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Abstract We present new sampling theorems for surfaces
and higher dimensional manifolds. The core of the proofs
resides in triangulation results for manifolds with bound-
ary, not necessarily bounded. The method is based upon
geometric considerations that are further augmented for
2-dimensional manifolds (i.e surfaces). In addition, we show
how to apply the main results to obtain a new, geometric
proof of the classical Shannon sampling theorem, and also
to image analysis.

Keywords Image sampling · Image reconstruction ·
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1 Introduction

Sampling is an essential preliminary step in processing of
any continuous signal by a digital computer. Undersampling
causes distortions due to aliasing of the post processed sam-
pled data. Oversampling, on the other hand, results in time
and memory consuming computational processes which,
at the very least, slows down the analysis process. It is
therefore important to have a measure which is instrumen-
tal in determining what is the optimal sampling rate. For
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one-dimensional signals such a measure exists, and, conse-
quently, the optimal sampling rate is given by the fundamen-
tal sampling theorem of Shannon, that yielded the founda-
tion of information theory and led technology into the digital
era. Shannon’s theorem asserts that a signal can be perfectly
reconstructed from its samples, given that the signal is band
limited within some bound on its highest frequency. Ever
since the proof of Shannon’s theorem was introduced in the
late 1940s, deducing a similar sampling theorem for higher
dimensional signals has become an essential problem related
to various aspects of signal processing. This is further em-
phasized by the vast interest and numerous applications of
image processing and by the growing need for fast yet accu-
rate techniques for processing high dimensional data, such
as medical and satellite images.

In this paper we present new sampling theorems for man-
ifolds of dimensions ≥2. These theorems are derived form
fundamental studies in three areas of mathematics: differen-
tial topology, differential geometry and geometric analysis.
Both classical and recent results in these areas are combined
to yield a rigorous and comprehensive sampling theory for
such manifolds.

We first present sampling theorems for surfaces (dimen-
sion 2) and then for higher dimensional manifolds. In the
case of surfaces, we account for surfaces that are at least C2,
with bounded principal curvatures. This condition is, in a
way, analogous to band limited signals in the case of one
dimension (the classical Shannon sampling theorem). We
then present a sampling theorem for surfaces that are not C2,
and we proceed to present sampling theorems for manifolds
of dimension ≥3. The main reasons for such a differenti-
ated treatment of surfaces and of higher dimensional mani-
folds is that the geometry of surfaces is much more intuitive
than that of manifolds of dimension ≥2. Therefore, the main
ideas behind the given theorems, are more accessible in this



106 J Math Imaging Vis (2008) 30: 105–123

case. Apart from this, there is also a deeper reason to distin-
guish between surfaces and higher dimensional manifolds: it
is rooted in the geometrical richness of manifolds of dimen-
sions ≥3, as compared with surfaces. This richness reflects
on the present work through the variety of curvature mea-
sures applicable to manifolds of dimensions >2. In higher
dimensions we can consider scalar, sectional and Ricci cur-
vatures, each of which with its specific geometrical meaning
and computational considerations. As a result, and due to the
crucial role curvature plays in this whole work, when setting
sampling theorems for high dimensional manifolds we first
need to have a good understanding of which of the possible
curvatures we would like to use.

The geometric sampling methods introduced herein
are based on the existence of fat (see Sect. 2) trian-
gulations of manifolds. Recently a surge in the study
of fat triangulations and manifold sampling in computa-
tional geometry, computer graphics and their related fields
has generated a considerable number of publications (e.g.
[3, 7, 15, 16, 24, 26, 31], to name a few). For instance, in
[3] Voronoi filtering is used for the construction of fat tri-
angulations of compact, C2 surfaces embedded in R

3. Note
that Voronoi cell partitioning is also employed in “classical”
sampling theory (see [40]). Further, [15] used these ideas
for manifold reconstruction from point samples. In [26] a
heuristic approach to the problem of the relation between
curvature and sampling density is given. Again, in these
studies the manifolds are assumed to be smooth, compact
n-dimensional hyper-surfaces embedded in R

n+1.
Our results extend the class of manifolds for which fat

meshes and “good” samplings exist. Both classical and re-
cent results in these areas are combined to yield a rigor-
ous and comprehensive sampling theory for such manifolds.
The sampling problem is fully integrated with fundamental
mathematical concepts. The method proposed herein is de-
veloped with reference to fundamental results in differential
topology, geometry and geometric analysis, and hence in-
herits mathematical rigour. This yields a rigorous and com-
prehensive sampling theory for manifolds. Such a study of
the sampling problem, fully integrated with a fundamental
mathematical approach is given here for the first time.

The paper is organized as follows: In Sect. 2 we re-
view some preliminary results relevant to the theory. We
first recall briefly some aspects of classical sampling the-
ory. We then present the most relevant results from dif-
ferential topology that play a central role in the theoreti-
cal background of our theory. More precisely, we focus on
PL-approximation of smooth manifolds and on its counter-
part of smoothing PL-manifolds. These results are directly
adopted in order to show that our proposed reconstruction
method is accurate and also to overcome the problem of non-
smoothness. In Sect. 3 we provide some additional back-
ground results, combining both differential geometry and

the theory of quasi-regular mappings. These results, both
classical such as those of S.S. Cairns, starting from the early
1930s, and new, due to K. Peltonen from the 1990s and to
E. Saucan from 2000s will be later adopted to give the exis-
tence of sampling for manifolds. The main results regarding
sampling of manifolds are presented in Sect. 4. In Sect. 5
we show how to apply the surfaces/manifolds sampling re-
sults to obtain a new, geometric proof of the classical Shan-
non sampling theorem, and also in the analysis of images.
In Sect. 6 we present some computational results regarding
the implementation of our sampling and reconstruction the-
orems in the case of analytical surfaces. In the final section
we examine some delicate aspects of our study, and discuss
extensions of this work, relating both to geometric aspects
of sampling, as well as to its relationship with classical sam-
pling theory.

2 Preliminaries

2.1 Shannon’s Theorem and Sampling Theory

We do not present here in detail the classical Whittaker-
Kotelnikov-Nyquist-Shannon theorem (Shannon’s Theo-
rem, for short), but restrict ourselves to bringing the fol-
lowing version:

Theorem 2.1 Let f ∈ L2(R), such that supp (f̂ ) ⊆ [−π,

π], where f̂ denotes the Fourier transform of f . Then

f (x) =
∑

t∈Z

f (t) sinc(x − t), (2.1)

where sinc(x) = sinπx
πx

.

The classical Shannon theorem pertains to band limited
signals. Various generalizations of it were proposed (see
[1, 2, 6, 32, 40, 44, 45], amongst others).

We conclude this brief overview of Shannon’s theorem
with a few remarks relevant to the sequel:

1. Since (2.1) expresses f as an infinite series, it follows
that obtaining a perfect reconstruction of f by applying
Shannon’s theorem requires an infinite length (duration)
of a signal. In fact, to begin with, to be band limited, a
signal has to be of an infinite duration.

2. Mathematically, Shannon’s theorem belongs to the field
of interpolation (see, e.g. [6, 40]). The main—and
surprising—fact is that linear interpolation (the secant
approximation, to be more precise—see Sects. 2.2, 2.3
below) basically suffices to faithfully reconstruct mani-
folds.

