise one
may consider the implementation of this geometric approach
in other image processing and computer vision tasks. In
fact, we have illustrated it also in the context of inpaint-
ing [29, 30].

With reference to segmentation of images, it should be
pointed out that there exist a variety of segmentation meth-
ods, each being suitable for a specific type of segmentation
problem. However, there is no universal algorithm that is
optimal for the wide spectrum of images and criteria. The
present study is a step towards the development of a general
framework that can deal with segmentation problems in the
context of multi-channel images.

The main novelty of this study is the replacement of the
metric term of Mumford-Shah functional by a completely
new type of metric based on Hausdorff distance function.
This may be useful in cases of defocusing and of mapping
problems, where the relevant errors imply that each pixel
point is influenced by a domain rather by a single point of a
data. The possible application of the above approach may be
image restoration, especially denoising—we implemented it
in case of one-dimensional signals, see [28]. Eventually, the
proposed change allows us to replace the deterministic data
by a random one and include also the case of missing data
(inpainting, see [29] and [30]).

Since the new metric term, and thus the functional,
suffered from lack of regularity, we utilized an approach
adopted from mathematical theory of approximation of
functionals via �-convergence to overcome this deficiency.
The idea is to approximate the functional by a series of dif-
ferent, parameter-dependent functionals, that are expected
to be more regular. However, we should point out that the
developed relaxed functional demands extensive computa-
tional effort to obtain its minimum. This is the main draw-
back of our algorithm. An optional solution to this problem
is to apply a multi-resolution analysis [6], by performing the
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Fig. 5 Liver tumor
segmentation: α = 650, β = 0.1,
γ1 = 0, γ2 = ∞; original image
in the upper row on the left,
segmentation output in the
upper row on the right and
outlined original image in the
lower row

Fig. 6 Liver tumor
segmentation: α = 50, β = 0.1,
γ1 = 0, γ2 = ∞; original image
in the upper row on the left,
segmentation output in the
upper row on the right and
outlined original image in the
lower row

Fig. 7 Liver tumor
segmentation: α = 900, β = 0.1,
γ1 = 0, γ2 = ∞; original image
in the upper row on the left,
segmentation output in the
upper row on the right and
outlined original image in the
lower row

relative computations on higher levels of a Gaussian pyra-
mid and thereby reduce significantly the amount of required
computations.

So far we have not touched upon the numerical solution
problem of data with parametric representation—the case,
whose theoretical developments were introduced in Sect. 4.
The parametric representation refers to the case of partially
free boundary problem in minimal surface theory. The nu-
merical solution may be obtained by finite element method
(see, for example, [48]), where the original variational for-
mulation (and not the PDE as in case of non-parametric rep-
resentation) is used as a point of departure. This yields, how-
ever, a relatively complicated variational formulation (due
to the relaxed metric term) of our problem in comparison
with one treated in [48]. Obtaining the numerical solution
for non-parametric case may be the separate theme for fu-
ture research.
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Appendix A: Proofs of Theorems and Lemmata

A.1 Proof of Lemma 2.1

Due to compactness of C∗ we may isolate a weakly converg-
ing subsequence νn to some measure ν. Denote also by v a
point in which f attains its supremum within supp(ν) (be-
cause supp(ν) is closed). Let us show that for every ε > 0
there exists N ≥ 0, s.t. for n ≥ N supp(νn) ∩ Bε(v) �= ∅
(Bε(v) is an open ball of radius ε centered at v). Suppose
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on the contrary, that there exists ε > 0 s.t. for every N there
exists sequence nk ≥ N , s.t. supp(νnk

) ∩ Bε(v) = ∅. It fol-
lows from here that

lim inf
n→∞ νn(Bε(v)) = lim

k→∞νnk
(Bε(v)) = 0.

On the other hand, supp(ν) ∩ Bε(v) �= ∅ (v ∈ supp(ν)), thus
ν(Bε(v)) > 0. Hence,

lim inf
n→∞ νn(Bε(v)) < ν(Bε(v))

and this is a contradiction to the Theorem 2.1: it should be
lim infn→∞ νn(Bε(v)) ≥ ν(Bε(v)).

