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Abstract. The Mumford-Shah functional minimization, and related al-
gorithms for image segmentation, involve a tradeoff between a two-
dimensional image structure and one-dimensional parametric curves
(contours) that surround objects or distinct regions in the image.

We propose an alternative functional that is independent of parame-
terization; it is a geometric functional which is given in terms of the
geometry of surfaces representing the data and image in a feature space.
The Γ -convergence technique is combined with the minimal surface the-
ory in order to yield a global generalization of the Mumford-Shah seg-
mentation functional.

1 Introduction

Let g(x, y) be the intensity of the light signal impinging on a planar image
domain B at a point (x, y). The image g(x, y) is expected to be discontinuous
along the edges of the objects. The definition of the segmentation depends on
whether one approaches the problem at the level of the image as a whole or,
alternatively, considers the image as a collection of edge fragments. In the first
case it is natural to consider the partitioning of the image into smaller structures.
In the second case it becomes more natural to consider the problem of grouping
of elements into larger structures. In both cases, the following questions arise:
(i) What exactly is the goal of the segmentation process? (ii) Is segmentation
feasible? These questions are important for understanding of the above process.
Without a clear conception of the task and its requirements no satisfactory
progress in this area can be made.

The above dichotomy into local vs. global, and related heuristic approaches,
were later circumvented by the variational approach to segmentation, adopted
by us and further developed in this paper.

Morel and Solimini [6] showed that any heuristic segmentation method may be
translated into a variational one. Variational formulations summarize all criteria
concerning a set of edges K in a single real-valued functional F (K), i.e. to any
set of edges or ”segmentation” K is associated a value F (K) which states how
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”good” the segmentation is. F is defined in such a way that F (K) is better the
lower it is. This fact lends itself to an obvious comparison principle: given two
segmentations, it must determine which is better. In other words, a variational
method implicitly orders all segmentations. Any order can be quantified by F (K)
such that F (K) > F (K

′
) if K

′
is better than K.

The present study merges the Γ -convergence technique (see [9]) and the mini-
mal surface theory (see [3]) to yield a global generalization of the Mumford-Shah
segmentation functional. We then apply the functional model to segmentation
and inpainting problems. Proofs of theorems, propositions and lemmas are pre-
sented elsewhere [5].

2 Measure-Based Metric Function

Mumford and Shah [7] proposed the functional

FMS(u, K) =
∫

B\K

|∇u|2 + |K| + α

∫

B

|u − g|2, (1)

where K ⊂ B is a one dimensional set which represents the edges, and |K| is
the length of this set (understood as the one-dimensional Hausdorff measure of
K). A minimizer {K, u} of FMS thus produces the required image u as well as
the edges K.

We propose an alternative functional which is independent of parameteriza-
tion, i.e a geometric functional which may be given in terms of the geometry of
surfaces representing the data and image in the feature space. Considering the
image u as a two-dimensional surface, we shall replace the first two terms of (1)
by the area of this surface. This allows sharp discontinuities (edges) of the image
in the form of surface folding. This idea is not new (see, e.g, [11]). However, to
make the third term of (1) fit the geometrical description, we must replace it by
another metric D(g, u) representing the distance between the two surfaces. Note
that the last term connects locally the image u(b) for each b ∈ B to the data g at
the same point b. It implicitly assumes that there is a one-to-one correspondence
between points of the data to points of the image.

The proposed modified functional allows us to replace the deterministic data
g by a random one. For this we replace g(b) by a measure μb(dy)db, where y
is a parameterization of the feature fiber. Further, to different pixels there may

correspond different amount of data, so
∫

μb(dy)db ≤ 1 for each pixel b where

strong inequality and even zero value may not be excluded for some of the pixels.
Our objective is, essentially, to define a metric D(μ, U).

