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Abstract. In this paper we present a simple method for flattening of
triangulated surfaces for mapping and imaging. The method is based on
classical results of F. Gehring and Y. Väisälä regarding the existence
of quasi-conformal and quasi-isometric mappings between Riemannian
manifolds. A random starting triangle version of the algorithm is pre-
sented. A curvature based version is also applicable. In addition the algo-
rithm enables the user to compute the maximal distortion and dilatation
errors. Moreover, the algorithm makes no use to derivatives, hence it is
robust and suitable for analysis of noisy data. The algorithm is tested
on data obtained from real CT images of the human brain cortex and
colon, as well as on a synthetic model of the human skull.

1 Introduction

In many medical applications of image processing, such as medical imaging for
noninvasive diagnosis and image guided surgery, a paramount importance lies in
the process of two-dimensional representation by flattening of three-dimensional
object scans. For example, it is often advantageous to present three-dimensional
MRI or CT scans of the cortex as flat two-dimensional images. Yet in order to do
so in a meaningful manner, so that the diagnosis will be accurate, it is essential
that the geometric dilatation and distortion, in terms of change of angles and
lengths, caused by this representation, will be minimal. However, since most
surfaces of medical interest, such as colon, cortex, etc., are not isometric to the
plane, a zero-distortion solution is seldom feasible. A reasonable solution to this
problem is given by conformal maps ([9], [10]). Mapping the surface conformally
to the (complex) plane preserves angles and therefore the local shape.

Naturally, the problem of conformal flattening of surfaces, in particular for
medical imaging, has focused the interest of many researchers in the recent years,
and there exists a vast literature covering the said problem (see Section 1.1 be-
low). In fact, in all previous works, only approximations of conformal mappings
have been achieved, and as such they all suffer from the presence of some amount
of distorsion/dilatation. Therefore, one should aim to control the amount of in-
herent distortion. This can be achieved by quasi-isometric/quasi-conformal maps
(i.e. maps that are almost isometries/conformal; precise definition will follow in
Section 2). Practically, there is a tradeoff between the cost of an implementation
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on one hand and accuracy on the other. Common to all solutions is the fact,
which cannot be avoided because of the inevitable distortion, that the more
locally one is willing to focus, the more accurate the results become.

1.1 Related Works

As stated above, the problem of minimal distortion flattening of surfaces at-
tracted, in recent years, a great attention and interest, due to its wide range of
applications.

In this section we briefly review some of the methods that were proposed for
dealing with this problem.

Variational Methods. Haker et al. ([9], [10]) introduced the use of a variational
method for conformal flattening of CT/MRI 3-D scans of the brain/colon for the
purpose of medical imaging. The method is essentially based on solving Dirichlet
problem for the Laplace-Beltrami operator �u = 0 on a given surface Σ, with
certain boundary conditions on ∂Σ. A solution to this problem is a harmonic
(thus conformal) map from the surface to the (complex) plane. The solution
suggested in [9] and [10] is a PL (piecewise linear) approximation of the smooth
solution, achieved by solving a proper system of linear equations.

Circle Packing. Hurdal et al. ([11]) attempt to obtain such a conformal map by
using circle packing. This relies on the ability to approximate conformal struc-
ture on surfaces by circle packings. The authors use this method for MRI brain
images and conformally map them to the three possible models of geometry in
dimension 2 (i.e. the 2-sphere, the Euclidian plane and the Hyperbolic plane).
Yet, the method is applicable for surfaces which are topologically equivalent to
a disk whereas the brain cortex surface is not. This means that there is a point
of the brain (actually a neighborhood of a point), which will not map confor-
mally to the plane, and in this neighborhood the dilatation will be infinitely
large. Hurdal et al. solve this problem by removing the corpus callosum, thus
obtaining a surface homeomorphic to a 1-punctured sphere, and thus confor-
mally equivalent to a disk ([11], [12]). An additional problem arises due to the
necessary assumption that the surface triangulation is homogeneous in the sense
that all triangles are equilateral. Such triangulations are seldom attainable.

Holomorphic 1-forms. Gu et al. ([7], [8], [6]) are using holomorphic 1-forms in or-
der to compute global conformal structure of a smooth surface of arbitrary genus
given as a triangulated mesh. holomorphic 1-forms are differential forms (differ-
ential operators) on smooth manifolds, which among other things can depict
conformal structures. This method indeed yields a global conformal structure
hence, a conformal parameterization for the surface however, computing homol-
ogy basis is extremely time consuming.

