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Existence Conditions for Discrete Noncanonical
Multiwindow Gabor Schemes

Nagesh K. Subbanna and Yehoshua Y. Zeevi

Abstract—A class of noncanonical duals for multiwindow Gabor (MWG)
schemes, encompassing both rational and integer oversampling of the Ga-
borian combined time-frequency space, is considered. Using properties of
Gabor frame matrices (GFM), block discrete Fourier transforms (BDFTs),
and results from number theory, we use matrix factorization to establish
existence conditions for noncanonical duals for both integer and rational
oversampling rates, in the signal domain. For comparison and complete-
ness of the results, we also obtain the equivalent results in the finite Zak
transform (FZT) domain.

Index Terms—Block circulant matrices, frames, multiwindow Gabor
transforms, Zak transforms.

I. INTRODUCTION

Multiwindow Gabor (MWG) expansion combines the advantages of
localization in the combined time-frequency space, characteristic of the
classical Gabor scheme, and scale–space properties inherent in wavelet
representations. MWG expansions of signals (and images) find many
applications in the fields of signal and image processing, computer vi-
sion, and recently in macromolecular sequence analysis.

Zibulski and Zeevi introduced MWG expansions in 1997 [1] and ex-
tended the concept to the finite, discrete-time case [2]. The coefficients
of the MWG expansion are given by the projection of the finite signal
f 2 CL onto the combined space

cr;m;n =

L�1

k=0

f [k]gr[k � na]e�j2�mbk=L (1)

where gr[k], r 2 0; . . . ; R � 1 are the window functions, and a and
b are the combined space sampling intervals along the time and fre-
quency axes, respectively, defining the discrete data lattice.

Given the coefficients cr;m;n, the analysis windows gr[k], and the
lattice constants a and b, one can reconstruct the signal f [k] from the
coefficients. We assume here, as in [3], that L is divisible by both a and
b. The reconstruction of the signal f [k] is given by [2]

f [k] =

R�1

r=0

b�1

m=0

a�1

n=0

cr;m;nr[k � na]ej2�mbk=L (2)

where fr[k]g are the dual windows, and a = L=a 2 IN and b =
L=b 2 IN are the number of sampling intervals along the time and
frequency axes, respectively.

In vector form, (1) can be written as

c = G
�

f (3)
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where c is the vector of coefficients, and G is the Gabor matrix

G =

g0;0;0[0] . . . gR�1;a�1;b�1[0]

g0;0;0[1] . . . gR�1;a�1;b�1[1]

...
. . .

...
g0;0;0[L� 1] . . . gR�1;a�1;b�1[L� 1]

(4)

with gr;m;n[k] = gr[k � na]ej2�mbk=L. The reconstruction, inverse
of (1), has the following vector form version of (2):

f = ���c (5)

where ��� is the dual of the Gabor matrix.
It was established in [2] that Rab � L is a necessary condition

for complete reconstruction in the case of MWG expansions. In the
case of critical sampling and a single window, the reconstruction is
unstable according to the Balian–Low theorem [4]. This theorem ex-
tends to well-behaved multiwindows [1]. We, therefore, consider only
the oversampling case where Rab > L, which implies that the func-
tions gr;m;n[k] are linearly dependent and the representation is over-
complete.

As the representation is overcomplete, there exists an infinite
number of possible duals r[k]. The canonical solution identifies
the minimum norm dual of the set of generalized Gabor elementary
functions gr;m;n[k] using [3]

~r[k] = (GG�)�1gr[k]: (6)

An attempt was made in [5] to find duals efficiently for various types
of sampling, and yet retain the pseudoinverse. However, it is often ad-
vantageous to choose a different dual from a wider set of duals, as is
shown in Section IV. Here, we extend noncanonical duals introduced
in [6], and applied to single window Gabor expansions in [7], to MWG
expansions.

Noncanonical duals [6] are given by

dr[k] = dr[k � na]ej2�mbk=L = (HG�)�1hr[k] (7)

where H is another Gabor matrix of the same form as G such that
HG

� is invertible. We obtain existence conditions for noncanonical
MWG frames, in the general context, and in integer and rational1 over-
sampling cases. For comparison, we provide the equivalent results in
the finite Zak transform domain and discuss some advantages of non-
canonical duals.