3. The quest for reproducing kernels is natural. How-
ever, not every family of functions admits such kernels
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(see [5], pp. 380–381). Moreover, surfaces (and a for-
tiori higher dimensional manifolds) are geometric objects
with far “wilder” smoothness properties than signals, as
usually considered (see, e.g. [21]). Therefore, a general
theory of reproducing kernels for manifolds seems diffi-
cult and remains, at this stage, yet to be developed.

4. Shannon’s theorem is equivalent to a variety of seem-
ingly unrelated results in classical Mathematical Analy-
sis (see [21]). It is plausible, and indeed probable, that
precisely these variations on the given theme can shed
some more light on all the aspects of a sampling theory
for surfaces.

2.2 Background on PL-Topology

We first recall a few classical definitions and notations:

Definition 2.2 Let a0, . . . , am ∈ R
n. {ai}mi=1 are said to be

independent iff the vectors vi = ai − a0, i = 1, . . . ,m; are
linearly independent.

The set σ = a0a1 . . . am = {x = ∑
αiai |αi ≥ 0,

∑
αi =

1} is called the m-simplex spanned by a0, . . . , am. The points
a0, . . . , am are called the vertices of σ .

The numbers αi are called the barycentric coordinates
of σ . The point σ̃ = 1

m+1

∑
αi is called the barycenter of σ .

If {a0, . . . , ak} ⊆ {a0, . . . , am}, then τ = a0 . . . ak is called
a face of σ , and we write τ < σ .

Definition 2.3 Let A,B ⊂ R
n. We define the join A ∗ B of

A and B as A ∗ B = {αa + βb|a ∈ A,b ∈ B;α,β ≥ 0, α +
β = 1}. If A = {a}, then A ∗B is called the cone with vertex
a and base B .

Definition 2.4 A collection K of simplices is called a sim-
plicial complex if

1. If τ < σ , then τ ∈ K .
2. Let σ1, σ2 ∈ K and let τ = σ1 ∩σ2. Then τ < σ1, τ < σ2.
3. K is locally finite.

|K| = ⋃
σ∈K σ is called the underlying polyhedron (or

polytope) of K .

Definition 2.5 A complex K ′ is called a subdivision of K

iff

1. K ′ ⊂ K ;
2. if τ ∈ K ′, then there exists σ ∈ K such that τ ⊆ σ .

If K ′ is a subdivision of K we denote it by K ′ � K .
Let K be a simplicial complex and let L ⊂ K . If L is a

simplicial complex, then it is called a subcomplex of K .

Definition 2.6 Let a ∈ |K|. Then

St (a,K) =
⋃

a∈σ
σ∈K

σ

is called the star of a ∈ K .
If S ⊂ K , then we define: St (S,K) = ⋃

a∈S St (a,K).

Definition 2.7 Let σ = a0a1 . . . am and let f : σ → R
p . The

map f is called linear iff for any x = ∑
αiai ∈ σ , it holds

that f (x) = ∑
αif (ai).

Let K,L be complexes, and let f : |K| → |L|. Then f

is called linear (relative to K and L) iff for any σ ∈ K , τ =
f (σ ) ∈ L.

The map f : K → L is called piecewise linear (PL) iff
there exists a subdivision K ′ of K such that f : K ′ → L is
linear.

If (i) f : K → L is a homeomorphism of |K| onto |L|,
(ii) f |σ is linear and (iii) τ = f |σ ∈ L, for any σ ∈ K , then
f is called a linear homeomorphism.

Definition 2.8 A cell γ is a bounded subset of R
n defined

by:

γ = {x ∈ R
n|

∑

j

αij xj ≥ βi; i = 1, . . . , p},

for some constants αi,j and βi .
The dimension m of γ is defined as min{dim�|γ ⊂ �,

� being a hyperplane inR
n}.

Let γ be an m-dimensional cell. The (m − 1)-cells βj of
∂γ are called its (m−1)-faces, the (m−2)-faces of each βj

are called the (m − 2)-faces of γ , etc. By convention ∅ and
γ are also faces of γ .

A cell complex is defined in the same manner as a simpli-
cial complex, more precisely, a cell complex K is a collec-
tion of cells that satisfy conditions 1–3 of Definition 2.4.

Subcomplexes are also defined in analogy to the sim-
plicial case. In particular, the q-skeleton Kq of K , Kq =
{γ |γ ∈ K,dimγ ≤ q} is a subcomplex of K .

Lemma 2.9 Let K be cell complex. Then, K has a simpli-
cial subdivision.

Proof See [29], Lemma 7.8. �

We next define the concept of embedding for complexes,
but first we need some basic definitions:

Definition 2.10 Let K be a simplicial complex.

1. f : |K| → Mn is Cr differentiable (relative to |K|) iff
f |σ ∈ Cr (σ ), for any simplex σ ∈ K .

2. f : |K| → Mn is non-degenerate iff rank(f |σ )

= dim(σ ), for any simplex σ ∈ K .

Definition 2.11 Let σ be a simplex, and let f : σ →
R

n, f ∈ Cr . For a ∈ σ we define dfa : σ → R
n as follows:

dfa(x) = Df (a) · (x − a), where Df (a) denotes the for-
mal derivative Df (a) = (∂fi/∂xj )1≤i,j≤n, computed with
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respect to some orthogonal coordinate system contained in
�(σ), where �(σ) is the hyperplane determined by σ . The
map dfa : σ → R

n does not depend upon the choice of this
coordinate system.

Note that dfa|σ∩τ is well defined, for any σ, τ ∈ St(a,K).
Therefore, the map dfa : St(a,K) → R

n is well-defined and
continuous. It is called the differential of f , in analogy to the
case of differentiable manifolds.

Remark 2.12 In contrast to the differential case, the tangent
space Tf (p)(M

n) is a union of polyhedral tangent cones. It,
therefore, does not possess a natural vector space structure
(see [42], p. 196).

Definition 2.13 Let K be a simplicial complex, let Mn be
a Cr submanifold of R

N , and let f : K → Mn be a Cr map.
Then, f is called

1. an immersion, iff dfσ : St(σ,K) → R
n is injective for

each and every σ ∈ K ;
2. an embedding, iff it is an immersion and a homeomor-

phism on the image f (K);
3. a Cr -triangulation, iff it is an embedding such that

f (K) = Mn.

Remark 2.14 If the class of the map f is not relevant, f will
be called simply a triangulation.

Definition 2.15 Let f : K → R
n be a Cr map, and let δ :

K → R
∗+ be a continuous function. Then g : |K| → R

n is
called a δ-approximation to f iff:

(i) There exists a subdivision K ′ of K such that g ∈
Cr (K ′,R

n);
(ii) d2(f (x), g(x)) < δ(x), for any x ∈ |K|;

(iii) d2(dfa(x), dga(x)) ≤ δ(a) · d2(x, a), for any a ∈ |K|
and for all x ∈ St(a,K ′).

(Here d2 denotes the Euclidean distance on R
n.)

Definition 2.16 Let K ′ be a subdivision of K , U =
◦
U ,

and let f ∈ Cr (K,R
n), g ∈ Cr (K ′,R

n). g is called a
δ-approximation of f (on U ) iff conditions (ii) and (iii) of
Definition 2.6 hold for any a ∈ U .