Angle Methods. In [13] Sheffer et al. parameterize surfaces via an angle based
method in a way that minimizes angle distortion while flattening. However, the
surfaces are assumed to be approximated by cone surfaces, i.e. surfaces that are
composed from cone-like neighborhoods.
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To summarize, all the methods described above compute only approximation to
conformal mappings, therefore producing only quasi-conformal mappings, with
no precise estimates on the dilatation.

In this paper we propose yet another solution to this problem. The proposed
method relies on theoretical results obtained by Gehring and Väisalä in the
1960’s ([5]). They were studying the existence of quasi-conformal maps between
Riemannian manifolds. The basic advantages of this method resides in its sim-
plicity, in setting, implementation and its speed. Additional advantage is that it
is possible guarantee not to have distortion above a predetermined bound, which
can be as small as desired, with respect to the amount of localization one is will-
ing to pay (and, in the case of triangulated surfaces, to the quality of the given
mesh). In fact, the proposed method is – to the best of our knowledge – the only
algorithm capable of computing both length distortion and angle dilatation. The
suggested algorithm is best suited to cases where the surface is complex (high
and non-constant curvature) such as brain cortex/colon wrapping, or of large
genus, such as skeleta, proteins, etc. Moreover, since together with the angular
dilatation, both length and area distortions are readily computable, the algo-
rithm is ideally suited for applications in Oncology, where such measurements
are highly relevant.

The paper is organized as follows: In the next section we introduce the the-
oretical background, regarding the fundamental work of Gehring and Väisalä.
Afterwards we describe our algorithm for surface flattening, based on their ideas.
In Section 4 we present some experimental results of this scheme and in Section
5 we discuss possible extensions of this study.

2 Theoretical Background

2.1 Basic Definitions

Definition 1. Let D ⊂ R
3 be a domain. A homeomorphism f : D → R

3 is
called a quasi-isometry (or a bi-lipschitz mapping), if there exists 1 ≤ C < ∞,
such that

1
C

|p1 − p2| ≤ |f(p1) − f(p2)| < C|p1 − p2| , for all p1, p2 ∈ D.

C(f) = min{C | f is a quasi − isometry} is called the minimal distortion of f
(in D).

Remark 1. If f is a quasi-isometry then KI(f) ≤ C(f)2 and KO(f) ≤ C(f)2

where KI(f), KO(f) represent the inner, respective outer dilatation of f (see
see v. It follows that any quasi-isometry is a quasi-conformal mapping (while
– evidently – not every quasi-conformal mapping is a quasi-isometry). Quasi-
conformal is the same as quasi-isometry where distances are replaced by angles.

Definition 2. Let S ⊂ R
3 be a connected set. S is called admissible iff for any

p ∈ S, there exists a quasi-isometry ip such that for any ε > 0 there exists a
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neighbourhood Up ⊂ R
3 of p, such that ip : Up → R

3 and ip(S ∩ Up) = Dp ⊂ R
2,

where Dp is a domain and such that C(ip) satisfies:

(i) sup
p∈S

C(ip) < ∞ ;

and
(ii) sup

p∈S
C(ip) < 1 + ε .

2.2 The Projection Map

Let S be a surface, n̄ be a fixed unitary vector, and p ∈ S. Let V 	 D2,
D2 = {x ∈ R

2
∣
∣ ||x|| ≤ 1} be a disk neighbourhood of p. Moreover, suppose that

for any q1, q2 ∈ S, the acute angle �(q1q2, n̄) ≥ α (see Figure 2). We refer to the
last condition as the Geometric Condition or Gehring Condition.

S

p
n
_

α

α

  V    S

U ~_D

q
q1

2

2

Fig. 1. The Geometric Condition

Then for any x ∈ V there is a unique representation of the following form:

x = qx + un̄ ;

where qx lies on the plane through p which is orthogonal to n̄ and u ∈ R.
Define:

Pr(x) = qx .

Note: n̄ need not be the normal vector to S at p.

