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Abstract

Multiwindow Gabor representations highlight fingerprints suitable for indexing of macromolecules, based on their local

periodic structures. This paper presents a technique for analysis, and comparison of DNA and protein sequences. We use

local periodicities to compare sequences and develop techniques that can compare the similarity between sequences in the

combined space. We further show that using correlation, and absolute error minimization between the query sequence and

sequences in the database, one can search for sequences very efficiently. Thus, from the viewpoint of indexing (and

otherwise), macromolecules are much simpler to deal with than images, in that a much more limited, and well-defined

dictionary is sufficient for labeling the molecules.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Databases of proteins and DNA are expanding
very rapidly and already contain millions of
sequences, often with similar number of units. One
such widely used database is the one available at the
NIH. Managing such databanks requires careful
indexing of macromolecules and a fast search for
their efficient retrieval. The most widely used
technique currently available is based on BLAST,1

which relies extensively on searching a database and
deciding whether a match exists, based on the
e front matter r 2007 Elsevier B.V. All rights reserved
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number of correct matches between the query
sequence and the sequence stored in the database.
In this paper, we present an alternative technique
based on local periodic fingerprints, highlighted by
multiwindow Gabor signatures used in compact
storage, search and retrieval of sequences from
databases.

DNA sequences are comprised of four bases,
adenine, guanine, thymine, and cytosine, identified
by the symbols A;G;T ; and C. DNA molecules
have a double helical structure, with the two
individual strands linked by complementary bases
(Fig. 1). It is well known that A and T are
complementary and G and C are likewise comple-
mentary. A thorough review regarding the structure
of DNA sequences can be found in [1]. However, in
the context of our study, it is sufficient to point out
.
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Fig. 1. (left) The double helical structure of a DNA molecule and

(right) the structure of the molecule inside the double helical

structure [30].
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here that all DNA sequences are identified by the
four base character strings. A typical, double helical
DNA structure is accordingly represented by
ATTAGCGATTGCAACGCTGCATGCA

TAATCGCTAACGTTGCGACGTACGT.
Thus far, mostly character string classification and
search techniques have been employed for the
purpose of classifying such sequences. However,
the application of signal processing techniques to
the classification and analysis of macromolecular
sequences, require the conversion of character
strings to numerical sequences. Several techniques
have been used [1]. Of these, we will utilize and
compare two techniques employed most commonly.
In [2], the author introduced a technique that
explicitly preserves the complementary properties
of the bases, and also maps the character string into
a numerical sequence. We adopt this technique of
mapping A;G;T ; and C into 1þ j;�1þ j; 1� j; and
�1� j, respectively. The conversion of a DNA
sequence into a complex numerical sequence pre-
serving the properties of the DNA sequence allows
us to apply signal processing techniques without
affecting the properties of the DNA sequence.
Another technique, introduced in [3], sets the values
of the four nucleotides to the four vertices of a
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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regular tetrahedron. The advantages of the techni-
que, along with some improvements and implemen-
tational techniques, have been more thoroughly
investigated in [4]. For the purpose of compactness
and coherent presentation, we refer to this set of
techniques as ‘tetrahedron based discretization’.

Protein sequences, comprised of amino acids,
present a more complicated problem for analysis.
There have been many attempts to analyze protein
sequences. In [5], for example, the authors show that
protein sequences of certain species are incompres-
sible with lossless compression using prediction
techniques. We, however, do not aim to compress
sequences of a single, specific species, but across the
board of several species, where we can show that
there exist many similarities.

For the case of protein sequences, we focus our
attention primarily on the transmembrane se-
quences as they stand out in protein research and
are, consequently, better understood insofar as both
their structure and functions are concerned. We
convert the protein sequences to numerical se-
quences using the technique of scale transmembrane
helical propensities, proposed in [6]. This technique
generates the helical propensities using the trans-
membrane database of globular protein sequences.
Once we convert the character strings to numerical
sequences, we are in a position to apply the
multiwindow Gabor transforms.