Recall the original assumption: for every ε > 0 there ex-
ists N ≥ 0, s.t. for n ≥ N supp(νn) ∩ Bε(v) �= ∅. Hence,
there exists the sequence vn ∈ supp(νn), s.t. for n ≥ N

|vn − v| < ε, i.e. limn→∞ vn = v. Taking into account that
supv∈supp(ν) f (v) ≥ f (vn), we obtain

lim inf
n→∞ sup

νn

(f ) = lim inf
n→∞ sup

v∈supp(νn)

f (v) ≥ lim inf
n→∞ f (vn)

= f (v) = sup
v∈supp(ν)

f (v) = sup
ν

(f ).

A.2 Proof of Theorem 2.3

Let Un := {UB
n ,UY

n } be a minimizing sequence of F̃ . By
the compactness of supp(μ) and the definition of D we
obtain that Un are uniformly bounded in L

∞(S,E). Since
the Dirichlet term in F̃ is bounded as well, we conclude
that Un is a bounded sequence in H

1(S,E). Therefore (see

[32], Sect. 2.18), there is a weak limit U := {UB
,U

Y} ∈
H

1(S,E). Thus, we only have to show that U
B ∈ DOMB .

This follows by the standard proof of the Plateau problem
(see, e.g., [17], Chap. 4): We apply the Courant-Lebesgue
Lemma and the three-point condition to obtain the equicon-
tinuity of the traces UB

n |CS
. The Arzela-Ascoli theorem im-

plies the convergence of the traces to a continuous, weakly
monotonic function φ : CS → CB which preserves the three
point condition. On the other hand, the traces UB

n |CS
con-

verge in L
2(CS,CB) by compact embedding of the space

of traces H
1/2(CS,CB) in L

2(CS,CB). This L
2 limit of the

traces coincides with φ. This implies that U
B ∈ DOMB .

Denote Zε = U ◦ τε , where τε is a C2 homeomorphism.
Taking an advantage of the fact that U is the minimizer of
F̃ and using Theorem 2.2, we obtain

F̃ (U) ≤ F̃ (Zε) = Ã(Zε) + αD2(μ,Zε)

= Ã(Zε) + αD2(μ, νZε ) = Ã(Zε) + αD2(μ, νU )

≤ A(U) + ε + αD2(μ, νU ) = F(U) + ε

for every ε > 0. Passing to the limit ε → 0, together with
inequality F(U) ≤ F̃ (U) we complete the proof of the the-
orem.

A.3 Proof of Lemma 2.2

Let show first (2.16). Let v0 ∈ supp(ν) s.t. supν f = f (v0).
Then

β
sup
ν

(f ) = f (v0) + β ln

[∫
E

e(f (v)−f (v0))/βν(dv)

]
.

Evidently

lim
β→0

β ln

[∫
E

e(f (v)−f (v0))/βν(dv)

]
≤ 0. (A.1)

To show the reverse inequality in (A.1), let Bε(v0) be a
ball of radius ε centered at v0. By continuity of f we have
infBε(v0) f ≥ f (v0) − d(ε), where limε→0 d(ε) = 0. More-
over, ν(Bε(v0)) > 0 since v0 ∈ supp(ν). Then

β ln

[∫
E

e(f (v)−f (v0))/βν(dv)

]

≥ β ln
[
ν(Bε(v0))e

−d(ε)/β
]

= −d(ε) + β ln [ν(Bε(v0))] . (A.2)

Taking now the limit β → 0, we obtain that the limit in (A.2)
is no smaller than −d(ε). Since ε (hence d(ε)) can be cho-
sen arbitrary small, we have the equality in (A.1).

The proof of (2.17) is analogous. To prove (2.18), we pro-
ceed as in (A.2), where ν(Bε(v0)) is replaced by νn(Bε(v0)),
and note that limn→∞ νn(Bε(v0)) = ν(Bε(v0)).

A.4 Proof of Theorem 2.4

Let Un be a minimizing sequence of F̃β(U) for fixed β > 0.
The proof follows along the line of Theorem 2.3, except for
the absence of the a-priori L

∞ estimate of Un. However,
using

|Un(s) − z|2 ≥ (1 − ε)|Un(s)|2 + (1 − ε−1)|z|2,
for ε > 0 we have

�β(Un)(s) ≥ e(1−ε)|Un(s)|2/β∫
E

e−(1−ε−1)|z|2/βμ(dz)
.

