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Integrated Active Contours for Texture Segmentation

Chen Sagiv, Nir A. Sochen, and Yehoshua Y. Zeevi

Abstract—We address the issue of textured image segmentation
in the context of the Gabor feature space of images. Gabor filters
tuned to a set of orientations, scales and frequencies are applied to
the images to create the Gabor feature space. A two-dimensional
Riemannian manifold of local features is extracted via the Bel-
trami framework. The metric of this surface provides a good indi-
cator of texture changes and is used, therefore, in a Beltrami-based
diffusion mechanism and in a geodesic active contours algorithm
for texture segmentation. The performance of the proposed algo-
rithm is compared with that of the edgeless active contours algo-
rithm applied for texture segmentation. Moreover, an integrated
approach, extending the geodesic and edgeless active contours ap-
proaches to texture segmentation, is presented. We show that com-
bining boundary and region information yields more robust and
accurate texture segmentation results.

Index Terms—Active contours without edges, anisotropic dif-
fusion, Beltrami framework, Gabor analysis, geodesic active
contours, image manifolds, texture segmentation.

1. INTRODUCTION

HE TASK of unsupervised texture segmentation has been

the subject of intensive research in recent studies, at-
tempting to discriminate between regions which have different
textures [17], [36], [40], [45].

This is usually an effortless task for a human observer, but
far from being an easy one in image processing and computer
vision. The reasons for these difficulties are twofold. First, seg-
mentation is not a straightforward problem even in the case of
un-textured images. Second, there does not exist a universal
mathematical model of real world textures, although some at-
tempts to devise such models have been reported [16], [19], [49],
[51], and it is, therefore, difficult to analyze them.

Texture segmentation algorithms combine usually four major
components. First, a texture representation space is selected.
Common choices are windowed Fourier transforms, the Gabor
representation [18], Wavelet transforms [5], [26], [48], local his-
tograms [17], the local structure tensor [40], and the space of
oscillating functions [49]. In the second step, texture features
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are extracted, e.g., the magnitude of the response of the Gabor
filters and particular moments which are calculated from local
histograms [18], [42].

An introduction of a measure on the texture characteristic fea-
tures is the heart of the third stage of processing. The measure
indicates how much variability is characteristic of the texture.
Kulback-Leibler, mutual information, gradients, and other dis-
tance measure are typical for this stage.

Finally, some objective function can be defined using the tex-
ture features, and the segmentation is formulated as an optimiza-
tion, minimization or clustering problem. In region-based algo-
rithms the third and fourth stages become inseparable.

The texture segmentation algorithm proposed in this study
is based on a generalization of the geodesic active contours
model from the one-dimensional intensity-based feature space
to a multidimensional space of texture features. The Gabor-
Morlet transform is applied to the image, in the first stage, using
self similar and rotated Gabor functions. At the second stage,
features yielding maximum response for the Gabor filters, are
selected for each pixel in the image [41]; this choice defines
a subspace of the spatial-feature space. Alternatively, the com-
plete set of the Gabor responses may be selected as features. In
the third step a texture edge indicator is defined. Its construction
is one of the main contributions of this paper, and we refer to it
when describing the Beltrami framework. Finally, a new form
of geodesic active contours mechanism is applied to obtain the
segmentation. We also study the integration of this active con-
tours model with the edgeless active contours model proposed
by Chan et al. [4], which was recently extended to texture seg-
mentation [45]. This approach is based on a general model that
was recently developed by Kimmel [23], which combines active
contours with and without edges.

An important aspect of our research is how to obtain the tex-
ture gradients information. We base our work on the approach
developed by Kimmel, Sochen, and Malladi [24], [25] who have
shown that the Gabor spatial-feature space can be described, via
the Beltrami framework [47], as a four-dimensioanl Riemannian
manifold embedded in RS. Using this framework, the Gabor fea-
ture space is elaborated for representation, processing and seg-
mentation of textured images via diffusion and curve evolution
partial differential equation (PDE) flows applied in this space.

The construction of the “texture edge indicator,” and of
the generalized stopping term, in the context of texture-based
geodesic active contours, begins with an analysis and a revised
viewpoint of the form of the stopping term in the intensity-based
geodesic active contours. It is shown that it can be interpreted,
via the Beltrami framework, in terms of the Riemannian struc-
ture on the two-dimensional (2-D) surface described by the
graph of the intensity function. In order to define a meaningful
texture gradient the chosen feature subspace is represented, via
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the Beltrami framework, as a submanifold. This submanifold
inherits a Riemannian structure, i.e., the induced metric, from
the full spatial-feature space. The metric introduced in the
Gaborian subspace is used to derive the inverse edge indicator
function £, which attracts in turn the evolving curve toward the
texture boundary in the geodesic active contours scheme.

The main contributions of this work are as follows. First, we
derive an edge indication function in the Gabor feature space
of the images, by viewing this feature space as a manifold. The
determinant of this manifold’s metric is interpreted as a measure
for the presence of gradients on the manifold. This is because
the integral over the square root of the determinant of the metric
is simply the area of the manifold. When the contribution of the
integrand is large, this means that the area of this part of the
manifold is large comparing to the projected area on the z-y
plane. This is an indication for the existence of large gradients.

Second, while we look for gradients in the Gabor feature
space, Sandberg et. al [45] are interested in the homogeneity of
the Gabor features and apply the vector valued active contours
without edges algorithm to this space. We compare the concep-
tual features and performance of the geodesic snakes and the
active contours without edges approaches using synthetic and
real life examples, and explore the idea of combining these two
approaches into a single segmentation procedure for textured
images. This idea is a generalization of a recent publication of
Kimmel [23], but innovative in expanding the scalar case to a
more general vectorial case with application of this idea to the
Gabor feature space.

We begin by briefly reviewing related studies dealing with
texture segmentation. Then we present the Gabor transform, fea-
ture space generation, the Beltrami framework and geodesic ac-
tive contours. We review the Gaborian submanifold generation
and diffusion, and then the application of the active contours
with and without edges in the Gabor feature space. Finally, a
combined approach utilizing both geodesic contours and edge-
less active contours is considered. Results are compared with
those obtained by using the unsupervised “edgeless” texture
segmentation technique [45].

II. RELATED STUDIES

Texture representation and modeling can be roughly di-
vided into two classes: statistical-based approaches and
filtering-based approaches. Statistical modeling is based on the
assumption that each texture has unique statistical attributes.
Among them are: local statistical features [7], random field
models [8], [14], [31], co-occurence matrices [12], second
order statistics [6], statistics of texton attributes [19], local
linear transforms [48], and a gaussian distribution modeling of
the structure tensor [40].