Signal processing techniques are well suited to
extracting local periodicities, and in particular, it is
the position-frequency techniques that have been
used in both images and signals to extract local
periodicities (audio patterns and textures). Among
the position-frequency techniques, it is the linear
representation of signals (especially Gabor and
wavelet representations) that are popular. In [4],
the authors used a type of short time Fourier
transform, cutting the signal into pieces and
performing discrete Fourier transform on each of
the pieces. This succeeds in combining time (posi-
tion) and frequency together in plane of reference,
but suffers from Gibbs ringing and effects of
discontinuity. The technique has been revised and
allows different windows to be used, and the code
for the technique is available at [7]. The refinement
is more flexible than the original and allows better
results to be achieved, but suffers from a couple of
drawbacks. Firstly, it is confined to one window
(whatever the window function) and more impor-
tantly, the shifts are fixed along both the time and
frequency windows.
ar sequence analysis using multiwindow Gabor representations,
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It is well known that single window Gabor
representation is insufficient for capturing the local
changes in signals accurately [8]. Wavelets have also
been used for extracting local periodicities. But,
dyadic wavelets which are tailored for low fre-
quency domain resolution at high frequencies may
not be the best choice for handling DNA and
protein sequences. However, the multiwindow
Gabor representation is more robust (less sensitive
to the shifts in the sampling intervals along the time
and frequency axes), goes through all the frequen-
cies at all resolutions and is more accurate (less
sensitive to noise since several windows process the
signal simultaneously at all frequencies) than both
single window Gabor representations and dyadic
wavelets (which have been employed in DNA and
protein sequence analysis with some success
[6,9,10]). Multiwindow Gabor representations com-
bine, in a way, the advantages afforded by both
single window Gabor (in the form of uniform
resolution throughout the position-frequency plane)
and wavelet schemes (in the form of using windows
of different scales). Multiwindow Gabor schemes
also eliminate the assumption of the geometric
decrease of frequency resolution inherent to dyadic
wavelet schemes.

Classification of macromolecules is different from
segmentation and classification of images [11], video
[12], and audio signals [13], in that macromolecules
have a well defined alphabet and the set of alphabet
is limited (just four in the case of DNA and 20 in the
case of proteins). This turns the process of feature
selection to be much easier. However, the issue of
indexing macromolecules, i.e., the definition of
macromolecular indexing vocabulary, is more com-
plicated since only partial knowledge of the nature
of macromolecules exists at the present time. This is,
in fact, the subject of concerted effort in ongoing
research.

As far as the relevant tools for analysis are
concerned, Zibulski and Zeevi [14] established that
the multiwindow Gabor frames map a sequence
unitarily into the combined time (or position, in the
case of spatial variables or sequences)-frequency
domain. In [15], the technique was extended to
discrete signals, i.e., sequences in the present
context. We utilize the discrete multiwindow Gabor
technique to map the sequences into the combined
position-frequency domain.

However, as was proved in [16,17], a few
disadvantages are associated with the canonical
multiwindow Gabor representations. To overcome
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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these disadvantages, we utilize non-canonical re-
presentations. Especially, in cases where the expan-
sion frame is already fixed and we need to generate
‘good’ coefficients, it is useful to utilize non-
canonical Gabor expansions.

The paper is organized as follows: In Section 2,
we discuss briefly, non-canonical multiwindow
Gabor representations of signals. In Section 3, we
develop an algorithm for indexing, and storage of
DNA sequences. In Section 4, we evolve efficient
search techniques for retrieval. In Section 5, we
extend the idea of classification and search for
molecules to transmembrane protein sequences and,
finally, compare our results with those obtained by
others and discuss the implications.
2. Non-canonical multiwindow Gabor

representations

We, briefly, discuss non-canonical multiwindow
Gabor representations of signals; a full treatment of
multiwindow Gabor functions can be found in
[14,15,18]. Non-canonical Gabor representations
have been considered in [16,17]. The multiwindow
Gabor scheme is a combined time–frequency
representation of signals, that captures local peri-
odicities with considerable accuracy.

Throughout the paper, we consider L-periodic
signals, i.e., signals that satisfy the condition
f ½k� ¼ f ½k þ L�; k 2Z, where Z is the set of
integers. In the context of our current study, any
macromolecular finite sequence of length L can be
casted as an L periodic signal.

The signal f ½k�, can be reconstructed from the
corresponding set of Gabor coefficients. The recon-
struction of the signal f ½k� is given by [15]:

f ½k� ¼
XR�1
r¼0

Xb�1
m¼0

Xa�1
n¼0

cr;m;ngr½k � na�ej2pmbk=L, (1)

where gr½k� are the dual windows, a ¼ L=a 2N
and b ¼ L=b 2N are the number of sampling
intervals along the time and frequency axes,
respectively. We assume that both a and b are both
divisors of L [19].

The coefficients of the multiwindow Gabor
expansion are given by the projection of the finite
signal f 2 CL onto the combined space

cr;m;n ¼
XL�1

k¼0

f ½k�gr½k � na�e�j2pmbk=L, (2)
ar sequence analysis using multiwindow Gabor representations,
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where gr½k�; r 2 0; . . . ;R� 1 are the window func-
tions, a and b are the combined space sampling
intervals along the sequence position and frequency
axes, respectively.