By compactness of supp(μ) and the choice ε = 1/2 we ob-
tain an a-priori estimate
∫

S

e|Un(s)|2/2β ≤
∫

S

�β(U)(s)ds ·
∫

E

e|z|2/βμ(dz),

which is enough (since we actually need only L
2 upper esti-

mate for Un).
The second part of the theorem follows from Corol-

lary 2.4.
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A.5 Proof of Theorem 3.7

Recall that Uβ is the weak solution of system of semi-linear
elliptic equations (3.5). By Proposition 3.1, Corollary 3.1,
(3.12) and Theorem 3.6, the sequence ∇Uβ is in L

∞
loc(S,E),

and moreover, is uniformly bounded there. Thus, by duality
of L

∞ to L
1, we state that for every S′ ⊂⊂ S there exists

M > 0 for which

‖∇Uβ‖L∞(S′,E) = sup
φ∈L1(S′,E), ‖φ‖

L1 =1

∫
S′

∇Uβ(s)φ(s)ds

≤ M. (A.3)

Weak convergence of ∇Uβ to ∇U implies

lim
β→0

∫
S′

∇Uβ(s)φ(s)ds =
∫

S′
∇U(s)φ(s)ds. (A.4)

From (A.3) and (A.4) we obtain that

∫
S′

∇U(s)φ(s)ds ≤ M.

In particular

‖∇U‖L∞(S′;E) = sup
φ∈L1(S′;E), ‖φ‖

L1 =1

∫
S′

∇U(s)φ(s)ds

≤ M.

We conclude that U ∈ W
1,∞
loc (S,E). Thus, by Theorem 3.5,

U is locally Lipschitz continuous in S.

Appendix B: Numerical Implementation of
Two-Dimensional Problem

Consider now the M × N image (M rows and N columns).
Let B ⊂ R

2 be its domain and g(b), b ∈ B denote its graph.
We assume that its desired segmentation should be the min-
imum of relaxed functional (4.4), i.e.

Fβ
γ1,γ2

(f ) = (1 + √
γ1)

∫
B

√
γ1 + |∇f |2db

+ αβ ln

[∫
B

�
f
β,γ2

(b)db

]
,

where �
f
β,γ2

(b) is given as in (4.3). We are looking now for
a weak solution of the following Euler-Lagrange equation

−div

(
(1 + √

γ1)∇f√
γ1 + |∇f |2

)
+ 2α�

f
β,γ2

(b)∫
B

�
f
β,γ2

(b)db
f (b)

− 2α(�
f
β,γ2

(b))2

∫
B

�
f
β,γ2

(b)db

×
∫

B

g(b′)e−[|f (b)−g(b′)|2+γ2|b−b′|2]/βdb′ = 0 (B.1)

with natural boundary conditions

∂f

∂ �n
∣∣∣∣
∂B

= 0. (B.2)

There are some existing numerical methods for solving
the above nonlinear type PDEs, for instance, time march-
ing [41], lagged diffusivity fixed point (FP) schemes [47]
and primal-dual methods [12]. Due to the robustness and
simplicity of implementation of the fixed point algorithm,
we apply it to solve (B.1)–(B.2) in this work. The idea of
the FP method is to first linearize the nonlinear PDE (B.1)
by lagging the diffusive coefficient

(1+√
γ1)√

γ1+|∇f |2 and the rel-

evant parts of right-hand side of (B.1) (like �
f
β,γ2

(b) and

e−[|f (b)−g(b′)|2+γ2|b−b′|2]/β ) by one iteration, and then apply
the fixed point method to solve linear problem for f . More
precisely, the FP iterative method is described as follows:

• Assume we have f n.
• Solve for f n+1

−div

(
(1 + √

γ1)∇f n+1√
γ1 + |∇f n|2

)
+ 2α�

f n

β,γ2
(b)∫

B
�

f n

β,γ2
(b)db

f n+1(b)

− 2α(�
f n

β,γ2
(b))2

∫
B

�
f n

β,γ2
(b)db

×
∫

B

g(b′)e−[|f n(b)−g(b′)|2+γ2|b−b′|2]/βdb′ = 0.

The following discretization process of (B.1)–(B.2) is fully
inspired by [10]. We introduce the lattice of coordinates
(ihy, jhx), where

hy = 1

M − 1
, hx = 1

N − 1
,

0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1.