We first discuss three properties of the discrete Gabor frame matrix
(GFM) that are utilized in deriving existence conditions. Then, we con-
sider the factorization of the frame-type matrix and generate an easy
method to evaluate the existence conditions. These are discussed in the
context of the finite Zak transform (FZT) domain. Finally, Examples of
noncanonical duals are provided and their advantages are discussed.

II. THREE USEFUL PROPERTIES OF THE FRAME-TYPE MATRIX

Condition for existence of the dual frame is equivalent to the invert-
ibility of the GFM P = HG

� [7]. In [3], it was shown that the matrix
P = HG

� is a block circulant matrix of the form depicted in Fig. 1.
1) Block-Circulant Structure of Matrix P: P is a block circulant

matrix having a � 1 blocks of size a � a [3].

1We refer to “rational oversampling” to distinguish the case where b=a is
a rational number from the one where it is an integer. There is no irrational
sampling in discrete case.
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Fig. 1. Nonzero elements are b apart and a periodic, appearing along the diag-
onals, thereby indicating the (left) banded and (right) block circulant structures.

Fig. 2. Block discrete Fourier transform of a matrix having a� a blocks.

2) Frame-Matrix Banded Structure: The only nonzero entries in
the frame matrix P are along the main diagonal and the bth sub-
diagonals [3], as shown in Fig. 1. Each block Bk;l is a diagonal
matrix of size b � b.

3) Block Discrete Fourier Transform (BDFT) (see Fig. 2): The
BDFT of the block circulant matrix P = C(A0; A1; . . . ; Aa�1)
is given by FP = C(Â0; Â1; . . . ; Âa�1) [8], where C stands
for circulation of the blocks in the block circulant matrix P, and

Âq =

a�1

p=0

!pqAp; 0 � q � a� 1 (8)

where ! = e�j2�=a.
Using block-circulant properties of frameP leads to the following con-
dition of invertibility.

Lemma 2.1 [8]: The matrixP is invertible if and only if all the a�a
blocks of the BDFT of P are invertible individually.

III. EXISTENCE CONDITIONS

Using the condition defined by Lemma 2.1, and the property of the
banded structure of the GFM [3], we obtain a stronger (and more easily
verifiable) condition on the invertibility of the matrix P. The a � a
BDFT submatrices have a very definite structure. The structure is given
by the following theorem.

Theorem 3.1: Let the greatest common divisor (gcd) of (a; b) be
equal to �. Then, the nonzero elements in each row of the BDFT of the
matrix P are � entries apart.

Proof: Consider the first block a � L of the matrix P, which
we use in the generation of the block-circulant Fourier matrix. It is
apparent that structurally (i.e., the position of zeroes and nonzero ele-
ments), the subsequent rows are simply the first row shifted rightward
by the appropriate distance from the first row. Thus, we find the block
Fourier transform of this row considering only the first row in the block
circulant matrix P.

In the first row, we have the nonzero elements at positions
0; b; . . . ; b(b � 1). We add the corresponding elements of the

Fig. 3. (Top-Left) The a � a matrices have nonzero elements � apart in the
rational case. (Top-Right) The matrices can be block-diagonalized as shown.
(Bottom) In the integer case, the a� a blocks fit perfectly into the larger b� b

blocks. Therefore, the a� a blocks become diagonal matrices.

a � a matrices after the multiplication with the appropriate phase
e�j2�mk=L, where m; k 2 0; . . . ; a � 1.

The elements of the first row of the a � a matrix can be indexed
by �a + � , where � 2 0; . . . ; a � 1, � 2 0; . . . ; a � 1. The nonzero
elements are situated at �b, where � 2 0; . . . ; b�1. Nonzero elements
will occur when � + �a = �b, for some � 2 0; . . . ; a � 1 and � 2
0; . . . ; b � 1, but from Euclid’s algorithm, we know that the smallest
positive number is � = gcd(a; b). Therefore, � cannot be less than �.
Thus, the nonzero elements of the block Fourier matrix of P have to
be at least � apart.

It was shown in [9] and [10] that utilizing perfect shuffle matrices of
the form

V�;a = C� 10;1�; . . . ;1(q�1)� (9)

where �q = a and 1s is a column vector of length a having a 1 at
row s and zeroes elsewhere, and C� denotes � times successive cir-
cular shifting of the entire block structured matrix, performed by down-
shifting columnwise. The a� a blocks of matrix F(P) can be factor-
ized to block diagonal matrices of size a=� � a=� (as shown in Fig.
3).