The most natural and intuitive δ-approximation to a given
mapping f is the secant map induced by f :

Definition 2.17 Let f ∈ Cr (K) and let s be a simplex,
s < σ ∈ K . Then, the linear map: Ls : s → R

n defined by
Ls(v) = f (v), where v is a vertex of s, is called the secant
map induced by f .

Fig. 1 Thin triangle—Peltonen’s definition

2.3 PL-Approximation of Smooth Manifolds

We show in this section that the apparent “naive” secant ap-
proximation of surfaces (and higher dimensional manifolds)
represents a good approximation, both in distances and in
angles, provided the secant approximation induced by a tri-
angulation satisfies a certain un-degeneracy condition called
“fatness” (or “thickness”).

2.3.1 Fat Triangulations

We first provide the following informal, intuitive definition:

Definition 2.18 A triangle in R
2 is called fat (or ϕ-fat, to be

more precise) iff all its angles are larger than a ϕ.

In other words, fat triangles are those that do not “devi-
ate” too much from being equiangular (regular), hence fat
triangles are not too “slim”. This can be defined more for-
mally by requiring that the ratio of the radii of the inscribed
and circumscribed circles of the triangle is bounded from
bellow by ϕ, i.e. r

R
≥ ϕ, for some ϕ > 0, where r denotes the

radius of the inscribed circle of τ (inradius) and R denotes
the radius of the circumscribed circle of τ (circumradius)
(Fig. 1).

One can easily check, by elementary methods, that the
angle-condition and the radii condition are equivalent. Even
if, perhaps, more intuitive, the angle condition is more diffi-
cult to properly formulate in higher dimension, therefore we
opt for the following formal definition of fatness:

Definition 2.19 A k-simplex τ ⊂ R
n, 2 ≤ k ≤ n, is ϕ-fat if

there exists ϕ > 0 such that the ratio r
R

≥ ϕ. A triangulation
of a submanifold of R

n, T = {σi}i∈I is ϕ-fat if all its sim-
plices are ϕ-fat. A triangulation T = {σi}i∈I is fat if there
exists ϕ ≥ 0 such that all its simplices are ϕ-fat; for any
i ∈ I.
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Fig. 2 “Slim” tetrahedra in R
3

Fig. 3 Michelangelo’s David
model endowed with almost
ideal triangulation:
quasi-equilateral triangles of
approximately equal size

Proposition 2.20 [14] There exists a constant c(k) that de-
pends solely upon the dimension k of τ such that

1

c(k)
· ϕ(τ) ≤ min

σ<τ
�(τ, σ ) ≤ c(k) · ϕ(τ), (2.2)

and

ϕ(τ) ≤ Volj (σ )

diamj σ
≤ c(k) · ϕ(τ), (2.3)

where ϕ denotes the fatness of the simplex τ , �(τ, σ ) de-
notes the (internal) dihedral angle of the face σ < τ and
Volj (σ ); diamσ stand for the Euclidean j -volume and the
diameter of σ respectively. (If dimσ = 0, then Volj (σ ) = 1,
by convention.)

Condition 2.2 is just the expression of fatness as a func-
tion of dihedral angles in all dimensions, while Condi-
tion 2.3 expresses fatness as given by “large area/diameter”.
Diameter is important since fatness is independent of scale.

One can gain some insight into the equivalence of all the
definitions above, by analyzing the three-dimensional exam-
ples below (see Fig. 2). (See [16] for a complete classifica-
tion of “slim” triangles in dimensions 2 and 3.)

Remark 2.21 The above definition is the one introduced
in [33]. We employ it, as already noted, mainly for briefness.
For other, equivalent definitions of fatness see [11, 12, 14],
(based upon angles), [29] (the most similar to the one given
above—see below) and [43] (based upon area/diameter).

Remark 2.22 In practice, the “fatness” ϕ of a triangulation
is predetermined by some geometric condition, see Sect. 4
below.

Remark 2.23 As was already noted in the introduction,
achieving a fat triangulation endowed, moreover, with sim-
plices of almost equal diameter (see Fig. 3) is highly im-
portant in computer graphics and related fields. This is ob-
tained via a process called “mesh improvement”, akin to our
“fattening” technique of a given triangulation. However, real
(i.e. scanned images) produce non-fat (slim) triangulations
with a high range of diameters—see Fig. 4 and, for an ex-
treme case, Fig. 12, that illustrates the triangulation obtained
from the CT scan of the human colon.

2.3.2 The Main Result

While, by Proposition 2.20, we could have employed any of
the equivalent definitions of fatness, the computations in the
proposition below are performed for

ϕ(σ) = r(σ )

diam(σ )
;

(where the notations are as above).

Proposition 2.24 ([29], Lemma 9.3) Let f : σ → R
n be

of class Ck . Then, for δ,ϕ0 > 0, there exists ε > 0, such
that, for any τ < σ , such that diam(τ ) < ε and such that
ϕ(τ) > ϕ0, the secant map Lτ is a δ-approximation to f |τ .

Proof We first show that (i) Fb(x) = f (b)+Df (b) ·(x−b),
where b denotes the barycenter of σ , is a δ/2-approximation
to f on a sufficient small neigbourhood of b. We then prove
that (ii) if τ < σ satisfies the conditions from the statement
of the theorem, then Lσ is a δ/2-approximation to Fb . This
two assertions suffice to prove the theorem.

Proof of (i) Follows immediately from the definition
of Df . We impose the additional requirement ||f (x) −
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Fig. 4 Sampling (triangulation)
of an MRI image of part of
cerebral cortex surface. Note the
uneven diameters and fatness of
the simplices

Fb(x)||/||x − b|| < δϕ0/4, for ||x − b|| < ε. (Here || · || de-
notes the Euclidean norm.)

Before we proceed further we need the following re-
sult: Let L,F : τ → R

n be linear maps, such that ||L(x) −
F(x)|| < c, for all x ∈ τ . Then, it results immediately from
(i) that ||DL(x) · u − DF(x) · u|| ≤ c/r(τ ), for all u in the
plane of τ , ||u|| = 1.

Proof of (ii) Let v0, . . . , vk be the vertices of τ , and
let x ∈ τ, x = ∑

αivi . Then, by the linearity of Ls and
Fs it follows that Ls(x) = ∑

αiLs(vi) = ∑
αif (vi) and

Fb(x) = ∑
αiFb(vi). Hence:

‖Ls(x) − Fb(x)‖ =
∥∥∥∥

∑
αi

‖f (x) − Fb(x)‖
‖x − b‖

∥∥∥∥

≤ max‖f (x) − Fb(x)‖,

but ‖f (x) − Fb(x)‖ < δ/2 and ‖Ls(x) − Fb(x)‖ < δ/2,
for all ‖x − b‖ < ε. Moreover, ‖f (x) − Fb(x)‖/‖x − b‖ <

δϕ0/4, for all ‖x − b‖ < ε, and, since ϕ0 ≤ r(τ )/diam(τ ), it
follows that:

‖Ls(x) − Fb(x)‖ < max‖vi − b‖δϕ0/4

≤ diam(τ )δϕ0/4 ≤ δ r(τ )/4.