It was established in [15] that a necessary
condition for complete reconstruction in the case
of multiwindow Gabor expansions is given by
RabXL. In the case of critical sampling and a
single window, the reconstruction is unstable
according to the Balian–Low theorem [20]. This
theorem extends to well-behaved multiwindows [14].
We, therefore, consider only the oversampling case
where Rab4L, which implies that the functions
gr;m;n½k� are linearly dependent and the representa-
tion is overcomplete.

In vector form, (2) can be written as

c ¼ G�f, (3)

where c is the vector of coefficients, and G is the
Gabor matrix

G ¼

g0;0;0½0� . . . g
R�1;a�1;b�1½0�

g0;0;0½1� . . . g
R�1;a�1;b�1½1�

..

. . .
. ..

.

g0;0;0½L� 1� . . . g
R�1;a�1;b�1½L� 1�

2
666664

3
777775
, (4)

with gr;m;n½k� ¼ gr½k � na�ej2pmbk=L. The reconstruc-
tion, inverse of (2), can be written in the following
vector form version of (1):

f ¼ Cc, (5)

where C is the dual of the Gabor matrix.
Since the representation is overcomplete, there

exist an infinite number of possible duals gr½k�. The
canonical solution yields the minimum norm dual of
b
a

Fig. 2. (left) The banded structure of the matrix wherein the only non-z

The block circulant structure of the matrix with the a� a blocks rotat
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the set of generalized Gabor elementary functions
gr;m;n½k� by [19],

~gr½k� ¼ ðGG�Þ�1gr½k�. (6)

However, it is often better to choose a different dual
from a wider set of duals. Here, we extend the
approach to non-canonical duals, introduced in
[21]. The non-canonical dual is given by

dr;m;n ¼ dr½k � na�ej2pmbk=L ¼ ðHG�Þ�1hr½k�, (7)

where H is a Gabor matrix of the form (4) with the
vectors h½�� forming the columns of the matrix H. It
is of importance to mention that the set of vectors
hr;m;n½�� also constitutes a frame for CL. The only
requirement for the existence of a frame of this form
is that the matrix HG� be invertible [16]. The
problem, therefore, is to ensure that the matrix HG�

is invertible.
The problem of invertibility of the matrix HG�

has been dealt at length in [17]. Conditions for the
invertibility of HG� have been derived for both the
rational and integer oversampling cases. In this
paper, we have chosen integer oversampling of the
sequences. Two properties of the matrix HG� that
are of great use in ascertaining the invertibility of
the matrix are mentioned below:
1.
a

ero

ing

ar s
The matrix HG� has non-zero elements only on
the principal diagonal and its bth sub-diagonals,
as shown in Fig. 2.
2.
 The matrix HG� is block circulant in terms of
a� a blocks as shown in Fig. 2.

Utilizing these two properties of the matrix HG�

and the conditions for invertibility for block
elements appear on the principal and bth subdiagonals. (right)

right and wrapping around at the end of the row.

equence analysis using multiwindow Gabor representations,
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circulant matrices [22], we can derive the condition
for invertibility of the matrix HG� under conditions
for integer oversampling. The result can be stated as
follows:

Theorem 2.1. Under the conditions of integer over-

sampling,2 if gr;m;n½�� is a positive definite sequence,3

and hr;m;n½�� is positive at all points, then the matrix

HG� is always invertible.

Proof. see [17]. &

Theorem 2.1 permits using all positive definite
window functions (including Gaussians) in non-
canonical multiwindow Gabor expansions. It is
observed that there is no real restriction on the
possible choices of the H and G, as long as one of
them is positive definite and the other is completely
positive (or negative). Further, we are no longer
restricted to the least square solution as we were in
the case of the canonical solution. We can even
optimize over all the possible solutions using the
non-canonical duals for a different norm (like the
L1 norm). The flexibility of the solution is the most
important advantage of the non-canonical solution.

3. Storage and indexing of DNA sequences

We apply the multiwindow Gabor transform (3)
to sequences of length L and obtain the set of
coefficients c. One of the most curious features of
multiwindow Gabor techniques is that with a
proper choice of window and lattice parameters,
one can represent a DNA sequence to a remarkable
degree of accuracy with a very small number of
coefficients. However, that this is possible mainly in
cases where the segments of sequences under
investigation incorporate coding regions. It has
been observed that such segments exhibit many
local periodicities [2,23]. Further, according to the
uncertainty principle, and to Gabor’s theory of
signal representation in combined spaces, the wider
the window the better is the frequency resolution
(i.e., the definition of the index) and vice versa [14].