The filtering modeling is based on applying some filter bank
to the image and considering the filters’ responses as informa-
tion about the local behavior of the image. A popular choice
are the Gabor filters. The motivation for the use of Gabor filters
in texture analysis is double fold. First, it is believed that simple
cells in the visual cortex can be modeled by Gabor functions [9],
[32], and that the Gabor scheme provides a suitable representa-
tion for visual information in the combined frequency-position
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space [37]. Second, the Gabor representation has been shown to
be optimal in the sense of minimizing the joint 2-D uncertainty
in the combined spatial-frequency space [13]. The analysis of
Gabor filters was generalized to multiwindow Gabor filters [53]
and to Gabor wavelets [27], [34], [37], [53], and studied both
analytically and experimentally on various classes of images
[1], [11], [53]. Most approaches use the power spectrum of the
Gabor filtered images. The local phase information obtained by
Gabor filtering was also used for simple test images [10]. Nev-
ertheless, it seems that utilizing the phase information still re-
quires further investigation. The wavelets approach to texture
modeling was also considered [5], [26], [48]. Some approaches
combine statistical modeling, structural modeling and the filter
bank model. The FRAME theory proposed by Zhu et al. [51],
[52] combines the use of filters, random fields and maximum
entropy as a unified approach for texture modeling.

Once the representation space is selected, texture features
are obtained and the segmentation procedure evolves in a
boundary-based approach, or a region-based approach. Here,
we review some of the schemes already proposed for texture
segmentation. We focus on those schemes which either use the
Gabor representation or minimization of energy functionals
approaches. Lee et al. [28] attempted to use the Gabor feature
space for segmentation, by implementing a variant of the
Mumford&ndash;Shah functional adapted to signature vectors
in the Gabor space. Porat and Zeevi [38] proposed using lo-
calized features based on the Gabor transform of the image,
and computed for this purpose the mean and variance of the
localized frequency, orientation and intensity. In a previous
study [42], we applied a Beltrami-based multivalued snakes
algorithm to this feature space. Jain and Farrokhnia [18] used
Gabor filters to obtain texture features by subjecting each
filtered image to a nonlinear, threshold-like transform, and
computing a measure of “energy” in a window around each
pixel. A square error clustering algorithm was then used to
produce segmentation. Manjunath and Ma [30] defined features
vector whose components are the responses of the Gabor
channels. They used the Euclidean distance between these
vectors as a criterion for similarity between textures. Kim et al.
[22] viewed the segmentation problem as a maximization of
the mutual information between region labels and the image
pixel intensities, subject to a limitation on the length of region
boundaries. Hofmann et al. [17] considered the homogeneity
between pairs of texture patches by a nonparametric statistical
test applied to the Gabor space. A pairwise data clustering
algorithm was utilized to perform segmentation. In Paragios
and Deriche [36], a supervised variational framework was
developed, where the responses of isotropic, anisotropic and
Gabor filters applied to the texture image were considered as
multicomponent conditional probability density functions. This
information served as the stopping term in a variation of the
geodesic snakes mechanism. Rousson et al. [40] extracted tex-
ture features using the gray level values and a structure tensor
which is defined using smoothed versions of image derivatives.
Then, assuming a Gaussian model for the elements of the struc-
ture tensor and Parzen density for the image intensity channel,
an energy functional that is the a posteriori partitioning proba-
bility is maximized. Zhu et al. [51], [52] proposed an approach
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called region competition, unifying snakes, region growing
and Bayes/MDL criterion by the application of a variational
principle for multiband image segmentation. This algorithm
integrates the geometric benefits of the snakes/balloons mecha-
nism with the benefits of the statistical modeling used in region
growing. Sandberg et al. [45] applied a vector-valued active
contour without edges mechanism [4] to the Gabor filtered
images. Vese and Osher [49] used a model which assumes that
an image is a linear combination of some bounded variation
function, a “cartoon” approximation of the image, and an os-
cillatory function which represents texture or noise, following
a model proposed by Meyer [33].

In the framework presented here, we are interested in defining
“texture gradients” and utilizing them in the geodesic snakes
mechanism, to determine the texture boundaries. The geodesic
snakes mechanism is rooted in the popular “snakes,” or active
contours segmentation algorithm proposed by Kaas et al. [20].
In this framework, an initial contour is deformed toward the
boundary of an object to be detected. The evolution equation
is derived from minimization of an energy functional, which
obtains a minimum for a curve located at the boundary of the
object. The geodesic or geometric active contours model [3],
[21] offers a different perspective for solving the boundary de-
tection problem,; it is based on the observation that the energy
minimization problem is equivalent to finding a geodesic curve
in a Riemannian space whose metric is derived from image
content. The geodesic curve can be found via a parameteriza-
tion invariant geometric flow. Utilizing the Osher and Sethian
level set numerical algorithm [39] allows automatic handling
of changes of topology. This snakes’ model was extended to
account for vector-valued active contours, and to handle more
complex scenery such as color images [46] and multitexture im-
ages [42]. Goldenberg et al. [15] offer a fast algorithm based on
the AOS scheme for geodesic active contours and generalize it
to color images.

An edgeless active contours model was recently proposed by
Chan and Vese [54]. It is also based on techniques of curve evo-
lution and level set methods, but the gradient-based information
is replaced by a criterion which is related to region homogeneity.
The active contours without edges model was extended to vector
valued images [4] and specifically to texture segmentation [45].
Chan and Vese [54] use a reduced form of the Mumford—Shah
functional [35] where the image is approximated by a piecewise
constant function. They add a regularity term that controls the
contour’s smoothness which is its arc length. Kimmel [23] pro-
posed to incorporate a more general weighted arclength in the
edgeless active contours method. The arclength is weighted by
a function of the image’s gradients. This addition is practically
the geodesic active contours functional. In his work, he com-
bines the Chan—Vese approach with the geodesic active contours
model, along with an alignment term which gets high values if
the normal to the curve aligns with the direction of the image’s
gradient.

Motivated by the basic approach of the Mum-
ford&ndash;Shah functional [35], which combines piecewise
smoothness with the existence of edges, and by the studies
of a general model which combines active contours with and
without edges [23], we also apply the integrated active contours
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model (IAC) (with and without edges) to the problem of texture
segmentation. Thus, we offer a new mechanism for the concept
of “texture gradients” which is based on the metric of the
Gabor features space manifold, and combine the information
on the gradients of the Gabor features with the information on
the homogeneity of these features.