This concludes the proof of (ii), and, hence, of the proposi-
tion. �
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2.4 Smoothing of Manifolds

We proceed to address the problem of smoothing of man-
ifolds, i.e. approximating a differentiable manifold of class
Cr , r ≥ 0, by manifolds of class C∞. Of special interest is the
case where r = 0. This will be used in our development of
our sampling theorem, and as a postprocessing step where,
after reproducing a PL manifold out of the samples, to get
a smooth reproduced manifold. Smoothing is also useful in
preprocessing, when we wish to extend the sampling theo-
rem to manifolds which are not necessarily smooth. Smooth-
ing is, in this case, followed up by sampling of the smoothed
manifold, yielding a set of samples representing the non-
smooth manifold as well. (Our main reference here are [29],
Chap. 4, and [22].)

Question 1 What does smoothing of manifolds entail? This
is much less obvious when an additional requirement of
“geometric” approximation is imposed, e.g. when a proper
curvature (Gauss, mean, etc.) convergence is also required.
For the proof of this in the case of surfaces refer to [8].

2.4.1 Partition of Unity

Smoothing will be obtained by means of a C∞ smoothing
convolution kernel. Before introducing this kernel, we recall
the notion of partition of unity, which represents the core of
the smoothing process:

Lemma 2.25 For every 0 < ε < 1 there exists a C∞ func-
tion ψ1 : R → [0, 1], such that, ψ1 ≡ 0 for |x| ≥ 1 and
ψ1 = 1 for |x| ≤ (1 − ε). Such a function is called partition
of unity (see Fig. 5).

Let cn(ε) be the ε-cube around the origin in R
n (i.e. X ∈

R
n ; −ε ≤ xi ≤ ε, i = 1, . . . , n). We can use the above parti-

tion of unity in order to obtain a non-negative C∞-function,
ψ , on R

n, such that ψ = 1 on cn(ε) and ψ ≡ 0 outside
cn(1). Define ψ(x1, . . . , xn) = ψ1(x1) · ψ1(x2) · · · ψ1(xn).

We now introduce the main theorem regarding smoothing
of PL-manifolds:

Theorem 2.26 ([29]) Let M be a Cr manifold, 0 ≤ r < ∞,
and f0 : M → R

k a Cr embedding. Then, there exists a C∞
embedding f1 : M → R

k which is a δ-approximation of f0.

The above theorem is a consequence of the following
lemma concerning smoothing of maps:

Lemma 2.27 ([29]) Let U be an open subset of R
m. Let A

be a compact subset of an open set V such that V ⊂ U is
compact. Let f0 : U → R

n be a Cr map, 0 ≤ r . Let δ be a
positive number. Then there exists a map f1 : U → R

n such
that

Fig. 5 Partition of unity on A

1. f1 is C∞ on A.
2. f1 = f0 outside V .
3. f1 is a δ-approximation of f0.
4. f1 is Cr -homotopic to f0 via a homotopy ft satisfying

(2) and (3) above. i.e. f0 can be continuously deformed
to f1.

Proof Let W be an open set containing A such that W ⊂ V .
We use partition of unity in order to obtain the following
maps,

1. ψ : R
m → R+ so that, it is C∞, and ψ = 1 on A and

ψ ≡ 0 outside W .
2. ϕ : R

m → R be a C∞ function which is positive on
int (cm(ε)) and vanishes outside cm(ε). ε is some pos-
itive number yet to be defined. Further assume that∫

Rm ϕ = 1.

Define g = ψ · f . Then, g : R
m → R

n and satisfies g =
f on A and g ≡ 0 outside W . Inside A, g is of the same
differentiability class as f , whereas outside W it is C∞.

For x ∈ R
m, define

h(x) =
∫

cm(ε)

ϕ(y)g(x + y)dy. (2.4)

Choose ε so that
√

mε < d(W,Rm\V ), then h ≡ 0 outside
V .

Let

f1(x) = f0(x) · (1 − ψ(x)) + h(x).

Since ψ and h vanish outside V , conclusion (2) of the
lemma is fulfilled.

Inside A we have f1(x) = h(x). Since

h =
∫

cm(ε)

ϕ(y)g(x + y)dy =
∫

W+cm(ε)

ϕ(z − x)g(z)dz

=
∫

Rm

ϕ(z − x)g(z)dz;

and since ϕ is C∞, h is also C∞ inside W , and in particular
on A, thus fulfilling conclusion (1).
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By its definition f1 = f0 + (h− g), so we have to choose
ε small enough so that h is a δ-approximation to g. By the
mean value theorem we have:

hi(x) = gi(x + yi);
∂hi

∂xj
= ∂gi(x + yij )

∂xj
;

where yi and yij are points in cm(ε). We only have to take
care that ε is so small that

|gi(x) − gi(x′)| < δ;
and
∣∣∣∣
∂gi

∂xj
(x) − ∂gi

∂xj
(x′)

∣∣∣∣ < δ;

for

|x − x′| < ε;
this completes part (3).

Finally, let α(t) be a monotonic C∞ function such that:
α = 0 for 0 ≤ t ≤ 1�3; and α = 1 for 2�3 ≤ t ≤ 1. Define

ft (x) = α(t)f1(x) + (1 − α(t))f0(x). (2.5)

Then, ft ≡ f0 outside V and ft is the desired Cr homo-
topy between f0 and f1. This completes the proof. �

Remark 2.28 In the proof of the isometric embedding theo-
rem, J. Nash [30] used a modified version of the smoothing
process presented herein. Nash’s idea was to define a radi-
ally symmetric convolution kernel ϕ, by taking its Fourier
transform, ϕ̂, to be a radially symmetric partition of unity.
In so doing one can use a scaling process where for each N

the smoothing operator of g is defined to be

hNg(x) =
∫

Rm

ϕ(z)g(x + z/N)dz

=
∫

Rm

ϕN(z − x)g(z)dz;

where ϕN(z) = Nmϕ(Nz). Thus we have that the Fourier
transform of ϕN satisfies

ϕ̂N (ω) = ϕ̂(ω/N).

Note that this results in a higher degree of smoothing
for small N (the partition of unity being taken over a larger
neighbourhood), while for large N we have less smoothing
yielding a better approximation. In this case the approxima-
tion is faithful not only to the signal and its first derivative
as in the classical approach, but also to higher order deriva-
tives, if such exist.

3 Fat Triangulation

3.1 Theorems

In this section we review, in chronological order, existence
theorems dealing with fat triangulations on manifolds. (For
detailed proofs see the original papers.)

Theorem 3.1 (Cairns, [13]) Every compact C2 Riemannian
manifold admits a fat triangulation.

Remark 3.2 For a similar result, the proof of which does not
generalize to open manifolds, see [11, 12].

Theorem 3.3 (Peltonen, [33]) Every open (unbounded) C∞
Riemannian manifold admits a fat triangulation.

Theorem 3.4 (Saucan, [36]) Let Mn be an n-dimensional
C1 Riemannian manifold with boundary, having a finite
number of compact boundary components. Then, any fat tri-
angulation of ∂Mn can be extended to a fat triangulation
of Mn.