We denote by f n
i,j the nth FP iteration of f at point

(ihy, jhx) and by an
i,j an approximation of

1+√
γ1√

γ1+|∇f n(ihy,jhx)|2 . Then we discretize
(1+√

γ1)∂xf√
γ1+|∇f |2 by
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an
i,j ∂xf

n+1(ihy, jhx) and ∂x(
(1+√

γ1)∂xf√
γ1+|∇f |2 ) by

1

2h2
x

[
(an

i,j−1 + an
i,j )f

n+1
i,j−1 − (an

i,j−1 + 2an
i,j + an

i,j+1)f
n+1
i,j

+ (an
i,j + an

i,j+1)f
n+1
i,j+1

]
.

In the same way we discretize
(1+√

γ1)∂yf√
γ1+|∇f |2 by an

i,j ∂yf
n+1 ×

(ihy, jhx) and ∂y(
(1+√

γ1)∂yf√
γ1+|∇f |2 ) by

1

2h2
y

[
(an

i−1,j + an
i,j )f

n+1
i−1,j − (an

i−1,j + 2an
i,j + an

i+1,j )f
n+1
i,j

+ (an
i,j + an

i+1,j )f
n+1
i+1,j

]
.

We also denote by bn
i,j an approximation of

�
f n

β,γ2
(ihy,jhx)∫

B �
f n

β,γ2
(b)db

and by cn
i,j an approximation of

(�
f n

β,γ2
(ihy, jhx))

2

∫
B

�
f n

β,γ2
(b)db

×
∫

B

g(b′)e−[|f n(ihy ,jhx)−g(b′)|2+γ2|(ihy ,jhx)−b′|2]/βdb′.

The last approximations imply computation of definite in-
tegrals. Due to its integrands being the piecewise constant
functions, its computation is the summation of appropriate
function values on lattice grid multiplied by the value of grid
element. For example, for

∫
B

�
f
β,γ2

(b)db we have

∫
B

�
f
β,γ2

(b)db = 1

(M − 1) · (N − 1)

×
M−1∑
i=0

N−1∑
j=0

�
f
β,γ2

(ihy, jhx).

Finally, we obtain the following semi-implicit scheme

− 1

2h2
y

(an
i−1,j + an

i,j )f
n+1
i−1,j − 1

2h2
x

(an
i,j−1 + an

i,j )f
n+1
i,j−1

+
[

1

2h2
y

(an
i−1,j + 2an

i,j + an
i+1,j )

+ 1

2h2
x

(an
i,j−1 + 2an

i,j + an
i,j+1) + 2α · bn

i,j

]
f n+1

i,j

− 1

2h2
x

(an
i,j + an

i,j+1)f
n+1
i,j+1

− 1

2h2
y

(an
i,j + an

i+1,j )f
n+1
i+1,j = 2α · cn

i,j ,

where

f 0
i,j = g(ihy, jhx) for 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1,

f n
0,j = f n

1,j , f n
M−1,j = f n

M−2,j for 0 ≤ j ≤ N − 1,

f n
i,0 = f n

i,1, f n
i,N−1 = f n

i,N−2 for 0 ≤ i ≤ M − 1.

Now the discrete problem can be written in the matrix-vector
form as MN × MN linear system

A
(
f n
)
f n+1 = b

(
f n
)
, (B.3)

where A(f n) is block tridiagonal, symmetric and positive
definite (SPD).

In order to solve (B.3), one may apply a variety of itera-
tive methods, like preconditioned conjugate gradients (PCG)
methods (see [21]) and multi-grid methods (see [33]). In this
work we don’t deal with such kind of problem, thus we use
here the standard MATLAB function to solve the above lin-
ear system for each iteration. The final output, which is the
grey-level image, is the desired segmentation. In order to
present the results in a pleasant way, the segmentation con-
tour should be obtained. To achieve this, we threshold the ac-
cepted segmentation image by graythresh MATLAB func-
tion using Otsu’s method [37], which chooses the threshold
to minimize the intra-class variance of the black and white
pixels, and covert it to the binary image. Finally, Canny edge
detector [7] is applied to the binary image, and achieved seg-
mentation contour is applied to the original image g.
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