III. PRELIMINARIES

A. Gabor Transform and Feature Space
A Gabor filter centered at the 2-D frequency coordinates
(U, V) has the general form of

h(z,y) = g(z',y") exp(2mi(Uz + Vy)) (1)

where

(2, y') = (z cos(§) + ysin(¢), —zsin(p) + ycos(4)) (2)
1 .1172 y2

o2 P (‘—waz - ﬂ) )

and X is the aspect ratio characterizing the elliptic Gaussian

window, o is the scale parameter, and the major axis of the

Gaussian is oriented at angle ¢ relative to the z axis and to the

modulating sinewave gratings.
Accordingly, the Fourier transform of the Gabor function is

g(z,y) =

H(u,v) = exp (—27r202 ((u' — U+ (v — V’)z))
“
where, (u’,v") and (U’, V') are rotated frequency coordinates.
Thus, H(u',v") is a bandpass Gaussian with its minor axis
oriented at angle ¢ from the u axis, and the radial center fre-
quency F is defined by: F' = (U? + V?)'/2, with orientation
¢ = arctan(V/U). Since maximal resolution in orientation is
desirable, the filters whose sinewave gratings are co-oriented
with the major axis of the modulating Gaussian are usually con-

sidered (¢ = 6 and A > 1), and the Gabor filter is reduced to

(&)

It is possible to generate Gabor wavelets from a single
mother-Gabor wavelet by transformations such as: translations,
rotations and dilations. We can generate, in this way, a set of
filters for a known number of scales S and orientations K

’ ’

h(z,y) = g(«',y") exp(2miFx").

(6)

where (z’, y") are the spatial coordinates rotated by (7n/K) and
scaled by powers m = 0...S — 1. The responses of Gabor
wavelets in the frequency spectrum can be seen in Fig. 1.

Alternatively, one can obtain Gabor wavelets by logarith-
mically distorting the frequency axis [37] or by incorporating
multiwindows [53]. In the latter case, one obtains a more gen-
eral scheme wherein subsets of the functions constitute either
wavelet sets or Gaborian sets.

There are several degrees of freedom in selecting the family
of Gabor filters to be used: number and values of scales, fre-
quencies, and orientations. In order to obtain good segmenta-
tion results, the filters should be carefully selected, so that they
represent the data and the differences in textures within the data
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Fig. 1. In this diagram, the responses in the frequency domian of a possible
set of Gabor wavelets is presented. A common design strategy of Gabor filters
is to ensure that the half-peak magnitude support of the filter responses in the
frequency domain touch each other.

in an accurate way. Although some techniques were suggested
to obtain such selection [11], [50], they are complex to imple-
ment, and we manually selected the number of orientations and
the values of scales and frequencies. Our selection was also mo-
tivated by the guidelines offered by Lee [27].

The feature space of an image is obtained by the inner product
of this set of Gabor filters with the image:

Won (2,9)

Rmn($7y) + iJmn<x7y>
1(z,y) * hyn(z,y). 7

Once this feature space is generated, one may use all chan-
nels, or use an appropriate subspace. In this study, the features
space is either the full set of Gabor coefficients (for all scales,
orientations and frequencies) or only the maximal value of
Gabor coefficients at each pixel location, when maximization
is done per scale, orientation and frequency.

B. Beltrami Framework

Sochen et al. [47] proposed to view images and image feature
spaces as Riemannian manifolds embedded in a higher dimen-
sional space. Their approach, rooted in high-energy physics,
is based on the Polyakov action functional which weights the
mapping between the image manifold (and its metric) and the
image features manifold (and its corresponding metric). The
term image manifold is used here as the surface formed by
the graph of the image (not to be confused with the space of
all images). This functional can be minimized with respect to
the image features manifold parameters (embedding space),
the Riemannian structure (the metric parameters), or both.
It was shown that different choices for minimization lead to
different known flows [47], e.g., the heat flow, a generalized
Perona—Malik flow and the mean curvature flow.

Using the Beltrami framework, the image is viewed as a 2-D
manifold, which represents the spatial extent of the image, em-
bedded in a multidimensional feature space. Formally, an image
is described as a section of a fiber bundle. The base manifold
of the bundle is the image domain and the fiber is the feature
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space. A choice of a point in the feature space for each point
in the base manifold is called a section. Thus, image analysis
turns into analysis of manifolds (sections). The most important
concept related to our research is determining distances on the
manifold. In many applications, the notion of distance between
two locations on the image refers not only to the spatial dis-
tance, but also to the “information” part of the distance between
points. This can be calculated for example by Euclidean or the
Kullback-Leibler distance measures. The Beltrami framework
offers a natural choice for distances measurements, as the “infor-
mation” distance between points in the image turns into distance
between points on the image manifold; This can be calculated
using the manifold’s metric.

As a simple example, let us examine a gray scale image
I(z,y). It can be viewed as a 2-D Riemannian surface (man-
ifold), with (x,y) as local coordinates, embedded in R3
with (X,Y, Z) as local coordinates. The relation is given by
X =2,Y =y, Z = I(z,y)). When we consider fea-
ture spaces of images, e.g., color space, statistical moments
space, and the Gaborian space, we may view the image-fea-
ture information as a [N-dimensional manifold embedded
in a N + M dimensional space, where N stands for the
number of local parameters needed to index the manifold
of interest and M is the number of feature coordinates. For
example, the Gabor transformed image can be viewed as a
2-D manifold with local coordinates (x,y) embedded in a
seven-dimensional (7-D) feature space. The embedding map
is (2,y,0(z,y),0(z,y), f(z,y), R(z,y), J(z,y)), where R
and J are the real and imaginary parts of the Gabor transform
value, and 6, o, and f are the direction, scale and frequency for
which a maximal response has been obtained.

We are interested in measuring distances on the manifold.
For example, consider a 2-D manifold > with local coordi-
nates (o1, 02). Since the local coordinates are curvilinear, the
distance is calculated using a positive definite symmetric bi-
linear form called the metric whose components are denoted

by Iuv (017 02)
ds® = Juvdotdo” ®)

where the Einstein summation convention is used: elements
with identical superscripts and subscripts are summed over.

How is the metric on the manifold chosen? This can be done
using either a variational or a geometric approach. In the varia-
tional approach the Polyakov action is minimized with respect
to the metric [47]. The resulting Euler—Lagrange equation is
solved analytically and the minimizing metric is the induced
metric. We describe below how the induced metric is obtained,
from a geometric point of view, via the pullback procedure.