Remark 3.5 The compactness condition on the boundary
components in Theorem 3.4, can be replaced by the fol-
lowing condition: ∂Mn is endowed with a fat triangulation
T such that infσ∈T diamσ > 0 ([36]). In fact, Theorem 3.4
holds even without the finiteness and compactness condi-
tions imposed on the boundary components (see [37]).

Corollary 3.6 If Mn is as above, then it admits a fat trian-
gulation.

Corollary 3.7 Let Mn be an n-dimensional, n ≤ 4 (resp.
n ≤ 3), PL (resp. topological) connected manifold with
boundary, having a finite number of compact boundary com-
ponents. Then, any fat triangulation of ∂Mn can be extended
to a fat triangulation of Mn.

3.2 Methods

3.2.1 Background

Let Mn denote an n-dimensional complete Riemannian
manifold, and let Mn be isometrically embedded into R

ν

(“ν”-s existence is guaranteed by Nash’s Theorem (see,
e.g. [33, 41]).

Let B
ν(x, r) = {y ∈ R

ν |deucl < r}; ∂B
ν(x, r) =

S
ν−1(x, r). If x ∈ Mn, let σn(x, r) = Mn ∩ B

ν(x, r),
βn(x, r) = expx(B

n(0, r)), where: expx denotes the expo-
nential map: expx : Tx(M

n) → Mn and where B
n(0, r) ⊂

Tx(M
n), B

n(0, r) = {y ∈ R
n|deucl(y,0) < r}.
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Remark 3.8 Neither of the following (homeomorphisms) is
guaranteed:

1. σn(x, r) � B
n(0, r)

2. βn(x, r) � B
n(0, r).

The following definitions generalize in a straightforward
manner classical ones used for surfaces in R

3:

Definition 3.9

1. S
ν−1(x, r) is tangent to Mn at x ∈ Mn iff there exists

S
n(x, r) ⊂ S

ν−1(x, r), s.t. Tx(S
n(x, r)) ≡ Tx(M

n).
2. Let l ⊂ R

ν be a line, then l is secant to X ⊂ Mn iff |l ∩
X| ≥ 2.

Definition 3.10

1. S
ν−1(x,ρ) is an osculatory sphere at x ∈ Mn iff:

(a) S
ν−1(x,ρ) is tangent at x;

and
(b) B

n(x,ρ) ∩ Mn = ∅.
2. Let X ⊂ Mn. The number ω = ωX = sup{ρ > 0|Sν−1

(x,ρ) osculatory at any x ∈ X} is called the maximal os-
culatory radius at X.

Remark 3.11

1. There exists an osculatory sphere at any point of Mn

(see [13]).
2. If X is compact, then ωX > 0.

3.3 The Classical Case

In the compact case the method is to produce a point set A ⊆
Mn, that is maximal with respect to the following density
condition:

d(a1, a2) ≥ η, for all a1, a2 ∈ A; (3.1)

where

η < ωM. (3.2)

One makes use of the fact that for a compact manifold
Mn we have |A| < ℵ0, to construct the finite cell complex
“cut out of M” by the ν-dimensional Dirichlet complex (see
Fig. 6), whose (closed) cells are given by:

c̄k = c̄ν
k

= {x ∈ R
ν |deucl(ak, x) ≤ deucl(ai, x),

ai ∈ A,ai �= ak}, (3.3)

i.e. the (closed) cell complex {γ̄ n
k }, where:

{γ̄ n
k } = γ̄k = c̄k ∩ Mn (3.4)

(see [13, 33] (for details)).

Fig. 6 Dirichlet (Voronoi) cells—the compact surface case

Remark 3.12 A result equivalent to Theorem 3.1 is at-
tempted in [3], using basically the same method as Cairns’
original one. However, the proof given in [3] is more tech-
nical and less fitted for generalization in higher dimensions
than the original proof given in [13]. Moreover, the seminal
papers of Cairns are not referenced therein.

Remark 3.13 Voronoi cell partitioning is also employed in
“classical” sampling theory (see [40]).

3.4 Open Riemannian Manifolds

In adapting Cairns’ method to the non-compact case, one
has to allow for some (obviously-required) modifications.
We proceed to present below the construction devised by
Peltonen, which consists of two parts:
Part 1

Step A
Construct an exhaustive set {Ei} of Mn, generated by
the pair (Ui, ηi), where:

(1) Ui is the relatively compact set Ei \ Ēi−1 and
(2) ηi is a number that controls the fatness of the simplices

of the triangulation of Ei , constructed in Part 2, such
that it will not differ to much on adjacent simplices, i.e.:
(i) The sequence (ηi)i≥1 descends to 0;

(ii) 2ηi ≥ ηi−1.

The geometric feature that controls the sets Ei,Ui and
the numbers ηi is the maximal connectivity radius:

Definition 3.14 Let U ⊂ Mn,U �= ∅, be a relatively com-
pact set, and let T = ⋃

x∈Ū σ (x,ωU). The number κU =
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Fig. 7 Maximal connectivity radius at U

max{r|σn(x, r) is connected for all s ≤ ωU,x ∈ T̄ }, is called
the maximal connectivity radius at U , (see Fig. 7):

The maximal connectivity radius and the maximal oscu-
latory radius are interconnected by the following inequality:

Lemma 3.15

ωU ≤
√

3

3
κU . (3.5)

Proof See Lemma 3.1, [33]. �

The numbers ηi are chosen such that they satisfy the fol-
lowing bounds:

ηi ≤ 1

4
min
i≥1

{ωŪi−1
,ωŪi

,ωŪi+1
}.

Step B
(1) Produce a maximal set A, |A| ≤ ℵ0, s.t. A ∩ Ui

satisfies:
(i) a density condition, namely:

d(a, b) ≥ ηi/2, for all i ≥ 1;
and
(ii) a “gluing” condition for Ui,Ui+1, i.e. their in-

tersection is large enough.
Note that according to the density condition
(i), the following holds:
For any i and for any x ∈ Ūi , there exists
a ∈ A such that d(x, a) ≤ ηi/2.

(2) Prove that the Dirichlet complex {γ̄i} defined by
the sets Ai is a cell complex and every cell has a
finite number of faces (so that it can be triangulated
in a standard manner).

Part 2
Consider first the dual complex �, and prove that it is

a Euclidean simplicial complex with a “good” (i.e. proper)
density. Project then � on Mn (using the normal map). Fi-
nally, prove that the resulting complex �̃ can be triangulated

by fat simplices. Indeed, the fatness of any n-dimensional
simplex γ ∈ �̃, contained in the set Ui is given by the fol-
lowing bound:

rγ

Rγ

≥ 1

25n+1

(n + 2)
n+1

2

(n + 1)n+1
. (3.6)

Remark 3.16 In the course of Peltonen’s construction Mn

is presumed to be isometrically embedded in some R
N1 ,

where the existence of N1 is guaranteed by Nash’s Theorem
(see [33, 41]).