Separating out the coding regions of a DNA from
the non-coding regions is an important task for
biologists. It is well known from the theory of
multiwindow Gabor representations that narrow
windows detect sharp changes accurately, whereas
wide windows can detect changes over a greater
2Under conditions of integer oversampling, b is divisible by a.
3Positive definite functions are those functions whose DFT is

real and positive at all points.
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length [15]. Thus, it is possible to employ longer
windows to detect the coding regions and perform
an analysis on them using the narrow windows in a
hierarchical way. However, we have used both
narrow and wide windows on the entire sequence, in
order to avoid missing short coding regions (which
may be lost if broad windows alone are used to find
the coding regions).

3.1. Compression of sequences

To illustrate our point, consider the example of
the multiwindow Gabor representation of the
sequence AF099922 depicted in Fig. 3.

It is evident from Fig. 3 that the blue colored
Gabor pixels (codons) have little significance and
can be easily ignored. In our experiment, we
oversampled the sequence of length 960 by 15 times
and tried to reconstruct the sequence from the
coefficients. With as few as 397 highest coefficients,
we are able to reconstruct the sequence with 93%
accuracy. Actually, this is not surprising in view of
the fact that local periodic components dominate in
the process of generating the high coefficient values.
A cross section of the local spectrum is shown in
Fig. 4. This emphasizes the importance of local
periodicities in generating the signature of the
macromolecule. In the examples shown in Figs. 3
and 4, the coefficients corresponding to frequencies
(21–23)/40 and (12–14)/40 are more than three and
two times, respectively, larger than the next largest
coefficients. The peaks of the transformed sequence
identify the principal value of the frequency
components at the positions n ¼ 3a and n ¼ 85a.
The technique of using non-canonical multiwindow
Gabor window functions can be considered as a
method of lossy compression. In fact, it is possible
to recover even the ‘lost’ portions of the signal using
approximation techniques, since there are only four
possible values in case of DNA (or RNA) signals.
An effective, albeit lossy compression can be
achieved using non-canonical multiwindow Gabor
coefficients.

There is another point to be considered here. In
many cases, it is sufficient to reconstruct the areas of
interest in the sequences. In such cases, the
periodicity of the coding regions usually ensures
that they are reconstructed faithfully and correctly.
It is the regions that are completely unstructured
that are more difficult to reconstruct with fewer
coefficients. In such cases, any prior knowledge of
the sequence can be exploited in the reconstruction.
ar sequence analysis using multiwindow Gabor representations,
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Fig. 4. Representation of the local frequency spectrum using a cross section of the coefficients of sequence AF099922 at position shifts
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4. Searching for DNA sequences

Given the coefficients representing sequences, to
facilitate efficient search for a set of sequences, we
develop a method of indexing molecules based on
the local periodicities, where the energy of the
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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coefficients is given by
P

r;m;njcr;m;nj
2. Let us denote

the total energy of the coefficients by E. In our case,
it is given by

E ¼
XR�1
r¼0

Xb�1
m¼0

Xa�1
n¼0

jcr;m;nj
2. (8)
ar sequence analysis using multiwindow Gabor representations,
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We select the individual coefficients cr;m;n in a
decreasing order of energy, and do so until we
reach a certain percentage Z of the total energy,
where Z is specified by the user, in accordance with
the structure of the molecules under consideration.
Formally, we have

Z ¼
PV�1

s¼0 jcsj
2

E
, (9)

where cs are the coefficients arranged in descending
order and V is the total number of coefficients that
satisfy the specified criterion. Now we have only a
small subset of coefficients and these can be
represented in one dimension using the position of
the coefficient. Although, in theory, the coefficients
constitute a three-dimensional array, i.e., they are
labeled by the three parameters r; n; and m, the
sequence obtained from the set of coefficients is a
one-dimensional array. It suffices to store the
position in a one-dimensional array, since the
conversion from the one-dimensional position to
the ‘three dimensions’ is given by

cp ¼ cr;m;n ¼ c
rabþnbþm

, (10)

where p 2 0; . . . ; rab. In other words, we just store
the positions and use the above formula during
search.

We proceed to develop a method to search for
sequences in the database based on correlation of
coefficients [24]. We modify the method given in
[24], to require only the important coefficients of
two sequences. We then show that our method is
not only faster, but also alleviates false negative
results in the search process (this problem is
endemic to BLAST and its clones).

Let the coefficients of the first sequence f 1½k�; k 2

0; . . . ;L1 � 1 (sequence in which we search for the
match) be given by (2)

cð1Þr;m;n ¼
XL1�1

k¼0

f 1½k�gr½k � na�e�j2pmb1k=L1 , (11)

where cð1Þr;m;n; m 2 0; . . . ; b; n 2 0; . . . ; a1 � 1; r 2 0;
. . . ;R� 1; are the coefficients, L1 is the length of
the sequence, b1 is the shift along the frequency axis,
and a1 is the number of shifts along the sequence
(position) axis.

