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Abstract

A dominating paradigm in neuroscience attributes components of perception and
behavior to synchronous spatio-temporal activities of subsets of neurons within
neural networks – the so-called Synfire chains. Synfire chains cohere to generate
neural cliques within the simultaneously active Synfires. The present study is con-
cerned with blind separation of Synfire activities and identification of neural cliques.
Assuming stationarity and, to a first approximation, linearity, we extend the Blind
Source Separation (BSS) technique to the spatio-temporal domain, to deal with dy-
namic signals, and apply it on our analysis of neural networks. To demonstrate the
concept of dynamic BSS, we first apply it in a relatively simple physical example of
separation of dynamic reflections. In the latter case, the physics of the problem is
well understood and the assumptions of linearity and stationarity are valid. In the
case of neural networks, the problem is much more involved, and the assumptions of
linearity and stationarity are not fully justified. Nevertheless, we demonstrate that
the basic approach yields interesting insight into the function of complex neural
activity. To better approximate the function of neural activity, we also investigate
the effect of non-linearities on blind separation of neural activity.

Key words: neurons, neural network, Synfire chains, cliques, ICA, BSS, sparse
ICA, SCA, dynamic sources, spatio-temporal, 3D ICA, Wavelet Packet Transform.
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1 Introduction

In recent years, there is concerted effort to decipher messages signaled si-
multaneously by the spatio-temporal firing patterns, typical of the dynamics
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of massively connected neural networks. The ’music’ of such neural activity
sounds at first as a cacophonous neural cocktail-party. However, as the Syn-
fire doctrine indicates, the global asynchronous activity masks the synchro-
nous spatio-temporal activities of subsets of neurons that constitute functional
Synfire chains. Our hypothesis is that Synfire chains cohere to generate more
complex neural patterns of activity for which we coin the term ’neural cliques’.
A clique is a more complex function of perception, concerning the identifica-
tion of a specific concept. Understanding cliques may be a useful tool for un-
derstanding higher brain functions. The concept of cliques may also enhance
further research concerning the capacity of ANN. It is therefore important to
develop new techniques for the analysis of such activity, within the context of
analysis of spatio-temporal firing patterns recorded by optical [1] or electrical
[2] techniques from a massive number of neurons, as well as for the analysis of
simulated large scale neural networks [3]. We examine the applicability of the
Blind Source Separation (BSS) technique for this interesting and challenging
problem.

Most of the research devoted to the problem of Blind Source Separation (BSS)
has been concerned with either one-dimensional functions of time or static
with images ([4],[5]). Yet, many physical systems generate linear mixtures of
dynamic data sets, and it is therefore desirable to extend the BSS techniques
to functions of both time and space. In biomedical applications such as those
encountered, for example, in functional MRI, one is interested in the dynamic
activity of specific loci of the brain. Another application concerns video se-
quences acquired through a semireflective medium and thereby masked by
superimposed reflections, such as a movie recorded through a glass windshield
of a moving vehicle, or the visual environment observed through the canopy
of an airplane. The video sequence acquired in such cases can be represented
as a three-dimensional (volumetric) data cube, in which spatial images are
stacked along a third axis (Fig. 1).
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Fig. 1. Video sequence considered as a volumetric (cubic) date set. Shown is a data
set comprised of three consecutive frames obtained from the sequence. Note the
relative movement of the objects.
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2 Independent Component Analysis (ICA)

In problems requiring BSS, an N-channel sensor signal {xi}N
i=1 is generated

by M unknown scalar source signals {sj}M
j=1, linearly mixed by an unknown

constant N ×M mixing matrix, where each source or mixture is a function of
the independent variables {ξk}K

k=1.
In matrix notation, the N-dimensional vector of mixtures, X, is equal to the
product of the N ×M mixing matrix by the M-dimensional sources vector, S:

X(ξ1, ξ2, . . . , ξK) = A · S(ξ1, ξ2, . . . , ξK). (1)

Under the assumption that the sources are statistically independent, the BSS
method yields an estimate of Ã, the unknown mixing matrix, without prior
knowledge of the sources and/or the mixing process. The sources are recovered
(up to permutation and scale) by using an inverse of the estimated mixing
matrix, provided it exists:

S̃(ξ1, ξ2, . . . , ξK) = W̃ ·X(ξ1, ξ2, . . . , ξK) = Ã−1 ·X(ξ1, ξ2, . . . , ξK), (2)

where W̃ is the estimated ’unmixing’ matrix.