3.5 Manifolds With Boundary of Low-Differentiability

The idea of the proof of Theorem 3.4 is to build first two
fat triangulations: T1 of a product neighbourhood N of ∂Mn

in Mn and T2 of int Mn (its existence follows from Pelto-
nen’s result), and then to “mash” the two triangulations into
a new triangulation T , while retaining their fatness. While
the mashing procedure of the two triangulations is basically
the one developed in the original proof of Munkres’ theo-
rem, the triangulation of T1 has been modified, in order to
ensure the fatness of the simplices of T1. More precisely we
prove the following Theorem (see [36]):

Theorem 3.17 Let Mn be a Cr Riemannian manifold with
boundary, having a finite number of compact boundary com-
ponents. Then any fat Cr -triangulation of ∂Mn can be ex-
tended to a Cr -triangulation T of Mn, 1 ≤ r ≤ ∞ , the re-
striction of which to a product neighbourhood K̃0 = ∂Mn ×
I0 of ∂Mn in Mn is fat.

In the general case we employ a method for fattening tri-
angulations developed in [14]. The core of this methods re-
sides in the following result:

Lemma 3.18 ([14], Lemma 6.3.) Let T1,T2 be two fat
triangulations of open sets U1,U2 ⊂ R

n, Br(0) ⊆ U1 ∩
U2, having common fatness ≥ ϕ0 and such that d1 =
infσ1∈T1 diamσ1 ≤ d2 = infσ2∈T2 diamσ2. Then there ex-
ist ϕ∗

0 -fat triangulations T ′
1 ,T ′

2 , ϕ∗
0 = ϕ∗

0 (ϕ0), of open sets
V1,V2 ⊆ Br(0), such that

(1) T ′
i

∣∣
Br−8d2

(0)

= Ti
∣∣
Br−8d2

(0)

, i = 1,2;

(2) T ′
1 and T ′

2 agree near their common boundary.

Moreover:

(3) infσ ′
1∈T ′

1
diamσ ′

1 ≤ 3d1/2, infσ ′
2∈T ′

2
diamσ ′

2 ≤ d2.

Remark 3.19 A more elementary, geometric approach in
two and three dimensions was developed in [35].

Remark 3.20 For the treatment of the same problem in the
context of Computational Geometry, see e.g. [16, 31].
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Fig. 8 A non-compact surface �, with two boundary components ∂1�

and ∂2�. Observe the cusps ℘1 and ℘2 and the funnel �

Classical smoothing results are applied to derive Corol-
lary 3.7 (see Sect. 2.2.3 and [42]).

4 Sampling Theorems

4.1 Surfaces

4.1.1 Smooth Surfaces

Theorem 4.1 Let � be a connected, non-necessarily com-
pact smooth surface (i.e. of class Ck, k ≥ 2), with finitely
many boundary components. Then, there exists a sampling
scheme of �, with a proper density D = D(p) = D( 1

k(p)
),

where k(p) = max{|k1|, |k2|}, and k1, k2 are the principal
curvatures of �, at the point p ∈ �.

Proof The existence of the sampling scheme follows imme-
diately from Corollary 3.6, where the sampling points are
the vertices of the triangulation. The fact that the density is a
function solely of k = max{|k1|, |k2|} follows from the proof
of Theorem 3.3 and from the fact that the osculatory radius
ωγ (p) at a point p of a curve γ equals 1/kγ (p), where
kγ (p) is the curvature of γ at p; hence that the maximal
osculatory radius (of �) at p is: ω(p) = max{|k1|, |k2|} =
max{ 1

ω1
, 1

ω2
}. (Here ω1,ω2 denote the minimal, respective

maximal sectional osculatory radii at p.) �

Remark 4.2 Since for unbounded surfaces (see Fig. 8) it
may well be that κ → ∞, it follows that an infinite den-
sity of the sampling is possible. However, for practical im-
plementations, where such cases are excluded, we have the
following corollary:

Corollary 4.3 Let �,D be as above. Assume that there ex-
ists k0 > 0, such that k0 ≥ k(p), where for all p ∈ �. Then
there exists a sampling of � having uniformly bounded den-
sity.

Proof The proof is deduced immediately from Theorem 4.1
above. �

Corollary 4.4 In the following cases there exist k0 as in
Corollary 4.3 above:

(1) � is compact.
(2) There exist H1,H2,K1,K2, such that H1 ≤ H(p) ≤ H2

and K1 ≤ K(p) ≤ K2, for any p ∈ �, where H,K de-
note the mean, respective Gauss curvature. (That is both
mean and Gauss curvatures are pinched.)

(3) The Willmore integrand W(p) = H 2(p) − K(p) and K

(or H ) are pinched.

Proof

(1) It follows immediately from a compactness argument
and from the continuity of the principal curvature func-
tions.

(2) Since K = k1k2, H = 1
2 (k1 + k2), the bounds for K and

H imply the desired one for k.
(3) Reasoning analogous to that of (ii), applies in the case

of W = 1
4 (k1 − k2)

2.

This concludes the proof of the theorem. �

Remark 4.5 Condition (iii) on W is not only compact, it has
the additional advantage that the Willmore energy

∫
�

WdA

(where dA represents the area element of �) is a confor-
mal invariant of �. See [38] for its importance in quasi-
conformal mappings and their applications to imaging.

4.1.2 Non-Smooth Surfaces

We begin by proposing the following definition:

Definition 4.6 Let �2 be a (connected) surface of class C1,
and let �2

δ be a smooth δ-approximation to �2. A sampling
of �2

δ is called a δ-sampling of �2.

Theorem 4.7 Let �2 be a connected, non-necessarily com-
pact surface of class C0. Then, for any δ > 0, there exists
a δ-sampling of �2, such that if �2

δ → �2 uniformly, and
Dδ → D in the sense of measures, where Dδ denote the den-
sities of �2

δ and D is the density of the smoothing �̃2 of �2.

Proof The proof is an immediate consequence of Theorem
3.4 and its proof and the methods exposed in Sect. 2.4.
We adopt the sampling of some smooth δ-approximation
of �. �
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Fig. 9 A neighbourhood Nε such that � ≡ �δ outside Nε

Corollary 4.8 Let �2 be a C0 surface having only a
finite number of points {p1, . . . , pk} at which �2 fails
to be smooth. Then every δ-sampling S2

δ of a smooth
δ-approximation S of �2 is, in fact, a sampling of �2, apart
from ε-neighborhoods Ni of the points pi , i = 1, . . . , k.

Proof From Lemma 2.27 and Theorem 2.26 it follows that
any such δ-approximation, �δ , coincides with � outside of
finitely many such small neighborhoods (see Fig. 9). �

Remark 4.9 Even in the case where �2
δ ∈ C2, and curva-

ture measures exist for �2 (e.g. if �2 is a PL-surface), it
does not follow that the curvature measures converge punc-
tually to the curvatures of �2 (see [8] and the discussion
in Sect. 2.3.1). However, if �2 is compact and with empty
boundary, the desired convergence property holds ([8]).

Remark 4.10 We use the secant map as defined in De-
finition 2.17 in order to reproduce a PL-surface as a
δ-approximation for the sampled surface. As said in the be-
ginning of Sect. 2.3 we may now use smoothing in order to
obtain a C∞ approximation.

4.2 Higher Dimensional Manifolds

Theorem 4.1 and Corollary 4.3 have straightforward gener-
alizations to any dimension:

Theorem 4.11 Let �n ⊂ R
n+1, n ≥ 2 be a connected,

not necessarily compact, smooth hypersurface, with finitely
many compact boundary components. Then there exists
a sampling scheme of �n, with a proper density D =
D(p) = D( 1

k(p)
), where k(p) = max{|k1|, . . . , |kn|}, and

where k1, . . . , kn are the principal curvatures of �n, at the
point p ∈ �n.