By [5], Section 4.3 and Lemma 5.1, we have that for any p1, p2 ∈ S and any
a ∈ R+ the following inequalities hold:

a

A
|p1 − p2| ≤ |Pr(p1) − Pr(p2)| ≤ A|p1 − p2| ;

where

A =
1
2
[(a cscα)2 + 2a + 1]2 +

1
2
[(a cscα)2 − 2a + 1]2 .
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In particular for a = 1 we get that

C(f) ≤ cotα + 1 ; (1)

and

K(f) ≤
((1

2
(cotα)2 + 4

) 1
2 +

1
2

cotα
) 3

2 ≤ (cotα + 1)
3
2 ; (2)

where
K(f) = max

(

KO(f), KI(f)
)

is the maximal dilatation of f .

The Geometric Condition. From the discussion above we conclude that S ⊂
R

3 is an admissible surface if for any p ∈ S there exists n̄p such that for any
ε > 0, there exists Up 	 D2, such that for any q1, q2 ∈ Up the acute angle
�(q1q2, n̄p) ≥ α, where

(i) inf
p∈S

αp > 0 ;

and
(ii) inf

p∈S
αp <

π

2
− ε .

Example 1. Any surface in S ∈ R
3 that admits a well-defined continuous turning

tangent plane at any point p ∈ S is admissible.

3 The Algorithm

We will present in this section the algorithm that is used for obtaining a quasi-
isometric (flat) representation of a given surface. First assume the surface is
equipped with some triangulation T . Let Np stand for the normal vector to the
surface at a point p on the surface.

Second, a triangle Δ, of the triangulation must be chosen. We will project a
patch of the surface quasi-isometrically onto the plane included in Δ. This patch
will be called the patch of Δ, and it will consists of at least one triangle, Δ itself.
There are two possibilities to chose Δ, one is in a random manner and the other
is based on curvature considerations. We will refer to both ways later. For the
moment assume Δ was somehow chosen. After Δ is (trivially) projected onto
itself we move to its neighbors. Suppose Δ′ is a neighbor of Δ having edges e1,
e2, e3, where e1 is the edge common to both Δ and Δ′.

We will call Δ′ Gehring compatible w.r.t Δ, if the maximal angle between e2 or
e3 and NΔ (the normal vector to Δ), is greater then a predefined measure suited
to the desired predefined maximal allowed distortion, i.e. max {ϕ1, ϕ2} ≥ α,
where ϕ1 = �(e2, NΔ), ϕ2 = �(e3, NΔ); (cf. (1), (2)).

We will project Δ′ orthogonally onto the plane included in Δ and insert it to
the patch of Δ, iff it is Gehring compatible w.r.t Δ.

We keep adding triangles to the patch of Δ moving from an added triangle
to its neighbors (of course) while avoiding repetitions, till no triangles can be
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Fig. 2. Gehring Compatible Triangles

added. If by this time all triangles where added to the patch we have completed
constructing the mapping. Otherwise, chose a new triangle that has not been
projected yet, to be the starting triangle of a new patch. A pseudocode for this
procedure can be easily written.

Remark 2. There are two ways for choosing a base triangle for each patch. One
is by curvature considerations, i.e. taking a triangle which the sum of the (mag-
nitude of) curvatures of its vertices is minimal, and the other one is by randomly
choosing a triangle for each new patch.

Remark 3. One should keep in mind that the above given algorithm, as for any
other flattening method, is local. Indeed, in a sense the (proposed) algorithm
gives a measure of “globality” of this intrinsically local process.

Remark 4. Our algorithm is best suited for highly folded surfaces, because of its
intrinsic locality, on the one hand, and computational simplicity, on the other.
However, on “quasi-developable” surfaces (i.e. surfaces that are almost cylindri-
cal or conical) the algorithm behaves similar to other algorithms, with practically
identical results.

4 Experimental Results

We now proceed to present some experimental results obtained by applying the
proposed algorithm, both on synthetic surfaces and on data obtained from actual
CT scans.

In each of the examples both the input surface and a flattened representation
of some patch are shown. Details about mesh resolution as well as flattening
distortion are also provided. The number of patches needed in order to flatten
the surface is also given. In all images, the small rectangle shown on the surface
represents a base triangle for the flattened patch. The colored area in each of
the images represents the patch being flattened.

The algorithm was implemented in two versions, or more precisely two possible
ways of processing, automatic versus user defined.