Let X : ¥ — M be an embedding of ¥ in M, where M
is a Riemannian manifold with a metric h;;. > is another Rie-
mannian manifold, and thus has its own metric. We assume that
the embedding of ¥ in M is isometric and thus we may use the
knowledge of the metric on M and the map X to construct the
metric on X. This pullback procedure is as follows:

00Xt 90X
dot Jov

(guv)s(ct, 0?) = hij(X (0", 0%)) ©
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where we use the Einstein summation convention, %,j =
1,...,dim(M), and ot,0? = 1,...,dim(2) are the local
coordinates on the manifold . We actually use the Jacobian,
J, of the smooth map X : ¥ — M to obtain the metric of
Y from the metric of M; the jacobian of the mapping should
be computed, and for an Euclidean embedding space with a
Cartesian coordinate system (as is the case here), the desired
metric can be obtained by multiplying the transpose of that
jacobian by the jacobian itself: g,,, = J7.J.

If we pull back the metric of a 2-D image manifold from the
Euclidean embedding space (z,y, ) we get

1+ 12
.1,

LI,
1+1; )"

In the more general case of higher dimensional feature space

—

F=(F'(2,y),...,F"(z,y)), the metric is given by

Y FLF,
L+ FF,

(Guo(z,y)) = ( (10)

L+ FiF!

K3

> L “”

(Guv(,y)) =

It turns out that the inverse of the metric’s determinant can
serve as a good edge detector. The rationale behind this is as fol-
lows: The metric g,,,, is used to measure distances on manifolds,
and its components indicate the rate of change of the manifold
given a specific direction. Therefore, when the determinant of
9uv has a value which is much larger than unity, it indicates the
presence of a strong gradient on the manifold. A value which is
close to unity indicates a region where the manifold is almost
flat. Thus, we may select as an edge indicator the inverse of the
determinant of g,,,,. Moreover, the metric’s determinant gives an
indication for the ratio between the size of an area element dzdy
when measured on the manifold and when measured on the z—y
plane. The larger the metric, the less horizontal this patch of the
manifold (thus contains an edge).

IV. GEODESIC ACTIVE CONTOURS

We review the geodesic active contours method for nontex-
tured images according to the formalism presented in [3], [21].

Let C(q) [0,1] — R? be a parametrized curve,
and let I:[0,a] x [0,b] — R* be the given image. Let
E(r) : [0,00[— RT be an inverse edge detector, so that £
approaches zero when r approaches infinity. Visually, £ should
represent the edges in the image, so that we can judge the
“quality” of the stopping term F by the way it represents the
edges and boundaries in an image. Thus, the stopping term E
has a fundamental role in the geodesic active snakes mech-
anism; if it does not well represent the edges, application of
the snakes mechanism is likely to fail. Minimizing the energy
functional proposed in the classical snakes is generalized to
finding a geodesic curve in a Riemannian space by minimizing

Le= [ EVIC@DIC @I (12)

We may consider this term to be a weighted length of a
curve, where the Euclidean length element is weighted by a
factor E(|VI(C(q))|), which contains information regarding
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the boundaries in the image. The resultant evolution equation
is the gradient descent flow

dC

dt
where k denotes curvature and IV is a unit vector which is
normal to the curve.

Defining a function U, so that C = ((z,y)|U(z,y) = 0), we
may use the Osher—Sethian level-sets approach [39] and replace
the evolution equation for the curve C with an evolution equa-
tion for the embedding function U

daUu

dt

E(|VI))kN — (VE - N)N (13)

|VU Div (E(|V1|)ﬂ) .

VO] (14)

A popular choice for the stopping function E(|VI|) is given
by: E(|VI|) = (1/(1 + |VI|?)) [29], but other image-specific
functions may also be used. For gray level images, this expres-
sion coincides with the determinant of the image’s manifold,
Guv + 14+ Ix2 + I,y?. Thus, we can rewrite the expression for the
stopping term E in the geodesic snakes mechanism as follows:

T
S 1+ |VIP T det(gu)”

E(|VI) (15)

The importance of the Beltrami framework for segmentation,
in general, and for texture segmentation in particular, is that it
offers a general tool for evaluation of gradients on the image
manifold regardless of the features used. Given a set of texture
features, we can derive the metric of the image manifold em-
bedded in that feature space, and use it as described to create
the edge indicator function.

V. GABORIAN SUBMANIFOLD

We choose, in the Gabor feature space, a submanifold of most
relevant information for the determination of texture bound-
aries. We may interpret the Gabor transform of an image as a
function assigning to each pixel’s coordinates, scale, orienta-
tion and frequency, a value W. In this study, we select texture
features to be either the Gabor responses W per scale, orien-
tation and frequency, or alternatively, the scale, orientation and
frequency for which maximum amplitude of the transform is ob-
tained at each pixel. Thus, for each pixel, we obtain: W, the
maximum value of the transform, 6,,,.x, Tmax, and fiax, i.€.,
the orientation, scale and frequency that yield this maximum
value. Whatever the features selection is, it can be naturally rep-
resented as a 2-D manifold [with local coordinates (x,y)], em-
bedded in a higher dimensional space. This initial manifold is
noisy and should be regularized before it can be used. We use
here the Beltrami flow with a regularized metric. In order to pro-
ceed, we need to define the Riemannian structure on this sub-
manifold. Using the pullback mechanism described earlier, we
get the following metric:

( ) _ 1+ Z wla(”% Z wla(z)za(L)y (16)
I ) =\ S wiali)zali)y, 1+ Y wali)’
where 7 indicates the relevant Gabor features a(4), and w; ac-

counts for the different weights given to each Gabor feature. As
stated earlier, the texture features can be the Gabor response, the
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scale, the orientation, or the frequency. Each feature has its own
range of values. Thus, in order to obtain a meaningful metric,
the weights w; are used to obtain the same numerical range for
all features.

VI. GABOR FEATURE SPACE DIFFUSION

In the previous section, we have described how the Gabor fea-
ture space can be treated as a 2-D manifold embedded in a higher
dimensional space. We have used a maximum criterion to obtain
a single orientation, scale and frequency for each pixel location.
This selection has the advantage of being simple. However, it
does not always well represent the textural information and is
sensitive to local variations in texture characteristics. The resul-
tant Gabor features can, therefore, be quite noisy. The full set of
Gabor responses per scale, orientation and frequency can also
suffer from noise. Thus, it is desirable to reduce the amount of
noise in the Gaborian features and obtain a smoother function
to be used in the geodesic snakes mechanism (e.g., [44]). We
present two approaches: the first is the Beltrami flow, applied to
texture features which were selected according to the maximum
criterion, and the second is a Gaussian—Beltrami flow, applied
to the full set of Gabor responses.