Corollary 4.12 Let �n,D be as above. If there exists
k0 > 0, such that k(p) ≤ k0, for all p ∈ �n, then there ex-
ists a sampling of �n of finite density everywhere.

Some of the conclusions of Corollary 4.4 also generalize.
In particular we have:

Corollary 4.13 If �n is compact, then there exists a sam-
pling of �n having uniformly bounded density.

Remark 4.14 Obviously, Theorem 4.11 above is of little rel-
evance for the space forms (Rn,S

n,H
n). Indeed, as noted

above, this method is relevant for manifolds considered (by
the Nash embedding theorem [30]) as submanifolds of R

N ,
for some N large enough.

However, more geometric conditions, such as those given
in Corollary 4.4 are hard to impose in higher dimension,
hence the study of such precise geometric constraints is left
for further study.

The definition of δ-samplings and Theorem 4.7 and its
corollary also admit immediate generalizations:

Definition 4.15 Let �n,n ≥ 2 be a (connected) manifold of
class C1, and let �n

δ be a smooth δ-approximation to �n.
A sampling of �n

δ is called a δ-sampling of �n.

Theorem 4.16 Let �n be a connected, non-necessarily
compact manifold of class C1. Then, for any δ > 0, there
exists a δ-sampling of �n, such that if �n

δ → �n uniformly,
and Dδ → D in the sense of measures, where Dδ denote
the densities of �n

δ and D is the density of a smoothing �̃n

of �n.

Corollary 4.17 Let �n be a C0 manifold having only a
finite number of points {p1, . . . , pk} at which �n fails
to be smooth. Then every δ-sampling Sn

δ of a smooth
δ-approximation Sn of � is, in fact, a sampling of �n, apart
from ε-neighborhoods Ni of the points pi , i = 1, . . . , k.

Remark 4.18 For image processing and computer graph-
ics purposes it would be ideal if one could make avail of
smoothing theorems for topological manifolds, and not just
for those of class C1. Unfortunately, such results do not hold,
in general, for manifolds of any dimension (see [28]). How-
ever, in low dimensions, the smoothness condition can be
discarded. Indeed, every PL manifold of dimension n ≤ 4
admits a (unique, for n ≤ 3) smoothing (see [28, 42]), and
every topological manifold of dimension n ≤ 3 admits a PL
structure (cf. [27, 42]). (We have used of some of these facts
in formulating our sampling theorem for non-smooth sur-
faces.)

Remark 4.19 In order to obtain a better approximation it
is advantageous, in this case, to employ Nash’s method for
smoothing, cf. Remark 2.28 (see [4, 30] for details).
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Fig. 10 Sampling of a C2 curve: the sampling rate is ρ = 1/r , where
r is the minimal radius of curvature

5 Applications to Classical Sampling Theory

5.1 1-Dimension: The Classical Shannon Sampling
Theorem

Our approach and formalism lend themselves to the deriva-
tion of a geometric sampling theorem for 1-dimensional sig-
nals. Indeed, one can think of the maximal absolute value of
the second derivative as a sampling rate criterion. We show
that band-limited signals considered in the context of the
classical Shannon-Whittaker theorem require, indeed, a fi-
nite sampling. We first consider only smooth “intuitive” or
“blackboard” signals, i.e. functions S ∈ L2 such that their
graphs are smooth (C2) planar curves (see also discussion in
Sect. 7.1 below).

Definition 5.1 Let S = S(t) be a C2 planar curve parameter-
ized by arc-length and let k(S) denote its maximal absolute
curvature. We will call ρ(S) = k(S)�2 the sampling rate
of S (see Fig. 10)

We begin by giving the one-dimensional version of The-
orem 4.11:

Theorem 5.2 Let S is a C2 planar curve parameterized by
arc-length. Then it can be sampled in sampling rate η(S)

namely, the arc-length distance between each consecutive
samples is ≤ 1�η(S). If S satisfies the condition that ρ(S)

is bounded, then the required sampling rate is finite.

Corollary 5.3 If S(t) is a band-limited “blackboard” sig-
nal, then it necessitates a finite sampling rate (in any finite
time interval) according to η(S).

Proof By Theorem 5.2 above, the proof amounts to show-
ing that the second derivative of band-limited “blackboard”
signals (see Fig. 11) is everywhere bounded.

Fig. 11 A band-limited signal y = f (t)

A Taylor expansion of such signals is given for instance
in [25]. In particular, for a band-limited signal S(t), we have
by Shannon-Whittaker:

S(t) =
∞∑

−∞
S(tn)sinc(2W(t − tn)),

and it is shown that its p-th derivative is given by:

Sp(t) = (2W)p
∞∑

−∞
S(tn)

(
d

dt

)p

sinc(2W(t − tn)).

By Marks and Hall ([25]) we have that:

(
d

dt

)p

sinc(t) =
∫ 1�2

−1�2
(2πif )pe2πif df

= (−1)pp!
πtp+1

[sin(πt) cosp�2(πt)

− cos(πt) sin(p−1)�2(πt)],

where:

cosr (t) =
[r]∑

n=0

(−1)nt2n

(2n)! ;

sinr (t) =
[r]∑

n=0

(−1)nt2n+1

(2n + 1)! .

The above terms have the following asymptotic behavior
from which the boundedness of the second derivative (even
for very large values of t), is evident.

(
d

dt

)p

sinc(t) →
{

(−1)p�2πp(sinc(t)); p even
(−1)(p−1)�2πp(

cos(πt)
πt

); p odd.
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Fig. 12 The triangulation
(upper image, left) obtained
from a “naive” sampling (upper
image, right) resulting from a
CT scan of part of the back-side
of the human colon (bottom
left). Note the “flat” triangles
and the uneven mesh of the
triangulation. This is a result of
the high, concentrated
curvature, as revealed in a view
obtained after a rotation of the
image (bottom right). These and
other images will be accessible
through an interactive applet on
the website [46]. CT-data is in
courtesy of Dr. Doron Fisher
from Rambam Madical Center
in Haifa

From the presentation above we conclude that a band-
limited signal possesses a “geometric” sampling of finite
rate. �

It is important to point out that a similar weaker re-
sult was recently proved by G. Meenakshisundaram ([26]).
Also, yet another theorem similar to Theorem 5.2 appeared
in [34].

Remark 5.4 An approximation approach was already em-
ployed for “classical” sampling theory—see [44].

5.2 2-Dimensions: Images

Perhaps the most direct application of the sampling theorem
for surfaces is to the field of images, via “inpainting” (see,
e.g. [40], p. 280). In this approach, images are viewed as
parametrized surfaces S = (u, v, f (u, v)), where (u, v) ∈ R

– a rectangle of pixels, and f (u, v) ∈ [0,1] represents the
shade of grey associated to the pixel (u, v).

Of course, if more attributes of the image are added, such
as colors, luminosity, etc., then a higher dimensional mani-
fold is obtained, and we may make again a recourse to the
fitting sampling theorem.