Let us define first the feature space. Let Y be a set representing the possi-
ble data at a single pixel b ∈ B. It may be considered as a real number (the
brightness) or a vector (if several color channels are present or, for example, a
Gabor-wavelet filter). We shall assume here that Y = IRm. The feature space is,
then, defined as the cylinder E := B ×Y ⊂ IRm+2. The data g is represented as
a measure μ supported in E.
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To define an image u, let us consider the two-dimensional unit disc S : {|s| <
1} diffeomorphic to B. We represent the image as a mapping U : S → E such
that U(∂S) ⊂ C := ∂B × Y is projected onto ∂B. Coordinates in the feature
space are described by z := {b, y}.

The feature space E is endowed with a metric

dz2 = γdb2 + dy2 :=
m+2∑
i,j=1

hi,jdzidzj ,

where db2 = db2
1 + db2

2, dy2 =
m∑

i=1

dy2
i are the Euclidean metric in IR2 and IRm,

respectively, while γ > 0 represents the relation between the geometric (pixel-
domain) and feature metrics. With this setting, the embedding U(S) into E is
endowed with the induced metric

Γi,j(U) = UT
si

hUsj for i, j = 1, 2.

Setting |Γ (U)| :=
∣∣Γ1,1(U)Γ2,2(U) − Γ 2

1,2(U)
∣∣1/2, the surface area of U(S) is

A(U) =
∫

S

|Γ (U)(s)|ds. (2)

Let us replace the first two terms of (1) by (2), and the last term by a distance
between the embedded surface U(S) and the data measure μ:

F (U) = A(U) + αD2(μ, U). (3)

By our convention, the distance D should only depend on the image U(S) and
not on a particular parameterization. With this assumption, we replace A(U) by
the quadratic form

Ã(U) =
1
2

∫

S

Tr
(
∇U(s)T h∇U(s)

)
ds, (4)

where Tr(·) is a trace of a given matrix. Note that

Ã(U) ≥ A(U), (5)

which reduces to an equality if the parameterization of U is conformal,

Γ1,1(U) = Γ2,2(U), Γ1,2(U) = Γ2,1(U) = 0.

We replace F (U) by
F̃ (U) = Ã(U) + αD2(μ, U) (6)

and obtain by (5)
F̃ (U) ≥ F (U),

and equality if the embedded U is a conformal mapping from S to E.
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For parametric representation of an image used in this section we cannot
exclude the possibility that the optimal image is folded over the pixel space B.
If this is the case, then some pixels of the image over B may have multiple values.

Our first object is to define a distance between two positive measures μ and
ν supported in E, where ν represents the image and μ the data. Let

d(A, B) =
√

sup
v∈B

inf
u∈A

|u − v|2

and
D(μ, ν) = d(supp(μ), supp(ν)). (7)

Lemma 1. For fixed, compactly supported μ in E, D(μ, ν) is lower semi-
continuous with respect to ν under the topology of weak C∗ convergence.

We now replace the measure ν by a mapping U . Let l be a measure on the
parameter space S (say, the uniform Lebesgue measure). We denote the measure
ν associated with an embedding U ∈ IH1(S, E) by νU and define it by the
pullback νU (σ) = l

(
U−1(σ ∩ U(S))

)
for every Borel measurable set σ ⊂ E. In

terms of its action on a test function φ ∈ C0(E) the above measure is defined in
the following way:

〈νU , φ〉 =
∫

S

φ(U(s))ds. (8)

We conclude that (8) extends to any U ∈ IH1(S, E) and define

D(μ, U) := D(μ, νU ).

From Lemma 1 we obtain:

Lemma 2. The metric D(μ, U) is weakly lower semi-continuous with respect to
U in the IH1 topology.

We consider now the existence of the minimizer of functional F̃ . Let U : S → E
be written in the form U := {UB, UY} where UB : S → B and UY : S → Y.
Consider the functional (6) written as:

F̃ (UB, UY) =
1
2

∫

S

[
γT r

(
∇UB(s)T ∇UB(s)

)

+Tr
(
∇UY(s)T ∇UY(s)

)]
ds + αD2(μ, U).

This representation allows us to define the domain of UY as IH1(S,Y) without
any boundary condition:

DOMY := {UY ∈ IH1(S,Y)}.