A. Gabor Feature Space Diffusion Via the Beltrami Flow

In the framework of the Beltrami approach, an energy func-
tional is defined to minimize an area element +/det(g)dxzdy of
a manifold. We consider first how to implement Beltrami diffu-
sion for each feature separately. A coupled scheme is presented
in Section VI-A2.

1) Gabor Feature Space Diffusion Via the Beltrami
Flow: Let us take, for example, the orientation feature
manifold, which is a 2-D manifold with local coordinates (z, )
embedded in a three-dimensional feature space (z,y, 0(x,y)).
The energy functional is defined as

S(z,y,0) = / det(g(0;,0y))dzdy 17

where det(g) is the determinant of the metric of the Gabor fea-
tures manifold.
For the orientation feature manifold (z,y,0(z,y)), this

metric is given by
(Ghur) = 1+62 6.0,
) =\ 9,0, 1+62)

The resultant gradient descent process is the Beltrami flow for
the orientation feature . According to the Euler—Lagrange
method, we get

(18)

5_5 — _div <V9(det(g))> (19)

50 2./det(g)

where

o (det(g)) = (8det(g)7 8det(g)) .

06, ' 09,
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According to the steepest descent method, the evolution equa-
tion is
1 08

Oy = ——————.
' det(g) 00

(20)

Note that this is identical to Beltrami diffusion for gray level
images, as was already presented earlier [24]. Here, this flow is
simply applied to each Gaborian feature.

2) Gabor Feature Space Diffusion Via a Coupled Beltrami
Flow: The coupling term in the coupled Beltrami flow is the
metric. In the previous section, each Gaborian component is
Beltrami-diffused in a stand alone approach. Here, we de-
fine an energy functional which minimizes an area element
v/det(g)dxdy of the features’ manifold, which is a 2-D man-
ifold with local coordinates (z,y) embedded in a 7-D feature
Space ('Z‘7 y? R7 J? 07 U? f)

S(R,J,0,0,f) = / Vdet(g(VR, VT,V o, V0,V f))dzdy
' @1)

where det(g) is the determinant of the metric of the Gabor
features manifold, given, in general, for any number of
features a(i) each weighted by w; [see (16)]. For the
Gabor feature submanifold of maximal feature responses
Foo= (z,y,R(z,y),J(2,y),0(z,y),0(z,y), f(z,y)), we
assign a metric by the pullback mechanism as follows:

7
Guw = b + Y _ FLF). (22)
=3

The combination /det(g)dxzdy, an area element of the
Gabor features manifold, is the term that forces smoothing as
the features field reduces its overall area when it flows toward
the optimal solution. The resultant gradient descent process is
the Beltrami flow for each Gaborian feature. Let a represent one
of the Gaborian features, then according to the Euler-Lagrange

method
. V.(det(g))
2y/det(g)

Odet(g) odet(g)
da, = Oay, )

65

== (23)

where

. det(s) =

According to the steepest descent method, the evolution equa-
tions are

1 0S5

- det(g) 8a’

We obtain a set of coupled evolution equations. The update of
the values of R, J, o, 8, f is done at the end of each iteration.
In order to further regularize the process, one can smooth
the metric before applying the Beltrami flow. To regularize the
metric, we first convolve each feature channel with a Gaussian
kernel and only then calculate the derivatives and construct the
metric. Once the metric is obtained, we denoise the features with

(24)

ay =
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the Beltrami flow as is derived above. This presmoothing of the
metric yields a more robust and accurate submanifold, which,
in turn, yields a better texture edge detector and a more accurate
and robust segmentation.

B. Gabor Feature Space Diffusion
Via a Gaussian—Beltrami Flow

The Beltrami diffusion flow is characterized by its edge pre-
serving ability, in comparison to linear operators. It is advanta-
geous to use bigger stencil for the calculation of the metric in
order to improve the robustness of the Beltrami diffusion. The
metric used for the Gaussian—Beltrami flow is calculated using
gaussian smoothed derivatives of the image. For a gray-level
image, the metric is usually calculated as

(1412 LI,

(Ghur) = < LI, 1+1I? 25)
where I, and I, are the image derivatives. For the
Gaussian—Beltrami scheme, we convolve the image derivatives
with a relatively large gaussian filter H : I} = H x I,
I, = H x I,,, and the metric is then given by

2
14 (I I
(gw) = ( (&) o] (26)
. 1+ (1)

Using a linearly smoothed metric as the edge indicator has
the advantage of being more robust, while its edge preservation
quality is kept.

VII. GABOR-SPACE GEODESIC ACTIVE CONTOURS
WITH AND WITHOUT EDGES

In this section, we review the geodesic snakes and the ac-
tive contours without edges models applied to the Gabor feature
space. We also present the integration of the two models as an
extension of the work of Kimmel [23].

A. Gabor-Space Geodesic Active Contours

Having the essential components of the formalism presented
so far, it is straightforward to generalize the geodesic active con-
tours algorithm to texture segmentation. Based on the defined
2-D submanifold of texture features, and using the natural Rie-
mannian metric defined on it, we proceed to build the key in-
gredient of the geodesic active contours algorithm, namely the
stopping function. We construct it in an analogous way to the
intensity-based algorithm

1
det(gu)

Using this stopping term in the context of the Osher—Sethian
formulation yields

E(texture(z,y)) = (27)

dUu

s (28)

_ |VU|Div< (IvIl) |§g|)

The zero crossings of the resulting U generates the desired seg-
mentation.
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B. Active Contours Without Edges for Texture Segmentation

The active contours without edges model was extended to
vector valued images, in general, [4], and was applied to the
Gabor space of images for texture segmentation [45]. The mul-
tivalued information is the magnitude of the Gabor transforms
obtained when convolving Gabor filters with the image. Let ug
be the textured image, and u%, i =1,...,N,be N Gabor trans-
forms of the original image wg, obtained for different scales,
orientations and frequencies. Let C be the evolving contour, and
¢’ and ¢ the averages of the Gabor channel v}, inside and out-
side the curve C, respectively. The following energy functional

is minimized with respect to ¢} = {cﬂ_}jil c_ = {ci_}jvzl,
and C
F(ey,c-,0) = (length(C))
o ¥
inside(C)
X |u0 x,y) —c+| dzdy
1N
+ / =) A
outside(C) N ;
X Jug(w,y) = ¢! (29)

where ;1 > 0 and /\Zr, Al > 0 are fixed parameters for each
channel. Note that the first term is merely the arc-length of
the curve. Using the level sets algorithm [39], the Euler-La-
grange equation for the level set ¢, which is defined via C' =