Similarly, the coefficients of the query sequence
f 2½k�; k 2 0; . . . ;L2 � 1 are given by

cð2Þr;m;n ¼ f 2½k� � g½k � na�e�j2pmb2k=L2 , (12)
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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where cð2Þr;m;n; m2 0; . . . ; b; n2 0; . . . ; a2 � 1; r 2 0; . . . ;
R� 1; are the coefficients, L2 is the length, b2 is the
shift along the frequency axis, and a2 is the number
of shifts along the position axis. It is important to
note that in both the labeled-and-stored and the
query sequences, the values of a and b should
be kept a constant. Adaptive approaches involving
modifications of these are possible, but would
require a more complicated approach to calculating
the matches between the sequences than is indicated
in this paper.

We define k½p�; p 2 0; . . . ; a1 � a2 as the value of
correspondence between the coefficients of the
sequences. Formally, we define k½p� as

k½p� ¼
Xa2�1

n¼0

XR�1
r¼0

Xb�1
m¼0

jc
ð1Þ
r;m;nþpkc

ð2Þ
r;m;nj. (13)

A high value of k½�� indicates a match and a low
value of k½�� indicates lack of a match. Since the
acceptance threshold (value of k½�� below which we
denote no match) of k is a tunable parameter, the
degree of approximation regarding acceptance of a
match is controlled by the user.

In our case, a vast majority of the coefficients are
unnecessary in determining the match. A refinement
would be to reduce the number of actual coeffi-
cients, using thresholds and normalizing the se-
quences. This would, therefore, compare only
corresponding high value coefficients in the two
sequences and reduce the computational time for
searching. Formally, this can be written as

k½p� ¼
X

v

jcð2Þv kc
ð1Þ

pbþv
j, (14)

where p 2 0; . . . ; a1 � a2, and v is the set of
coefficients chosen in the query sequence. Since
multiwindow Gabor transforms use local proper-
ties, this technique would rule out false negatives,
since similar sequences would have, at least reason-
ably high values in the corresponding positions
along the sequence and frequency. The only need to
find similar sequences would be to set a threshold
for the correlation value k½��, above which all
sequences would be acceptable. In DNA sequence
analysis, it is imperative, usually, to find all the
nearly-similar sequences, not merely precise
matches. Further, since slight differences in DNA
sequences do not produce major difference in the
coefficients (which is the principal problem
with global Fourier methods), the localization of
ar sequence analysis using multiwindow Gabor representations,
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Fig. 5. The correlation function of a ‘slightly-altered’ subsequence of length 75 of the sequence AP000543.
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variation in case of changes also helps in examining
the periodicity properties in DNA sequences.

In the case of DNA sequences, it is well known
that there are two types of repeating patterns. The
first, which we have analyzed, is the feature of
approximate matches. The second one is called the
feature of reverse complements. It has been
observed [25] that there are several sequences where
the reverse complement of a subsequence occurs as
a subsequence. As an example, a subsequence of
ATTGCA would have a reverse complement of
TGCAAT, and it is important to locate the reverse
complement in the sequence. This problem is
conveniently solved using the multiwindow Gabor
representations.

If a subsequence fs has a reverse complement f̂s,
the reverse complementarity is characterized by
equal values for the subsequences in the real part of
zero frequency region for all the windows used.
Consider the sequence fs of length Ls and its reverse
complement f̂s. The zero frequency multiwindow
Gabor coefficients for the two sequences, are
given by

c
ðsÞ
r;n;0 ¼

XLs�1

k¼0

f s½k�e
�ðk�naÞ2=ðs2r Þ, (15)
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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and

^cðsÞr;n;0 ¼ f̂ s½k�e
�ðk�naÞ2=ðs2r Þ, (16)

where cðsÞ and ^cðsÞ are the Gabor coefficients of the
sequences. Considering that f̂s is nothing more than
the conjugate of fs, we can easily see that the zero
frequency values of the sequences, with a real
window, are equal (they are just weighted averages)
and their real parts being equal in the signal
domain. These properties are preserved in the
combined space–frequency domain, and as an
advantage, we operate over a smaller set of shifts
along the sequence a instead of the set of all
elements in the sequence (a larger set L).

Since multiwindow Gabor handles changes on a
local basis, the length of the subsequence in relation
to the total does not play much of a role (this is
especially true of the windows having a small
effective width). In a large sequence, the above is
easily achieved by comparing the zero frequency
coefficients of a sequence f generated by Eq. (3) with
the coefficients of the sequence f̂ and finding the
equal values in the corresponding positions.