The mapping UB, on the other hand, must map S onto B such that UB|CS :
CS → CB := ∂B is a homeomorphism (CS := ∂S is the ”frame” of the image).
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This corresponds to treating UB as in a Plateau problem with non-free bound-
ary condition. Following the common wisdom, we need the technical 3-point
condition (see [3], p. 235) and set:

DOMB :=
{UB ∈ IH1(S, B) ∩ C0 (CS , CB) |UB|CS : CS → CB is a
homeomorphism such that U B(si) = ζi for i = 1 , 2 , 3 ,

where s1, s2, s3 are three distinct points on CS , while ζ1, ζ2, ζ3

are three distinct points on CB with the same ordering}

Theorem 1. If μ has a compact support in E then a minimizer of F̃ is attained
in the domain DOM := DOMB × DOMY. Moreover, any minimizer U is a
minimizer of F (3) as well.

We use a powerful approach that has appeared in the mathematical theory of
approximation of functionals via Γ -convergence. The idea is to approximate the
functional (6) with the lack of regularity (due to the metric term D(μ, U)) by
a series of different, parameter dependent functionals, that are expected to be
more regular. In addition, we expect from convergence of functionals to imply
the convergence of minimizers.

Given β > 0, set

Dβ(μ, ν) =

√√√√√√√√√
β ln

⎡
⎢⎢⎢⎢⎣
∫

E

ν(dv)∫

E

e−|u−v|2/βμ(du)

⎤
⎥⎥⎥⎥⎦.

Lemma 3. D(μ, ·) is the Γ−limit of Dβ(μ, ·) as β → 0 from above, if considered
as a functional of the second argument. That is:

lim
β→0;β>0

Dβ(μ, ν) = D(μ, ν),

lim inf
n→∞ Dβn(μ, νn) ≥ D(μ, ν),

where βn → 0 from above and νn ⇀ ν in C∗.

We introduce now an implementation of the relaxed distance function Dβ and
define a corresponding version of the metric Dβ(μ, U), U ∈ IH1(S, E). This en-
ables us to introduce the relaxation of F̃ (6) by

F̃β(U) =
1
2

∫

S

Tr
(
∇U(s)T h∇U(s)

)
ds + αD2

β(μ, U). (9)
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We set the β−distance between a mapping U : S → E to a measure μ as

Dβ(μ, U) := Dβ (μ, νU ) =

√√√√√√√√√
β ln

⎡
⎢⎢⎢⎢⎣
∫

S

ds∫

E

e−|U(s)−z|2/βμ(dz)

⎤
⎥⎥⎥⎥⎦. (10)

Thus

D2
β(μ, U) = β ln

⎡
⎣
∫

S

Ξβ(U)(s)ds

⎤
⎦ ,

where
Ξβ(U)(s) =

1∫

E

e−|U(s)−z|2/βμ(dz)
.

From Lemma 3 we obtain:

Corollary 1. D(μ, ·) is the Γ−limit of Dβ(μ, ·) as β → 0 from above.

Eventually, we obtain:

Theorem 2. For any β > 0, the functional (9) attains a minimizer Uβ ∈
DOM. The sequence of minimizers {Uβ} is bounded in IH1(S, E). Any weak
limit U in IH1, s.t.

Uβ
β→0
⇀ U ∈ DOM,

is a minimizer of F (3) and F̃ , and is a conformal embedding of S into E.

The functional F̃β equipped with the relaxed distance Dβ is not parameter inde-
pendent, and its minimizers are not conformal mappings. However, it converges
to parameter independent functional F̃ as β → 0.