{(z,y)ld(z,y) = 0}, is

N

d¢ V¢ 1 i (i i\2_ yi (i i2
—_Nd <|V¢|> Z(/\+ (uo—c+) -\ (uo—c_) )

(30)

C. Combined Energy Functional and Evolution Equation

Following the model developed by Kimmel [23] for gray
level images, we generalize the active contours model with and
without edges to texture segmentation. The energy functional
to be minimized can be seen as a natural extension of the Chan
and Vese functional, where the term which accounts for the arc
length of the curve is replaced by the geodesic length of the
curve, which is weighted by the gradient information

F(er,0.C) = | W(C(s))ds

C
+ / ! >N
N +
inside(C) N i=1

X |u6(x,y — ci|2d:vdy

AZ
- /out91dc(C’ Z

X

where h(C/(s)) will be calculated as the inverse of the determi-
nant of the features submanifold’s metric. Again, the level sets
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(a) (b ©

(a) Image composed of two very similar Brodatz textures.
(b) Inverse edge indicator of the Brodatz image. The following orientations:

Fig. 2.

[0,(%/8),(27/8),(3%/8),(47/8), (57 /8),(67/8).(7x/8)]; scales:
[0.8638,0.9070,0.9525,1]; and a single frequency: 0.15 were used. Beltrami
coupled diffusion was applied for 20 iterations with a 0.1 time step. (c)
Resultant segmentation of the image composed of Brodatz textures, using the
geodesic snakes approach.

algorithm [39] is used, and the Euler-Lagrange equation for a
level set ¢ is

%9 = bu(g) [ v (h(w)%)

1 al i i i 2 1 al i i i 2
_N;)\+(u0—c+) +N;/\(u0—c)] (32)

where 6.(¢) is the derivative of a regularized Heaviside func-
tion. The zero-crossings of the resulting ¢ generates the desired
segmentation.

VIII. RESULTS

To demonstrate the performance of the proposed method,
both synthetic and natural images are used. The Gabor feature
space is generated for this purpose and the texture features,
being the Gabor responses per channel or the maximum re-
sponse in scale, orientation and frequency, are obtained. The
metric of the image manifold embedded in the higher dimen-
sional feature space is calculated, and used to obtain a texture
edge detector, to be used in the geodesic active contours mech-
anism or in the combined model. The selection of the Gabor
filters is fine-tuned to obtain the best texture representation.
The geodesic snakes mechanism is initialized with a signed
distance function.

The first test image [Fig. 2(a)] is composed of two Brodatz
textures taken from a widely used photographic album [2]. First,
the image is convolved with Gabor wavelets of five scales, eight
orientations and a single frequency. Next, the texture features (in
this case, the orientation and scale which yielded the maximal
Gabor response for each pixel) are obtained. Following a cou-
pled Beltrami process of smoothing, the edge indicator function
is calculated, using the metric of the image manifold [Fig. 2(b)].
As can be seen, there are a few outliers in the background which
are weaker than the square’s gradients, but do not correspond to
any relevant boundary. These outliers are the result of using the
maximum value of the Gabor features rather than the complete
data. Nevertheless, the result obtained for the Brodatz example
is quite satisfying [Fig. 2(c)], and comparable to that obtained
by Sandberg, Chan and Vese [45].

The second example is of a zebra image [Fig. 3(a)], tested also
in our previous studies [44]. The texture features selected are
the orientation and scale which yielded the maximal Gabor re-
sponse for each pixel. The Beltrami diffusion procedure was ap-
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plied to obtain a smooth edge indicator [Fig. 3(b)]. The resulting
segmentation is shown in [Fig. 3(c)]. The segmentation result
obtained in this study is more accurate in comparison to that
obtained in our previous study [44]. This is primarily due to the
following improvements. First, a better selection of the Gabor
filters was implemented in the present study; indeed, selection of
the best (in terms of texture discrimination) Gabor filters is very
important, in general, and is especially crucial when considering
maximal values as we do. Second, application of Beltrami diffu-
sion to the resultant texture features yields a noise-free edge de-
tector function. Third, a careful selection of the geodesic snakes
parameters proves to be very important for obtaining good re-
sults. We refer the readers to Rousson etz al. [40] for a compa-
rable result obtained by the structure tensor-based approach. We
present another segmentation result for an image of a leopard
(Fig. 4). Segmentation fails in the neck area and in the face area,
because the texture in these areas is not very different from the
background, and thus, the Gabor filters used for this example
are limited in their capability to detect very similar textures.
Although further improvement of this result can be obtained,
it is interesting to evaluate the performance of our algorithm
with that of the geodesic active contours algorithm when sim-
pler edge detectors, such as the popular image gradient, are used.
Thus, we obtain the edge detection function using

1
E(VI) = o VI (33)
rather than using
1
E(|VI|) = detla) (34)
1%

As the segmentation results are very poor when using the usual
gradient information, we choose to present the edge detectors
obtained (Fig. 5). The left image is the edge detector when using
our approach. The boundary between the leopard and the back-
ground is obvious, and this explains the good segmentation re-
sult shown in figure (4). The middle image is the edge detector
when we use the gradients of the original image
1
B(vT) = 1+ |VI]Z
As can be seen, no boundary information exists. There is no
valuable edge information in the gradients of a textured image,
as the image itself contains several gradients within the tex-
tural structure. This is why the Gabor or similar transforms are
needed to obtain the boundary information in textured images.
To demonstrate the actual benefit of using the (1/ det(g,.,,) edge
detector, we also present the edge detector obtained from accu-
mulating the gradient contributions of all the Gabor channels
[Fig. 5(c)]. Thus, if the Gabor channels are marked as G;, and
1 is indexing the number of filters used N, the edge detector is
given by

(35)

E(VI)) = !

< (36)

2 2
1+3 (62 +a2)
1=1
In this case, the leopard’s silhouette can be seen, but there are
several outliers and important gradients are not present, so that

segmentation fails.
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Fig. 3.

(a) Real-life test image of a zebra.
orientations:[0, (7/6), (7/4), (/3),(x/2),(2%/3), (37 /4), (57 /6)]; scales: 1,2, 3]; and frequencies: [0.225,0.3,0.375]) and then applying the Beltrami
diffusion to each texture feature separately for ten iterations with a 0.1 time step. (c) Segmentation result for the zebra image.

oy
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Fig. 4. Segmentation result for a leopard using the geodesic snakes algorithm
for textures.