Quasi-conformal Flat Representation of Triangulated Surfaces 161

Fig. 3. Skull Flattening: The role of almost flat regions is accentuated. The resolution
is of 60,339 triangles. Here α is 10◦ and the dilatation is 1.1763.

Fig. 4. Colon Section: Observe the highly folded region that a large number of patches
while preserving a small dilatation. The image shows the back-side of the colon, whose
flattened image is depicted in Fig. 5. (b). CT-data is in curtesy of Dr. Doron Fisher
from Rambam Madical Center in Haifa.

– Automatic means that the triangles serving as base points for the patches
to be flattened are chosen automatically according to curvature, as stated
in Remark 3.2. The discrete curvature measure employed is that of angular
defect, due to its simplicity and high reliability (see [14]).

– User defined means that at each stage the user chooses a base triangle for
some new patch.
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Since at this stage we did not address the problem of properly gluing of
patches, in the following example of colon flattening, one can see the appearance
of holes in the flattened presentation caused by artificially gluing neighboring
patches to each other. We refer to this problem in the next section.

Experiments have shown that results of the automatic process are similar, in
terms of the dilatation, to those obtained from the user defined process yet, in
order to flatten entire surface in the user defined method one needs in average
25% more patches.

5 Concluding Remarks and Future Study

Sampling and flattening of folded surfaces embedded in higher dimensional Rie-
mannian manifolds combines several important facets and problems encountered
in image processing and analysis of surfaces. In our broader study [3], we deal
with the issues of nonuniform smoothing and sampling. Here we assumed that
a proper sampling and triangulation of the surfaces are given. the emphasis
was therefore on quasi-conformal and quasi-isometric aspects of the mapping
between Riemannian manifolds. While the theory is general and applicable to
mapping from any higher to lower dimensional manifolds, here we presented a
specific algorithm developed for the case of mapping from a three-dimensional
to two-dimensional flat surface.

From the implementation results it is evident that this algorithm while being
simple to program as well as efficient, also gives good flattening results and main-
tains small dilatations even in areas where curvature is large and good flattening
is a challenging task. Moreover, since there is a simple way to assess the resulting
dilatation/distorsion, the algorithm was implemented in such a way that the user
can set in advance an upper bound on the resulting dilatation/distorsion. Let us

(a) (b)

Fig. 5. Colon CT-Images: (a) Triangulated colon surface taken from 3 slices of human
colon scan and (b) One half of the colon, after flattening. One is able to observe the
holes caused by improper gluing of neighbouring patches.
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Fig. 6. Cerebral Cortex Flattening: A patch obtained in the flattening of the parietal
region. The resolution is 15.110 triangles, the angle chosen is 5◦, producing a dilatation
of 1.0875.
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stress once more that, to the best of our knowledge, our method represents the
only algorithm capable of computing both length distortion and angle dilatation.

An additional advantage of the presented algorithm is related to the fact
that, contrary to some of the related studies, no use of derivatives is made.
Consequently, the algorithm does not suffer from typical drawbacks of derivative
computations like lack of robustness, etc.

Moreover, since no derivatives are employed, no smoothness assumption about
the surface to be flattened are made, which makes the algorithm presented herein
ideal for use in cases where smoothness is questionable (to say the least).

The algorithm may be practical for applications where local yet, good analysis
is required such as medical imaging with the emphasis on flattened representa-
tion of the brain and the colon (virtual colonoscopy) – see [1]. Further study is
currently undertaken.

The main issue for further investigation, remains the transition from local to
global in a more precise fashion, i.e. how can one glue two neighbouring patches
while keeping fixed bounded dilatation. In more technical terms, this amounts
to actually computing the holonomy map of the surface – see [15]. Comput-
ing holonomy tells you exactly how to match-up two areas of a surface having
different conformal characteristics so that a bigger patch with controlled quasi-
conformal behaviour will be obtained. This is also under current investigation.

Evidently, as can be seen in Fig. 5, of the colon flattening example, one can
have two neighbouring patches, with markedly different dilataions/distorsions,
which results in different lengths for the common boundary edges. Therefore,
“cuts” and “holes” appear when applying a “naive” glueing.

We conclude by remarking that while the the application presented here is
for 2D-images of 3D-surfaces, the results of Gehring and Väisalä are stated and
proven for any dimension (and co-dimension). Therefore, implementations for
higher dimensions are also in progress.
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