Theorem 3.2 [10]: An a�a matrix that has nonzero elements on the
principal diagonal, and at a distance of k�, k 2 1; . . . ; (a=�)�1 from
the diagonal, can be factorized into � block-diagonal matrices of size
a=� � a=� using a perfect shuffle matrix V�;a. The block-diagonal
matrixW is created using the formula

W = V�

�;a
~AsV�;a (10)

where ~As is the sth block of the BDFT of the matrix P.
In the worst case of � = 1, we have, of course, identical condition

and matrix structure as in the previous problem, i.e., showing that an
a � a matrix has to be invertible. We can show that the � matrices of
size a=�� a=� are invertible in place of showing that an a� a matrix
is invertible, lending itself to a simplification of the complexity of the
problem.
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The present technique presents also a more general framework and
insight into the invertibility of GFMs in the case of integer oversam-
pling [7]. In the latter case, we have b divisible by a, and thus the
gcd(b; a) is a. In other words, the nonzero elements in the BDFT of
P are a entries apart. This is tantamount to saying that the a� a block
matrices of F(P) are diagonal. This leads to the condition of invert-
ibility ofP of having no zeroes on the ath subdiagonals of F(P). Set-
ting p = 1 in Theorem 3.1 and expanding the matrix elements leads to
the following formulation.

Corollary 3.3: For the matrixP to be invertible in the integer over-
sampling case, the following condition must be satisfied:b�1

q=0

a�1

v=0

R�1

r=0

hr[u]; gr[u+qb]ej2�vu=a ej2�sq=bej2�vk=a 6=0

(11)
for any k, s 2 0; . . . ; b � 1.

Based on Corollary 3.3, and recognizing that b is divisible by a,
we can develop an alternative condition that explicitly permits certain
types of functions to generate frames for CL.

Corollary 3.4: A sufficient condition for the invertibility of HG�

is that the sequences gr[k � na � qb], q 2 0; . . . ; b � 1 be positive2

(or negative) definite, when hr[k] are all of the same sign.
Proof: Writing the elements of the BDFT of the matrix P =

HG�, recognizing that b is divisible by a and rearranging the terms
of the summation easily leads to the result.

Corollary 3.4 can be seen as the more general version of the result
proved in [11].

A. Zak Transform Domain Results

The FZT of a function f 2 CL denoted by Zb is defined as the

mapping Zb : C
L ! Cb � Cb, given by the equation [12]

(Zb)(r; v) =

b�1

k=0

f(r � bk)e (12)

where b 2 IN is a fixed parameter, and bb = L. Let ab=L = p=q,
where p and q are mutually prime. Based on the definition of FZT, we
adopt the approach presented in [13] and define a piecewise finite Zak
transform (PFZT) as a vector-valued function of size p, as follows:

F(r; v) = [F0(r; v); . . . ; Fp�1(r; v)]
T (13)

where

Fl(r; v)
�
= (Zf) r; v + l

b

p
; 0; . . . ; p� 1: (14)

It is important to note that inner products are preserved in the PFZT
domain.

Using these results, we can define the action of the frame operator
in the Zak transform domain by [13]

(PF)(r; v) = P(r; v)F(r; v) (15)

where both P and F are the PFZTs of the frame operator P and of f ,
respectively. The elements of the p� p matrix, constituting Pk;l(r; v)
of the PFZT of P , are given by

b

p

R�1

r=0

q�1

s=0

(Zhr)(� � sa; v+ kb=p)(Zgr)
�(� � na; v+ lb=p) (16)

and (Zgr)
�(�; v) is given by (12).

Based on the results presented in [13], we now derive the condition
for the existence of the Gabor frame in the general case.

2Positive-definite sequences are those sequences whose DFT is real and
positive.

Fig. 4. (Top-Left) Structure of the Zak transform. Here, w stands for e .
(Top-Right) The zeroes of the Zak transform of a well-behaved window func-
tion, where there is exactly one zero, at position (4,4), and (bottom) the graph of
the Zak transform of an ill-behaved window function, where there are no zeroes
(the smallest value is 0.28, at (3,4)).