We wish to further assess the performance of our method,
and compare it to results that were obtained by another, previ-
ously proposed, algorithm. We restrict our comparison to a study
which uses a similar conceptual approach. Moreover, we would
like to explore the pros and cons of the edge and region-based
approaches.

In the study of Sandberg et al. [45], segmentation of the Bro-
datz image, also used here, is very good. Their study is based on
a variational formulation, in which a texture region is character-
ized by a certain value. Thus, the homogeneity in some variables
is important. This refers to the assumption that in each Gaborian
channel there is a certain mean response value for each texture.
The problem is that this approach will not always work. Con-
sider a simple example of a gray-level image which depicts a
bright circle on a dark background, with a tilted plane of illumi-
nation added to the image [Fig. 6(a)]. While the tilted illumina-
tion plane presents no problem to the geodesic snakes mecha-
nism [Fig. 6(b)], the approach of active contours without edges
fails in this simple segmentation task [Fig. 6(c)]. Implicit to the
active contours without edges is the assumption that each re-
gion, e.g., object and background, can be de scribed by the mean
gray level value, without regarding the edges. This example il-
lustrates that edges still contain valuable information.

A similar argument applies to textured images, where the
Gabor channels exhibit properties analogous to that of the
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(b) Inverse edge indicator of the zebra image obtained after applying Gabor filters (with

tilted illumination plane. We use for this purpose a synthetic
image composed of two “spatial chirps” [Fig. 7(a)]. The base
frequency of the squared object is selected to be higher than
that of the base frequency of the background. The dependence
of the image’s horizontal frequency on position resembles the
dependence of the gray level value on position in the previous
example. In fact, the low-pass filtered image resembles a sim-
ilar (though tilted toward the horizontal axis) gradient across
the field. The squared object is in this case darker than the
background.

The square object gradients are not the only ones present
in the edge detection function calculated using our approach
[Fig. 7(b)], but they are definitely the most dominant. Appli-
cation of geodesic snakes yields the segmentation result shown
in [Fig. 7(c)].

To compare with, application of the Gabor-based active con-
tours without edges process results in inaccuracies [Fig. 8(a)].
Let us examine the energy functional in the case of this approach

F(e7,7=,C) = u(length(C))
| X
+ / — > AL
inside(C) N ;
i i |2
X |u0(x,y) - c+| dzdy
| X
+ / — > AL
outside(C) N ;
X |u6(a:7y) — ci|2 dxdy

where C' is the contour, the constants cfi_ and ¢¢ that depend on
C are the averages of vy, inside and outside C, respectively, and
u > 0and )\f,_, AL > 0 are fixed parameters for each channel.
The second and third terms of the above expression are gen-
erated under the assumption that each Gaborian channel is en-
dowed with a certain mean value for each textured region (in-
side the curve and outside the curve). The contribution of these
terms in the evolution equation is depicted in [Fig. 8(c)]. Thus,
because of the frequency-tilted nature of the original image, the
minimum value of the defined energy functional is obtained for
a falsely segmented image.
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&)

Fig. 5.

Inverse edge indicator of the leopard image obtained when using: (a) (1/ det(g,...)) edge detector. (b) Image gradients edge detector: E(|VI|) = (1/(1+

|VI]?)). (c) Gradients of the Gbor channels: E(|VI|) = (1/ (1 +¥N, (sz + ny)))

(a) (b) (©)

Fig. 6. (a)Bright circle on a dark background, illuminated by a tilted plane that
generates a gradual change in intensity across the image. (b) Segmentation of
the circle-on-background image, using geodesic active contours algorithm. As
can be seen, the tilted background presents no problem for the geodesic snakes
process. (¢) Segmentation of the circle-on-background image, using the active
contours without edge algorithm. As can be seen, the tilted brightness of the
backgrounds results in outliers when using the active contours without edges

approach.
(a) & (c)
Fig. 7. (a) Test image composed of two “spatial chirps.” The object’s base

frequency is higher than that of the background. The Gabor filters applied
have seven scales: [0.6667,1,1.5,2.25,3.375,5.0625,7.5938], a single
frequency 0.4, and a single orientation zero. (b) Inverse edge indicator of the
two-chirps image used along with the Gabor space geodesic snakes algorithm.
(c) Segmentation of the two-chirps aquare image, using the gradient-based
Gabor space geodesic snakes algorithm.

o

Fig. 8. (a) Squared image segmented by using the active contours without
edge-based algorithm. The parameters (32) are: ¢ = 10, /\ﬂr = 100000,
At = 50,000.(b) Function used in the active contours without edges algorithm.
This function represents the contribution of the Gabor channels to the evolution
of the level set .

®)

The next example is composed of two textures [Fig. 9(a)].
The background texture of a brick wall exhibits a “chirp-like”
behavior. Following application of the Gabor filters, the absolute
values of the Gabor channels were considered as texture features.
Then, these texture features were submitted to the gaussian

(a) (b) ©)

Fig. 9. (a) Image of a “chirp-like” brick-wall background and a Brodatz
texture object. The Gabor filters used here have four orientations: 0, (7/4),
(7/2), (3m/4); six scales: [0.3277,0.4096,0.512,0.64, 0.8, 1]; and a single
frequency 0.4. The texture features are the responses obtained for each Gabor
channel. (b) Resultant segmentation following the Gabor space active contours
model. (c) Resultant segmentation following the active contours without edges
model for the Gabor space.

(2) (b) (c)

Fig. 10. (a) Test image which is composed of a bright ring on a darker
background with a tilted illumination plane. (b) Application of geodesic snakes
results in the detection of the outer boundary only. (c) Edgeless active contours
model fails to detect the boundary, and divides the image into two parts which
have the most different mean gray levels.

Beltrami diffusion mechanism. Applying the geodesic active
contours on the the diffused Gabor feature space provides a
satisfactory result [Fig. 9(b)], but the active contours without
edges scheme halts away from the boundary [Fig. 9(c)].
Next, we show that the combined approach may produce
better segmentation results than the geodesic snakes or the
edgeless active contours scheme—when they are independently
applied. The first example is again a simple gray level image,
yet, it demonstrates the usefulness of applying the IAC model.
The image [Fig. 10(a)] is composed of a bright ring and a
darker background. A tilted illumination plane is added to the
image at 45°. Thus, the top left corner is the darkest, and
the bottom right corner is the brightest, even brighter than
the ring. This simple image poses major difficulties to both
algorithms. The geodesic snakes algorithm stops at the outer
boundary, with no detection of the inner boundary [Fig. 10(b)].
The edgeless active contours model divides the image into
two parts which do not correspond to the actual boundaries
[Fig. 10(c)]. This is because the gradual change in gray level
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©

Fig. 11. (Left and middle) Curve’s evolution represents the combined
influence of both mechanisms. (Right) Application of the combined approach
results in an accurate detection.

values makes it impossible to characterize the object by one
constant value and the background by another constant value.
Application of the combined active contours model (with and
without edges) results in a good segmentation result, as can
be seen in Fig. 11.