Shown in Fig. 5 are the results of the comparison
of a subsequence within a sequence. We also see that
it is very easy to capture the periodicities in coding
ar sequence analysis using multiwindow Gabor representations,

dx.doi.org/10.1016/j.sigpro.2007.10.011


ARTICLE IN PRESS

10 20 30 40 50 60

10

20

30

40

50

60

70

a
b
s
o
lu

te
 d

if
fe

re
n
c
e
 i
n
 n

o
rm

a
lis

e
d

c
o
e
ff
ic

ie
n
ts

coefficient position

Fig. 7. Minimization of difference between the coefficients of the

database and those of the query sequences. The sharp drop in

differences indicates almost perfect match.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 6. The correlation function of two subsequences and their original sequences and each other. The correlation of the subsequence with

the original sequence is given in blue, and the correlation of the sequence with the ‘wrong’ sequence is given in red. The sequences used are

AP000543 and Y00821.

N.K. Subbanna, Y.Y. Zeevi / Signal Processing ] (]]]]) ]]]–]]] 9
sequences, as is depicted in the example below.
These periodicities can be used in the classification
of similar coding sequences.

Finally, we can see that the correlation for the
‘right match’ is maximum due to the unitary nature
of the Gabor coefficients, for a given set of analysis
and synthesis frames. Shown in Fig. 6 are the Gabor
coefficients of two subsequences of two different
sequences matched against their own sequences and
each other. We can see that the autocorrelation
results in a much higher correlation factor than the
cross correlation factor, even when the sequences
are similar. Fig. 6 establishes that the ‘right’
matches have much higher correlation, and conse-
quently, the chances of getting false negatives and
positives is much smaller than in many other
methods where local aberrations can result in large
changes.

4.1. Minimization of differences

In the preceding section, we used the maximum
correlation as a measure of similarity. Here, we
illustrate that a similar, and in many cases, superior
result, can be achieved by minimizing the differences
between the coefficients of two sequences. As in the
previous case, we threshold the coefficients and
align the sequences over the shifts to minimize the
error. It can be written as:

e½k� ¼
XR�1
r¼0

Xa2�1

n¼0

Xb�1
m¼0

jc
ð1Þ
r;m;nþk � cð2Þr;m;nÞj, (17)

where e½�� is the error (or the difference) between the
coefficients, and k 2 0; . . . ; a1 � a2. The minimum of
e½k� yields the best match. Fig. 7 shows that if the
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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absolute differences between two normalized coeffi-
cients are used, the actual matching sequence is
found just as effectively. Here the absolute differ-
ence between the ‘most pronounced’ coefficients of
the sequence in the database and the query sequence
are chosen. Clearly, the best match (which happens
to be at the beginning of the sequence) is rather
more pronounced than in the case of the correlation
with the query sequence. The best match is nearly an
order of magnitude smaller than the next best
match!

5. Indexing of protein sequences

The method of multiwindow Gabor sequences is
now extended to the case of protein sequences. In
ar sequence analysis using multiwindow Gabor representations,
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this case, there are 20 amino acids that form the
building blocks of these sequences. We use the
method suggested in [6] for converting the character
strings to protein sequences. Other possible methods
are also available [26–28]. The method proposed by
Lio et al. in [6] involves computing the propensity of
the transmembrane helix, and scaling it, based on
the amino acid normalized frequencies (number
of occurrences) estimated from the transmembrane
database (TMALN). The amino acid propen-
sities after scaling are the same as suggested by
Lio et al. [6].

For the case of protein sequences, we apply the
same multiwindow Gabor transforms, and obtain
the coefficients. In the case of transmembrane
sequences, one of the most important requirements
is to find the transmembrane helices. These sub-
sequences show a certain periodicity and, therefore,
concerted effort has been devoted to locating these
periodicities using Fourier transforms [29], and
dyadic wavelets [6,9].

To illustrate it, we consider the chemokine
receptor (CKR5) sequence in humans, where there
are five transmembrane helices [6]. We use the zero-
mean sequence obtained by the discretization
method proposed in [6]. It is easily observed that
we obtain the transmembrane helix components by
simply finding the peaks in the values of the
coefficients as in the case of [6]. Since the sequence
is characterized by its zero-mean, we capture both
the positive and negative components of the
frequency, as is apparent in the reflection of the
coefficients across the central frequency (Fig. 9).
Four of the five helices are identified by different
spectral bands, indicating that their periodicities are
of different lengths, while the TM helices 4 and 5 lie
in the same spectral band, showing that they have
roughly the same local periodicity length. (They are
observed to have lengths of 27 and 25, respectively
[6]. Thus one may conclude they are of roughly
equal length.) It is also interesting to observe that
there are other periodicities that have not been
classified by other techniques. Since our method
uses windows of different widths, it can capture
‘hidden’ periodicities and thus help biologists in
their concerted efforts to understand these unknown
structures better. Thus far, biologists have been
constrained to have at least a rough idea of the
periodicities of TM sequences, before they could
attempt to find the exact location and periodicities.
Our method alleviates this problem to a consider-
able extent, by removing the bar on the window
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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spreads that were present in other methods. Further
details will be provided in an upcoming paper.