Theorem 3.5: Given that g, h 2 l2( L), ab � L, and a matrix-
valued function Pk;l(�; v) given in (16), the matrix HG� constitutes
a frame operator if and only if det(P)(�; v) 6= 0 for all �; v, � 2
0; . . . ; b, v 2 bb=p.

It is instructive to examine the equivalence of results obtained in
the Zak transform domain and by utilizing the block-circulant matrix
methods. For the case of critical sampling, we have the interesting re-
sults that each of theP(s; v) turns into a scalar-valued function and that
each of theP(s; v) should be nonzero for all values of s; v—paralleling
the result in the canonical dual case. This yields the invertibility con-
dition for the critical sampling case.

A similar result is obtained for integer oversampling, p = 1. There-
fore, (16) becomes
P(s; v) = b

R�1

r=0

q�1

w=0

(Zhr)(s� wa; v)(Zgr)
�(s� wa; v): (17)

As long as (17) is not equal to zero, we have a simple way of deter-
mining the invertibility of the frame operators. In particular, (17) can
be shown to be very similar to (11) [14].

There are some other interesting parallels between the computation
of the dual frame using the Zak transform and the BDFT. In particular,
both depend on the oversampling rate, ab=L = p=q and require the
p � p matrices to be inverted. The approach based on Zak transforms
provides a more general framework with a rich theory (and it is appli-
cable even to continuous domain results). Further, the Zak transform is
very helpful in determining the suitability of window functions to con-
stitute frames since the zeroes of the Zak transform provide insight into
the properties of the window function (as illustrated in Fig. 4). This is
very important in the case of noncanonical frames since two dissimilar
windows are being used to generate the frame. The BDFT method is
limited, however, to discrete signals.

IV. RESULTS AND DISCUSSION

The technique used to invert the MWG frame operators is similar to
the one used for the single window Gabor frame operators. In [7], the
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Fig. 5. Canonical dual for the multiple Gaussian windows with lattice constants
(a = 2, b = 4, � g = � h = 2, � g = � h = 16, L = 128).

Fig. 6. Noncanonical dual for the multiple Gaussian windows with lattice con-
stants (a = 2, b = 4, � g = 2, � h = 4, � g = 8, � h = 16, L = 128).

authors established an efficient technique to invert the Gabor frame op-
erators in case of integer oversampling. In the present correspondence,
we have a technique that allows us to simplify the problem of matrix
inversion for rational oversampling. The computational complexity of
finding the dual of the frame isO(nlog(n)), using the conjugate gradi-
ents techniques. The factorization technique we introduced for rational
oversampling cases can be used to simplify the matrix inversion.

In the case of MWG expansions, the number of operations required
to generate the matrix P is 2Rab multiplications and 0 additions. The
complexity of computing the Fourier components and inverting P is
given by O(2Llog(b)). The overall complexity of our algorithm is
much better than that associated with the traditional methods, for both
integer and rational oversampling.

As the simulations depicted in Figs. 5 and 6 illustrate, both the canon-
ical and noncanonical duals retain the localization properties of mul-
tiple Gaussian windows. The noncanonical dual does not change much,
especially in the wide window case. The parameters are considerably
different, as shown in the figures. It is also worth mentioning that the
ratio of the condition numbers of noncanonical duals to the condition
number of the canonical dual is 0.23. This demonstrates that noncanon-
ical duals may have greater stability than canonical duals, under certain
conditions.

Other norms than the L2 norm can be minimized. There is a partic-
ular case for minimizing theL1 norm [15]. In this case, we assume that
one set of windows is fixed (i.e., known) and it is the other set of win-
dows that has to be found and optimized. Let us assume that the set of
window functions that constitute the matrixG is known and that these
functions constitute the expansion frame. We need to find the optimum
H. Mathematically, it can be written as

min H
�(GH�)�1

f
1

(18)

Fig. 7. L norm for a signal, with R = 2, L = 64, a = 4, b = 8. The set of
functions h[�] is varied, while g[�] is kept constant. In the example, both g[�] and
h[�] are Gaussians. As can be seen, it does not follow any single, simple pattern.

subject to the condition thatGH� is invertible. However, there are se-
rious problems of obtaining an analytical solution. Firstly, computing
the invertibility for all possible H is a very tall order. Secondly, the
problem is not convex, so it is difficult to tell the local minima from the
global minimum. Therefore, in order to reduce the complexity of the
problem, we have assumed both h[�] and g[�] to be Gaussians, with ef-
fective spread3 � such that 0 < � � L. When the number of windows
is small, the golden section technique [16] can be used with some suc-
cess. Fig. 7 shows the local minima in the case of minimization of L1

norm, when both h[�] and g[�] are Gaussian functions, with g[�] fixed,
and h[�] having various effective spreads.