3 Non-parametric Representation

The parametric model is presented in [5]. We therefore proceed to present the
non-parametric representation. Let consider a non-parametric representation of
the image U . Here we identify S with B and set UB as identity map. Thus, the
image is given in terms of a graph UY := f : B → Y. Considering the image
U in terms of a graph of function f does not allow existence of edges in form
of the surface folding. In case of non-parametric formulation we cannot use the
majorant area functional Ã(U) as defined in (4). The area functional is then
given as in (2):

A(U) =
∫

S

|Γ (U)(s)|ds =
∫

B

√
γ2 + γ|∇f |2db.
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We also separate the scale γ into γ1 for the area term and γ2 for the metric. In
order to unify the limits γ1 → 0 and γ1 → ∞ we normalize the area term by
1 +

√
γ1√

γ1
. Thus, the corresponding functional is

Fβ
γ1,γ2

(f) = (1 +
√

γ1)
∫

B

√
γ1 + |∇f |2db + αD2

β,γ2
(μ, f).

We define now the relaxed metric term Dβ,γ2(μ, f). For non-parametric formu-
lation we represent the data μ(dz) as μb(dy)db. Under the above assumption,
the parameter dependent metric (10) attributes the measure db to the image f ,
and it is written as

D2
β,γ2

(μ, f) = β ln

⎡
⎣
∫

B

Ψf
β,γ2

(b)db

⎤
⎦ ,

where
Ψf

β,γ2
(b) =

1∫

Y

∫

B

e−[|f(b)−y|2+γ2|b−b′|2]/βdb′μb′(dy)
. (11)

In addition, the following analysis is performed for deterministic data, thus
Ψf

β,γ2
(b) in (11) is given as

Ψf
β,γ2

(b) =
1∫

B

e−[|f(b)−g(b′)|2+γ2|b−b′|2]/βdb′
. (12)

Finally, the corresponding functional is:

Fβ
γ1,γ2

(f) = (1 +
√

γ1)
∫

B

√
γ1 + |∇f |2db + αβ ln

⎡
⎣
∫

B

Ψf
β,γ2

(b)db

⎤
⎦ , (13)

where Ψf
β,γ2

(b) is given as in (12). Its minimum is the function f which solves
the boundary value problem

− div

(
(1 +

√
γ1)∇f√

γ1 + |∇f |2

)
+

2αΨf
β,γ2

(b)∫

B

Ψf
β,γ2

(b)db
f

−
2α

(
Ψf

β,γ2
(b)

)2

∫

B

Ψf
β,γ2

(b)db

∫

B

g(b′)e−[|f(b)−g(b′)|2+γ2|b−b′|2]/βdb′ = 0 (14)

with Neumann boundary condition
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∂f

∂n
= 0 on ∂B. (15)

Note that the function G(b) =
(1 +

√
γ1)√

γ1 + |∇f |2
in the first term of the left-hand

part of (14) may be considered as edge indicator (penalty) function.
Consider now the M × N image (M rows and N columns). Let B ⊂ IR2

be its domain and g(b), b ∈ B denote its graph. We assume that its desired
segmentation is the minimum of relaxed functional (13). We search for a weak
solution of the Euler-Lagrange equation (14)-(15).

Due to the robustness and simplicity of implementation of the fixed point
algorithm [12], we apply it to solve (14)-(15) in this work. The solution, which is
the grey-level image, is the desired segmentation. In order to present the results
in a pleasant way, the segmentation contour should be obtained. To achieve
this, we threshold the accepted segmentation image by using Otsu’s method [8].
Finally, Canny edge detector [2] is applied to the binary image, and achieved
segmentation contour is applied to the original image g.

In this section we are going to point out the influence of parameters β, α, γ1, γ2
on the segmentations results. To demonstrate the performance of the proposed
method, we used various textured images [5]. Two examples are illustrated here
(Fig. 1). We recall that β is the convergence parameter and the minimizer of the

TUMOR 

Fig. 1. Leopard (upper row) and ultrasound (lower row) image segmentation us-
ing the proposed method. Original images (left), algorithm outputs (middle), out-
lined segmented images (right). Parameters: α = 185 (leopard), 50 (ultrasound),
β = 0.1, γ1 = 0, γ2 = ∞.
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original (the limit) functional is achieved when β → 0. We also note that the
limit β → 0 of (13) yields

F0
γ1,γ1

(f) = (1 +
√

γ1)
∫

B

√
γ1 + |∇f |2db + α sup

b∈B
inf

b′∈B

[
|f(b) − g(b′)|2

+γ2|b − b′|2
]
,

which is the original functional for deterministic images. Thus, for our calcula-
tions, β is taken sufficiently small. The parameter α, as in case of Mumford-Shah
functional, measures the trade-off between a good fit of the solution f to data g
and the regularity of the solution f .