By comparing our locations of the TM helices
with the observed helices and the location proposed
in [6], we can see that both the methods coincide in
predicting the TM helices to the same locations and
to have similar lengths. Another feature of interest
is the periodicities at frequencies of (1/30) at
position 135, which are not known to have
any significance at present. It is interesting to
investigate the validity and purpose of this parti-
cular periodicity.

6. Comparisons with existing techniques

There is a considerable amount of literature
available on the utilization of position-frequency
techniques to classify, and search sequences. In this
paper, we choose three existing techniques to
compare our method with. Apart from this, we will
give a theoretical comparison with BLAST and its
clones.

6.1. Comparison with DFT-based technique

This technique has been utilized by Anastassiou
and his group [3,4]. The principal idea behind the
technique is to cut the sequence into pieces and
perform DFT on each part. Two separate repre-
sentations of sequences have been used, and the
authors have shown that they can find several
characteristics in coding regions of sequences. The
major problem of this technique is that the DFT is
global, and further, the choice of using rectangular
windows (cutting the sequence into pieces is
essentially equivalent to utilizing the rectangular
window) introduces Gibbs oscillations. The utiliza-
tion of multiwindow Gabor windows can alleviate
the problems to a large extent, since the Gaussian
windows are less prone to the above mentioned
problems. Further, it has been established that the
Gaussian window achieves the best resolution in the
position-frequency space.

6.2. Comparison with statistical-Fourier hybrid

technique

We have implemented the multiwindow Gabor
approach in the representation of a subsequence
of c:20h12, in the ACES region of the chromosome
22 (Genbank accession number AP000543, [31]
Dunham et al.). The sequence AP000543 is one of
ar sequence analysis using multiwindow Gabor representations,
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the 27 sequences mapping the Cat’s Eye syndrome
genes in the centrometric region of the chromosome
22. This is the sequence utilized in [32]. The authors
have used a mixed technique. Initially, a modified
autocorrelation is utilized to detect similar bases in
a DNA sequence, and then a DFT is performed on
it. We have chosen a part of the sequence AP000543
and reimplemented the results of [32] in our
formalism, and the results are displayed in Fig. 8.
The repetition of the bases in the DNA sequence is
highlighted very clearly at frequency 20/25–22/25, in
the example shown in Fig. 8. The Fourier transform
of the sequence also yields a peak in the region of
(480/600), but there are other peaks in the region of
(380–400)/600, which prevent clear detection of the
accurate frequency of the periodicity. In fact, the
peak at frequency (20–22)/25 is clearly the case in all
three windows, emphasizing that the peak at this
frequency is spread throughout the sequence. It also
permits us to observe that the local variations—
around 20/25–22/25 in the narrow window—gives
way to a more stable structure in the larger windows
(yielding the coefficients over a longer distance).
This also seems to corroborate the conjecture that
coding regions are very periodic, and that our
technique allows detection of hidden periodicities.
In [32], the authors try to find the long range
correlations in the sequence with statistical techni-
ques. The major disadvantage of this technique is
that the modified autocorrelation function controls
the effective area of search for similarities, whereas
the multiple windows are more flexible in handling
the various frequencies. The second problem is that
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul

Signal Process. (2007), doi:10.1016/j.sigpro.2007.10.011
almost periodic and minor aberrations are more
difficult to detect using the modified autocorrelation
technique. Our method is much more direct and
efficient, since it allows us to see the patterns
directly from the coefficients of the multiwindow
Gabor transform.

Results such as those shown in Fig. 5 indicate
that one can locate (slightly altered) a subsequence
in a sequence where there are repetitive patterns.
The subsequence consists of the first 75 bases of the
sequence AP000543 (with some small alterations in
the subsequence of 75 to ensure proper rendering
within a certain, limited radius of the subsequences).
The correlation at locations of coincidence is far
greater than at other locations, (nearly 1.33 times
the value at other places). This technique, thus
easily affords finding the corresponding ‘near
matches’ in other sequences.
6.3. Comparison with wavelet-based techniques

Wavelet-based techniques have been used with
considerable success in several contexts such as
locating the transmembrane helices in a transmem-
brane protein sequence. In [6], the authors utilized a
thresholded Daubechies wavelet to detect the
presence of transmembrane helices in the sequence.
As seen in Fig. 9, we have reimplemented the
method of [6] in our formalism. Other efforts such
as [9,10], utilize similar techniques for the detection
of hydrophobic cores in the sequences. The princi-
pal idea is to discretize the sequence based on the
ar sequence analysis using multiwindow Gabor representations,
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hydrophobicity of the residues and then use wavelet
transforms to find the transmembrane helices.