If we test the idea of the combined approach on the zebra’s
image we have used before, we may observe the contribution
of each approach to the integrated scheme. Application of the
Chan—Vese algorithm resulted in a good segmentation, how-
ever with a large degree of noise [Fig. 12(a)]. Recall that ap-
plication of the geodesic snakes mechanism resulted in a much
smoother boundary [Fig. 3(c)]. The integrated result yields a
smooth boundary which captures the details more accurately
[Fig. 12(c)].

We have also tested the algorithms on another natural image
of a leopard lying on the grass. Gabor wavelets, with six cales,
[0.9803,0.9901,1,1.01,1.0201,1.0303], four orientations,
[0,(7w/4), (7 /2),(37/4)], and a single frequency 0.4 are ap-
plied to the image. The texture features are selected for this
example to be the Gabor responses for each channel. The
resulting segmentation using the geodesic snakes approach,
the active contours without edges approach, and the integrated
approach are shown in (Fig. 13). As can be seen, the results
are not satisfactory, and further improvement is desirable.
Clearly, part of the head, and the front pows, are more similar
to the background than to the main texture of the leopard. The
problem is caused because of the existence of more then one
textural region in the object (the leopard). Still, we would like
to present this result to show that combining both approaches
provides better results. For example, let us take a closer look on
the feet area. Application of the Gabor-space geodesic snakes
to the leopard image [Fig. 13(a)] fails to accurately detect the
leopard’s feet, as the gradient there is not sharp enough. We
may also see that the edgeless active contours model provides
unsatisfactory results [Fig. 13(b)]. However, the leopard’s feet
are better detected. The IAC mechanism produces the best
result, as can be seen in [Fig. 13(c)]. There are only a few
outliers, and the detection of the feet boundaries are improved
as can be seen in Fig. 14.

These are the best results we got for this image. We cannot say
that these are the absolute best results, as the problem involves
a large set of parameters (Gabor filters parameters, geodesic
snakes parameters, Chan—Vese parameters and the weighting of
the two approaches parameters), and each parameter may have
a substantial impact on the final result. However, the point we
would like to stress here is the usefulness of combining the two
conceptually different approaches.
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IX. DISCUSSION

In the introduction, we pointed out that there are several
methods to generate texture features, and at least that many
optimization criteria that can be implemented in order to obtain
the actual segmentation. It is difficult to assess the performance
of each algorithm, and to pinpoint the right choices in each step,
e.g., the quality of the feature selection, or the quality of the
optimization procedure. Each algorithm seems to be suitable
for a specific type of textured image segmentation problem
and, most likely, there does not exist a universal segmentation
algorithm that is optimal for the entire wide spectrum of natural
textured images. It is, therefore, still desirable to enhance the
repertoire of methods and algorithms available for applications,
and the fittest will survive. However, some rationale should
motivate the development of such algorithms so that they
will not proliferate without real necessity or purpose. With
these boundary conditions in mind, we presented here an
approach based on scaled (i.e., wavelet-type) and oriented
Gabor representation of images, where the Gaborian filters
responses or their maximal values define the texture features.
The analysis is based on the gradients present in these texture
features space. In some cases, this approach yields better
results than approaches based on some homogeneity criteria
like the edgeless active contours approach. Further, the combined
approach, which combines boundary detection with region
growing algorithms can serve as a more general scheme for
texture segmentation.

In this study, we examined a feature set which is generated
by taking the maximum amplitude of the Gabor coefficients
at each pixel location, along with the scale and orientation
for which this maximum value was obtained. This selection
is based on the assumption that maximum values provide
adequate information about textures, as long as the textures are
homogenous. The selection of maximal values provides only
partial information regarding image structure, and in turn, may
generate less than satisfactory segmentation results in the case
of more complex textures. The solution to this problem may
be a better selection of the feature space, and adding some
statistical data, in the spirit of [17], [22], [36], and [51]. A
simpler approach applied here, is to improve the Gabor feature
space by incorporating a Beltrami-based diffusion scheme [43],
[44]. Moreover, when the full set of Gabor responses was
selected, we have used a Gaussian—Beltrami diffusion scheme
to eliminate noise.

The main novelty of this study is in the representation of tex-
ture parameters as the embedding of a Riemannian surface in a
higher dimensional space. This representation enables the defi-
nition of a Riemannian structure and its implementation in the
definition of a texture edge indicator. This texture edge indicator
is subsequently used in a geodesic active contour algorithm for
segmentation. These ideas and techniques are general and are
applicable to other choices of texture feature spaces and other
multichannel spaces. The advantage of this approach over other
algorithms was demonstrated for nonpiecewise constant texture
images.

Another main contribution of this work is the comparison of
the geodesic snakes with the edgeless active contours model for
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Fig. 12. (a) Segmentation of the zebra using the active contours without edges approach results in several outliers. (b) Segmentation of the zebra image can be
accurate, smooth and capture details using the integrated approach.

Fig. 13. (a) Segmentation when applying the geodesic active contours model. There are inaccuracies where the edges are not sharp. (b) Segmentation when
applying the active contours without edges model. As can be seen, there are many outliers. (c) Combined approach results in a better segmentation, while producing
only a small number of outliers.

Fig. 14. Closer look at the leopard’s feet shows that (left) the combined approach better detects them than (right) the geodesic snakes alone.

the issue of texture segmentation. These attitudes are conceptu-  approaches were integrated into a unified algorithm in the work
ally different. The snakes mechanism relies on gradients present  of Kimmel [23]. The proposed energy functional is composed
in the image or image features and the edgeless approach con-  of a geodesic snakes term and a minimal variance term, which
siders the image to be a piecewise constant function. The two is the Chan—Vese approach [54]. In this study we generalized
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the unified algorithm of Kimmel for texture images. Both algo-
rithms were independently applied to test images, as well as the
integrated scheme. We have shown that both methods have their
drawbacks: the geodesic snakes may produce unsatisfactory re-
sults when the gradients are not sharp enough, and the edgeless
active contours model fails to handle intensity tilts in gray level
images, as well as frequency tilts in texture images. The com-
bined approach which accounts for both the gradients between
regions and region’s homogeneity, may produce better results
for gray level and texture images.
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