2.1 Sparse Component Analysis (SCA)

It has been shown that when sources are sparse, they can be easily recovered
from their linear mixtures using simple geometrical methods [6],[7],[8]. This
is based on the observation that whenever sources are sparse, there is a high
probability that most data points of the mixtures will result from the contri-
bution of only one source. Using such geometrical methods, one can relax the
condition of statistical independence. If we plot the N-dimensional scatter plot
wherein each axis represents one of the mixtures, a co-linear cluster emerges
for each subset of mixtures’ data points that are contributed by one source
only. Recall that the projection onto the space of sparse representation de-
couples the contributions of the sources to most of the mixtures’ data points;
this is the essence of the implementation of sparsity in the context of BSS. It
can be shown that the coordinates of the vectors representing the centroids of
these clusters correspond to the columns of the mixing matrix A (Fig. 2).

The simplest way to estimate the mixing matrix is to calculate the orienta-
tions of the clusters and select the optimal M angles from the histogram of
angles. Another algorithm projects the data points onto a hemisphere, then
uses clustering (such as Fuzzy C-means) in order to recover the orientations.
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Another related maximum-likelihood-based approach is the well-known Info-
max [9],[10].
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Fig. 2. Three sparse sources mixed into two mixtures. The orientations of the three
co-linear centroids of the sub-clusters in the scatter plot correspond to the columns
of the mixing matrix.

2.2 Sparse Decompositions

2.2.1 Overcomplete Representations

Natural images and image sequences are not typically sparse. In order to
exploit the methods previously described, we have to apply a transformation
that yields a sparse representation of the signals. It has been shown that
for a wide range of natural images, smoothed derivative operators yield a
good, and even optimal, sparsification results [11]. However, an overcomplete
representation obtained, for example, by the Wavelet Packet transform (WPT,
proposed in [7]) matches better the specific structure of a given set of images
and thereby yields better sparsification. The latter, in turn, facilitates and
improves the estimation of the mixing matrix. The local nature of the wavelet-
type transforms can highlight specific features of distributions (such as the
distinct orientations in a scatter plot) based on a subset of data points of the
transformed signal. Such highly structural distributions are not clearly present
in the highly correlated original, non-transformed, signal (Fig. 3).

2.2.2 WP transform

The Wavelet Packet family consists of the triple-indexed family of functions:

ϕjnl(ξi) = 2j/2ϕn(2jξi − l) , j, l ∈ Z, n ∈ N

ξ1 ≡ x, ξ2 ≡ y, ξ3 ≡ t

ϕjnl=
∏
i

ϕjnl(ξi)

(3)
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Fig. 3. Wavelet Packets (WP)-based multinode data structure of a 1D signal
(adopted from [7]). The upper node is not sparse, while the leftmost lower node
highlights the orientations of the two centroids very vividly.

According to the formalism of the Wavelet Packet transform, a signal is re-
cursively decomposed into its approximation (L) and detail (H) components.
In the case of 2D signals, using separable wavelets, the signal is decomposed
into its approximation and vertical, horizontal and diagonal detail sub-images.
For three-dimensional data cube, the signal is decomposed into 8 sub-volumes
(Fig. 4).
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Fig. 4. WP decomposition. Left: 2D decomposition. Right: 3D decomposition.

We used a separable transformation, for the sake of simplicity, by transforming
rows first, then columns and then time (depth) axis. Nonseparable wavelets
offer important advantages in that they are inherently endowed with more de-
grees of freedom that can be exploited in their design. However, nonseparable
wavelets are much more complex to deal with [12] and their application in the
context of sparsification is therefore beyond the scope of this study.

2.2.3 Source Separation using the WPT

After the mixture signals are decomposed into WP tree nodes using the WPT
[7], we search for the sparsest node (Fig. 3). A quality criterion that assigns
high values for sparse nodes and lower values for less sparse nodes is computed
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for every node. Common choices for such quality criteria are entropy or global
distortion. The best node (or the top few nodes) is chosen and used as input
data for the geometrical BSS algorithm.
Using the WPT has another advantage: because of downsampling in the
process of the signal transformation, the number of data points in each node
is significantly smaller than the number of data points in the mixture signals.
This reduction in the number of data points speeds up the processing.

2.3 BSS of Dynamic Reflections

In order to test our method of dynamic (spatio-temporal) BSS, we explore
the example of separation of dynamic reflections: a situation wherein a virtual
(reflected) image is superimposed on a dynamic visual scene. To this end we
extend the study concerned with separation of reflections from static images
[11] to the case of 3D dynamic images, i.e. video. The problem of dynamic
reflections is a good test case since the physics of it is well understood and
the assumptions of both linearity and stationarity are valid.