As can be seen in Fig. 9, in the case of wavelet
transforms, the dyadic wavelet causes the scattering
of frequencies around position 40 (frequency
(8–9/30)). This is due to the logarithmic progression
of frequencies, as opposed to the arithmetic
progression of frequencies in the case of Gabor
functions. The disadvantage of using the logarith-
mic scale for frequencies is that proper resolution of
frequency is impeded at high frequencies. Besides,
dyadic wavelets are often tailored to human vision
and are not necessarily the best for other signals/
sequences. We see a rather better localization of
frequencies in the case of Gabor transforms. A
further problem of dyadic wavelets is harmonics
which tend to generate artifacts—in Fig. 9, the high
points at position 30 are seen at two frequencies
10/30 and 14/30.

In the case of multiwindow Gabor representa-
tions, since all the windows span the entire range of
frequencies along with the positional information,
we can capture both the transmembrane helices at
their locations and other important periodicities.
Given the entire protein sequence, the multiwindow
Gabor coefficients help in locating and classifying
the different transmembrane structures. One curious
feature of the transmembrane helices is that when
they are of different lengths, we need windows of
different effective spreads to localize them. The
utilization of the multiwindow Gabor representa-
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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tion permits us the degree of freedom of choosing
the windows of convenience (something absent in
Fourier and dyadic wavelets) and alleviates the
problem inherent in the other techniques.

We have compared our method with the methods
of [32,2] for DNA sequences, and with those
presented in [6] for protein sequences. We show
the advantages of using multiwindow Gabor repre-
sentations for detecting local periodicities, storing
and searching for sequences. In conclusion, our
techniques have the potential of accelerating the
access into the databases of macromolecules by
properly indexing them according to the fingerprints
of local periodicities. The need for such indexing is
growing rapidly as more macromolecular sequence
data becomes available.

6.4. Comparison with BLAST

A short comparison between the philosophies of
traditional techniques such as BLAST and the
position-frequency techniques is in order. BLAST
and other techniques rely on aligning the sequences
and finding matches (either between the DNA
nucleotides, or between amino-acid residues). For
each correct match, the sum (which is originally
zero) is incremented by a predetermined amount
(determined by a combination of context and
heuristics), and for each mismatch, the sum is
decremented by a predetermined amount. These
techniques attempt to make use of the general
ar sequence analysis using multiwindow Gabor representations,
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knowledge of sequences, as well as any specific
knowledge about the sequence in question. The
predetermined increments and decrements often
cast away flexibility, and in case wrong heuristics
are used, tend to produce false negatives sometimes.
We, in contrast, rely on multiple windows (which
essentially capture multiscale ‘mean-tree paths’) to
identify similarities and local periodicities. This
greatly enhances the robustness of the coefficients
to local aberrations. The number of windows may
be increased with no substantial increase in compu-
tational demands. As long as the choice of the
lattice constants a and b is sane, multiwindow
Gabor functions are less vulnerable to local varia-
tions and can find similarities across sequences
without too much trouble). The sliding window
correlation we use ensures we compare the se-
quences reasonably well. However, it must be
admitted that our technique has been tested mainly
on periodic sequences, especially coding regions,
and has not been tested on other important DNA
regions like binding sites. Consequently, the perfor-
mance against BLAST with regard to the other
important features like binding sites cannot be
assessed.
7. Discussion

We have discussed the utility of multiwindow
Gabor frames in searching, storing, retrieving, and
classifying sequences. Another, perhaps just as
important ability of Gabor coefficients is to help
predict the secondary structure of protein se-
quences. To an extent, this ability has been observed
in predicting the transmembrane helices in trans-
membrane sequences, as has been observed in the
previous sections. This ability can be extended to
other structures like alpha-helices, beta-strands, and
observing defects in collagen fibers. These possibi-
lities are being investigated and promising preli-
minary results indicate that it would be very useful
to utilize this technique to predict secondary
structures of protein sequences. A further advantage
of the technique is that Gabor transforms are
unitary, which means that it would be possible to
use energy minimization techniques to find stable
structures (something that is extensively used in
molecular mechanics to find the structure of the
protein). The application of position-frequency
techniques to the detection of protein structures is
likely to be of great use to biologists.
Please cite this article as: N.K. Subbanna, Y.Y. Zeevi, Macromolecul
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In conclusion, we can say that our technique
measures up well against all the three techniques as
we have shown above. Further, our technique can
also be used to predict the secondary structure of
the amino acid sequences. Given these advantages,
it seems a fair supposition that utilising position-
frequency structures in the field of macromolecule
sequence analysis is an excellent idea.
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