We define now two limiting cases for the functional (13): Fβ
0,γ2

(f) and
Fβ

∞,γ2
(f), when γ1 → 0 and γ1 → ∞, respectively. As γ1 tends to 0, one can

obtain

Fβ
0,γ2

(f) = TV (f) + αβ ln

⎡
⎣

∫

B

Ψf
β,γ2

(b)db

⎤
⎦ ,

where TV (f) ≡
∫

B

|∇f |db is the Total Variation (TV) norm, originally intro-

duced by Rudin et. al. in [10]. On the other hand, γ1 → ∞ yields

Fβ
∞,γ2

(f) ≈ H1(f) + αβ ln

⎡
⎣

∫

B

Ψf
β,γ2

(b)db

⎤
⎦

up to the constant, where H1(f) ≡
∫

B

|∇f |2db is Sobolev space norm. We note

that the TV norm allows discontinuities in f , thus making it superior to the
H1 regularization in cases where f can have sharp edges. As is shown above,
the parameter γ1 being defined as representing the scale difference between pixel
domain and feature fiber, also determines the kind of regularization for function
f , defining the various regularization norms.

The role of parameter γ2, which similarly to parameter γ1 being defined as
representing the scale difference between pixel domain and feature fiber, is com-
pletely different. Here the case of interest is the limit γ2 → ∞. It is easily verified
that, as γ2 → ∞,

lim
γ2→∞Ψf

β,γ2
(b) = C

γ2

β
· e|f(b)−g(b)|2/β ,

where C stands for a generic constant. Thus, the limit γ2 → ∞ yields

Fβ
γ1,∞(f) = lim

γ2→∞Fβ
γ1,γ2

(f) ≈ (1 +
√

γ1)
∫

B

√
γ1 + |∇f |2db

+ αβ ln

⎡
⎣
∫

B

e|f(b)−g(b)|2/βdb

⎤
⎦ − αβ ln β (16)
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up to the constant multiplied by β. Finally, we note that the limit β → 0 of (16)
yields

F0
γ1,∞(f) = (1 +

√
γ1)

∫

B

√
γ1 + |∇f |2db + α sup

b∈B
|f(b) − g(b)|2.

The parameter γ2 determines the local neighborhood of the pixel b, which gives
the valuable contribution to the final segmentation.

4 Digital Image Inpainting

The same functional approach is now applied to the problem of inpainting. As
in [1], it does not require any user intervention, once the region to be inpainted
has been selected. Consider the 2D discrete grey level image g, being defined on
the domain B \D, where D is the region to be inpainted. Our functional for the
two-dimensional image in the non-parametric case accepts the following form:

Fγ1,γ2(f) = (1 +
√

γ1)
∫

B

√
γ1 + |∇f |2db + α sup

b∈B
inf

b′∈B

[
|f(b) − g(b′)|2

+γ2|b − b′|2
]
. (17)

Let f be a desired inpainting of the image g on the region D, be defined on
the entire domain B. We assume that it should be a minimum of the functional
(17). Actually, for the inpainting task the above functional is not applicable: let
denote

Qg
γ2

(b) = inf
b′∈B

[
|f(b) − g(b′)|2 + γ2|b − b′|2

]
.

We claim that, if g is defined everywhere on B, then

lim
γ2→∞Qg

γ2
(b) = |f(b) − g(b)|2.

If g is not defined in an open set D, then Qg
γ2

(b) is replaced by

Qg
γ2

(b) = inf
b′∈B\D

[
|f(b) − g(b′)|2 + γ2|b − b′|2

]

and
lim

γ2→∞ Qg
γ2

(b) = ∞ for b ∈ D.