In a completely analogous manner one can approach the
problem of image compression (see, e.g. [40], p. 280): here
the samples represent the coarse pixel set and the surface the
fine pixel set.

6 Some Computational Results

In this section we present quantitative estimates, obtained
on some analytic surfaces (see Figs. 13, 14, 15), of the er-
ror caused by two reproducing schemes employed in this
work, namely piecewise-linear reconstruction (see Table 1)
and Nyquist (trigonometric approximation) reconstruction.
Error assessments was estimated in three versions, yielding
similar results:

(1) In the first version, four points where chosen for each
of the triangles: three points on the mid-edges and one
point at the triangle’s barycenter. The error was com-
puted at these points and the maximum over all these
error values was taken.

(2) A larger number of points where chosen for each trian-
gle but the number of triangles was reduced. This was
done by considering only triangles at which maximal
curvature was obtained, where the curvature is assessed
by the normal deviation at the vertices.

(3) The control points where uniformly spread along the
sampling domain. For the Nyquist approximation only
this method was applied.

The error term was computed using L1 norm difference
between the reconstructed surface and its analytic expres-
sion.

As observed in the table, the approximation yielded by
the secant map (PL-reconstruction) is better than the one
obtained by Nyquist reconstruction, giving in general, an er-
ror which is 10 times lesser than the Nyquist reconstruction.
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Fig. 13 The triangulation (a) obtained from the uniform sampling (b) of the surface S = (
x, y,

cos
√

x2+y2

1+
√

x2+y2

)
(c) and smoothing of the triangulation

(d). Note the low density of sampling points in the region of high curvature

Table 1 Error estimates for the secant and Nyquist reconstructions of various surfaces. The error for the secant approximation is in general 10
times less than for Nyquist approximation

Surface Secant Approx. 4-points Secant Max. Curvature Secant Uniform Nyquist Uniform

Hyperbolic Paraboloid 5.0397e−4 2.2894e−4 4.4877e−4 0.0071

Monkey Saddle 0.0012 4.4895e−4 9.1302e−4 0.0071

Sphere 0.0067 0.0045 0.0060 0.0065

One should compare the results above with those obtained
using a “naive” sampling (see Fig. 12).

7 Discussion

7.1 Sampling

Most important, one honestly has to ask himself the follow-
ing question: “What is a signal?”

If the answer to the question above is given in the clas-
sical context, i.e. if a signal is viewed as an element f of

L2(R), such that supp (f̂ ) ⊆ [−π,π], where f̂ denotes the

Fourier transform of f , then our result does not hold. In-

deed, we have the following counterexample:

Counterexample 7.1 There exist band limited signals (as

above) f such that:

(i) f ∈ L2(R), f ′′ ∈ L∞(R);

but

(ii) f ′′ is not bounded.
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Fig. 14 Hyperbolic Paraboloid: Top left—analytic representation, z = xy. Bottom right—sampling according to curvature. Top left—PL recon-
struction. Bottom left—Nyquist reconstruction. To appreciate the triangulation results requires a full size display of color images [46]

Fig. 15 Monkey Saddle: Top left—analytic representation, z = x(x2 − 3y2). Bottom right—sampling according to curvature. Top left—PL recon-
struction. Bottom left—Nyquist reconstruction. To appreciate the triangulation results requires a full size display of color images [46]
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Fig. 16 The surface in R
3 (upper image, right) corresponding to “Lena” (upper image, left). The lower image, on the left, shows the PL surface

obtained using the sampling and geometric methods introduced in this paper. A rotated view (lower image, right) of this PL reconstruction shows
how close even the linear interpolation based upon geometric sampling is to the original image

Therefore, our approach refers to a more “intuitive” or
“blackboard” interpretation of signals. On the other hand,
it is more broad, in the sense that it applies to any at most
countable union of piece-wise smooth (not necessarily pla-
nar) curves, not only for graphs of function. (For a possible
approach to defining curvature at points were a curves fails
to be twice differentiable, see Sect. 7.3.)

7.2 Images as Manifolds

While viewing images as manifolds embedded in higher
dimensional Riemannian manifolds (in particular in some
Euclidean space) (see, e.g. [20, 23, 39, 40]) the com-
mon approach to the problem tends to ignore the intrin-
sic difficulties of the embedding process. In particular,
when considering isometric embeddings, one is constrained
by the necessary high-dimension of the embedding space
(see [4, 18, 30]). This is even more poignant when one
wishes to view images as 2-dimensional smooth surfaces
isometrically embedded in R

3 (or S
3), as in [9, 10]. Indeed,

for such surfaces the Nash-Kuiper-Gromov-Günther algo-
rithm gives embedding dimension 10 for a generic compact
surface (see, e.g. [4, 17, 19]).

However, for gray scale images, i.e. for surfaces S =
(x, y, g(x, y)) ⊂ R

3, where the function g represents the
gray level (luminosity) of the image, one can apply easily
the sampling and reconstruction results proved in Sect. 4.
For some first results in this direction, see Fig. 16 above.

7.3 Simplex Fatness and Future Study

Since the fatness of the triangulation of intMn depends, by
formula (3.6), only on the dimension n of the given man-
ifold, and since by Lemma 3.18, the fatness of the mash
(i.e. common simplicial subdivision) of the triangulations of
∂Mn and intMn is a function solely on the fatness of the
given triangulation (and hence upon the dimension n), it fol-
lows that a lower bound for the fatness of any triangulations
is achieved.

However, since the bound given by formula (3.6) is
achieved via the specific construction of [33], the following
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question arises naturally: Is the lower bound of formula (3.6)
the lowest possible?

The answer to the question above seems to be negative,
since Peltonen’s construction depends upon the specific iso-
metric embedding employed.

More important, the diameters of the simplices obtained
in our construction (i.e. the mesh of the triangulation) are
a function of the curvature radii, hence an extrinsic con-
straint, therefore again strongly dependent upon the specific
embedding in higher dimensional Euclidean space. This fact
immediately generates the following problem: What are the
precise restrictions the Nash embedding technique imposes
upon the curvature radii? The existence of such restrictions
follows from the fact that, in the Nash embedding method,
the curvature of the embedding is controlled. Moreover, in
the smoothing part of the Nash technique, a star finite par-
tition of the embedding, obtained using curvature radii of
an intermediate embedding, is considered (see [4, 30]). (For
further problems related to the quality of the obtained tri-
angulation and its relevance to the theory of quasiregular
mappings, see [37].)

We conclude with the following remarks and suggestions
for further study:

We have obtained in Corollary 4.4 week intrinsic con-
dition for the existence of fat triangulation with mesh
bounded from below. As already noted, one would like to
find such non-extrinsic (i.e. curvature restricting) condi-
tions (perhaps coupled with fitting topological constraints)
in higher dimension, as well. Indeed, in dimensions greater
or equal three, even deciding which curvature (sectional,
Ricci, scalar) is most relevant, represents a highly non-trivial
problem, that we defer for further study.

Another direction of study stems from the need, both in
the classical signal-processing context and in that of mani-
fold sampling, for mashing and sampling methods of geo-
metrical objects that are not even PL, and hence no smooth-
ing techniques can be applied for them. In this general set-
ting, metric curvatures, represent, in our view, the most
promising tool. Indeed, research in this direction is currently
undertaken.
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