V. AN APPLICATION

To complement our theoretical analysis, we illustrate a practical ap-
plication where, with noncanonical duals, one can do better. Consid-
ering two images, we shall attempt to reconstruct them with 5% of the
coefficients having the highest magnitude, obtained by means of the
canonical and noncanonical frames.4 We have incorporated four win-
dows into our reconstruction frame (window functions are Gaussians
with different spreads, whose spreads increase in arithmetic progres-
sion). The results of the reconstruction with the canonical and non-
canonical duals are depicted in Fig. 8. We have three areas of interest.
In the canonical case, the high frequency components have not been
localized accurately and edges are blurred. Feathers decorating the hat
cannot be identified clearly (segment B). The reflection in the mirror is
blurred (segment C) and line features of the hat (segment A) are lost. In
contrast, in the noncanonical case, they are clearly visible. Similarly, in
the case of the nails (Fig. 9), we can see that noncanonical reconstruc-
tion is much clearer than in the canonical reconstruction. In both seg-
ments A and B, the delineation between the nails is clearer and sharper
in the noncanonical case. We have clearly achieved better localization

3An alternative term for spread used often, is “effective support.”
4Even though we have chosen only 5% of the coefficients, we have more

than 90% of the total energy of the set of coefficients in the chosen coefficients.
Further, all coefficients and windows were normalized to be able to choose the
coefficients.
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Fig. 8. Reconstruction with the canonical dual (left) and noncanonical dual
(right). The marked areas A and C highlight the sharper contours of smooth
segments, while B shows better preservation of texture in noncanonical
reconstruction.

Fig. 9. Reconstruction of image of nails with canonical (left) and noncanonical
duals (right). Here again, the marked areas (segments A and B) show signifi-
cantly less blurring and the separation between the nails is visible. Even else-
where (especially the bottom right of the image) the difference is noticeable

of frequencies in the case of noncanonical than with canonical duals.
It is important to stress that noncanonical duals achieve better local-
ization than canonical ones, regardless of the expansion frame used.
One can achieve better reconstruction than we have achieved in this
case using canonical duals, by choosing windows based on geometric
progression. However, the better localization would again be limited to
natural images. In cases where the expansion frame is fixed, it is better
to choose noncanonical duals, and benefit from their inherent flexibility
in localization of frequencies. Also, with noncanonical duals, it is pos-
sible to achieve better localization with noncanonical duals in cases
where nothing is known about the set of signals/images a priori.
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Comments on “The Inverse S-Transform in Filters
With Time-Frequency Localization”

C. R. Pinnegar

Abstract—The correspondence “The Inverse S-Transform in Filters With
Time-Frequency Localization,” by Schimmel and Gallart, presented a new
method of time-frequency filtering with the S-transform. Their technique
contains an error, which fortunately can be corrected. This correspondence
describes the correction.

Index Terms—Data-adaptive filter, noise attenuation, polarization,
seismic signal processing, signal detection, time-frequency analysis,
time-varying filters.

I. INTRODUCTION

The authors of [1] presented a paper that introduced a new way of
using the S-transform [2] to perform time-frequency filtering. The def-
inition of the S-transform of a continuous function can be obtained by
combining (1) and (2) of [1], to give

S(�; f) =
jf j

k
p
2�

1

�1

u(t) exp
�f2(� � t)2

2k2
e
�i2�ft

dt: (1)

Here, u is a continuous function of running time t; � denotes the mid-
point of the S-transform window (a Gaussian that gives the S-transform
multiscale time resolution of the Fourier spectrum), f is frequency, and
k is a user-defined constant (here, set to 1). From (1), it is not difficult
to show that the S-transform is invertible via

u(t) =
1

�1

1

�1

S(�; f)ei2�ft d� df: (2)

In analogy with Fourier-domain filtering, S(�; f) can be multiplied
by a filter, denoted F (�; f), in (2) to give a filtered time series u�lt (t).
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