Thus, we replace Qg
γ2

(b) by

Q̃g
γ2

(b) = Qg
γ2

(b) − γ2Dis2(b, B \ D),

where Dis(b, B\D) is the minimal distance between b and B\D, and the desired
functional is

Fγ1,γ2(f) = (1 +
√

γ1)
∫
B

√
γ1 + |∇f |2db

+α ess sup
b∈B

inf
b′∈B\D

[
|f(b) − g(b′)|2 + γ2(|b − b′|2 − Dis2(b, B \ D))

]
.

(18)
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Let now consider the limit γ2 → ∞. We define

g̃(b) :=
{

g(b), b ∈ B \ D
g(y0(b)), b ∈ D

,

where y0(b) ∈ ∂D is defined by

|y0(b) − b| ≤ |y − b|, ∀y ∈ B \ D.

Note that y0(b) and thus, g̃(b) are not defined unambiguously on D. According to
its definition, the skeleton of D is of zero Lebesgue measure. This fact explains
the change from supremum to essential supremum in the definition of metric
term of (18). It is also obvious that

lim
γ2→∞Qg̃

γ2
(b) = |f(b) − g̃(b)|2

for almost any b. Thus, the functional (18) has a limit as γ2 → ∞, that is

lim
γ2→∞Fγ1,γ2(f) = (1 +

√
γ1)

∫

B

√
γ1 + |∇f |2db + α ess sup

b∈B
|f(b) − g̃(b)|2.

As in case of image segmentation model, we approximate the functional (18)
by relaxed functional with parameter dependent metric using Γ -convergence
technique. The desired relaxed functional is

Fβ
γ1,γ2

(f) = (1 +
√

γ1)
∫

B

√
γ1 + |∇f |2db + αβ ln

⎡
⎣
∫

B

Ψf
β,γ2

(b)db

⎤
⎦ , (19)

where
Ψf

β,γ2
(b) =

1∫

B\D

e−[|f(b)−g(b′)|2+γ2(|b−b′|2−Dis2(b,B\D))]/βdb′
.

In the same manner, we set the Euler-Lagrange equation of the functional (19)
to be

− div

(
(1 +

√
γ1)∇f√

γ1 + |∇f |2

)
+

2αΨf
β,γ2

(b)∫

B

Ψf
β,γ2

(b)db

f(b)

−
2α

(
Ψf

β,γ2
(b)

)2

∫

B

Ψf
β,γ2

(b)db

∫

B\D

g(b′)e−[|f(b)−g(b′)|2+γ2(|b−b′|2−Dis2(b,B\D))]/βdb′ = 0

with natural boundary condition

∂f

∂n

∣∣∣∣
∂B

= 0.

Fig. 2 shows the results of inpainting a natural image for various γ2. The user
only supplied the “mask” image, using paintbrush-like program. The basic idea
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Fig. 2. Output results of inpainting algorithm for real-life image: α = 100000, γ1 = 0;
from left to right: original image, ”masked” image, reconstructed image with β =
0.07, γ2 = 10, reconstructed image with β = 0.1, γ2 = 100

is to complete the “masked” region according to minimized modified Hausdorff
metric between the corrupted image and its reconstruction.

5 Discussion and Conclusions

The present study is a step towards the development of a general framework that
can deal with segmentation problems in the context of multi-channel images. The
main novelty of this study is the replacement of the metric term of Mumford-
Shah functional by a metric based on Hausdorff distance function. This may be
useful in cases of defocusing and of mapping problems. The proposed change
allows us to replace the deterministic data by a random one and include also the
case of missing data (inpainting).

Since the new metric term, and thus the functional, suffered from lack of reg-
ularity, we utilized an approach adopted from mathematical theory of approx-
imation of functionals via Γ -convergence to overcome this deficiency. However,
we should point out that the developed relaxed functional demands extensive
computational effort to obtain its minimum. This is the main drawback of our
algorithm. An optional solution to this problem is to apply a multi-resolution
analysis, by performing the relative computations on higher levels of a Gaussian
pyramid and thereby reduce significantly the amount of required computations.
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