In the context of separation of reflections, the BSS problem usually reduces
to the case of M=2 sources. The observed mixture is then given by

x(ξ1, ξ2, t) = a11s1(ξ1, ξ2, t) + a12s2(ξ1, ξ2, t), (4)

where x, s1 and s2 are dynamic images, usually acquired as video sequences.
It is assumed here that the dynamics of the image and of the superimposed
reflections are limited to planar translation of rigid bodies. The more difficult
problem of non-planar motion and rotation as well as non-rigid distortions

are beyond the scope of this paper, and will be dealt with elsewhere. Likewise,
the coefficients a11 and a12 are assumed to be constant, approximating spatial
invariance and linear mixing [11].

Since the reflected light is polarized, by using a linear polarizer, the relative
weights of the two mixed video sequences can be varied to yield N different
mixtures of the form:

xn(ξ1, ξ2, t) = an1s1(ξ1, ξ2, t) + an2s2(ξ1, ξ2, t) : n = 1, . . . , N . (5)

Thus, we can use two or more video sequences obtained with different polar-
izations and separate objects and reflections. Simulation results are shown in
Fig. 5. The results (video movies) of an experiment with real data are available
on the web at http://visl.technion.ac.il/~hilitg/dynamic_scenes.htm.
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(a)  
 (b)

Fig. 5. Simulation of blind separation of dynamic (moving) image from a superim-
posed reflection. (a) Shown are four frames from one mixture (top) and four frames
extracted from the corresponding sequence of the recovered source (bottom). (b)
Data cube of one mixture. The arrows trace the trajectories of movements of the
image and reflection, relatively to a stationary background.

3 BSS of Neural Cliques

New optical [1] and electrical [2] imaging techniques for simultaneous recording
of activity of populations of neurons in the brain tissue have been developed
in recent years. Whereas traditional methods for detection of action potentials
in neurons were limited to a small number of neurons, it is now possible to
record massive neural activity with spatial resolution of a single cell and a
temporal resolution of a single action potential. It is therefore important to
develop new techniques for the analysis of such activity.

The study of large populations of neurons enables the identification and analy-
sis of neural phenomena such as Synfire chains [13]: waves of synchronous
neural activity that propagate through biological neural network (Fig. 6).
Since the messages of concepts signaled by Synfire chains are often associated
with each other, examining such spatio-temporal patterns of firing neurons
led us to the assumption that simultaneous activity of Synfire chains coheres
into representation of components of more complex functions of behavior and
perception in the form of ’neural cliques’. A clique is thus a synchronous
spatio-temporal spiking activity across and within several different Synfire
chains.

To highlight the meaning of the clique, consider the example of recognition
of different digits. Either when we hear the word ”one” or when we look at
an image of the digit ”1” (Fig. 7), our brain must identify the same concept
signaled by neural patterns associated with this concept. The Clique is, in
a way, higher order Synfire and neural activity within a neural network of a
critical size. In sorting the dynamic patterns of neural activity, it is useful to
consider a conceptual matrix of Synfire chains and cliques. Our goal in this
paper is to illustrate these concepts by means of blind separation of spatio-
temporal neural activities.
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Fig. 6. A raster plot of Synfire chains in a biological neural network. Waves of syn-
chronous activity and between them quiescent periods. Left, simulated data. Right,
spontaneous activity of a biological neural network recorded from multi-electrode
array (Adopted with permission from S. Marom and D. Eytan.)

A neural network maps, at each moment, sensory or other inputs impinging on
it, into meaningful neural activity. We assume, to a first order approximation,
that every spiking pattern is a linear combination of cliques, with the addition
of clutter and some noise. To better understand the concept of cliques in the
context of spatio-temporal neural network activity, recall the representation
of spatio-temporal data as a cubical data set (Fig. 1). Here each frame corre-
sponds to a slice along the time axis of duration 4t. A clique then corresponds
to correlated pattern of activity of two or more such slices of duration T > 4t.

To provide some intuitive insight into the analysis of neural cliques by means
of BSS technique, we generate data using CSIM circuit-tool; a simulator for
neural networks [14]. The network connectivity is randomized and then paths
for each clique are randomly chosen and selectively strengthened. Each clique
is stimulated by at least two different input neurons (Fig. 7).

 

Clique 2 

Input 2:   1 

Input 4:   2 

Input 1: "one" 

Input 3: "two" 

Clique 1 

Fig. 7. Simulation of a two-cliques scenario, each being characterized by a different
spatio-temporal sequence. Black arrows indicate synaptic chains associated with
Synfire activities related to the clique, while gray (thin) arrows are samples of
unrelated network connections.

The discrete output spiking activity is converted into continuous analog signal
which, in turn, is quantized for further computation. Since every input neuron
also stimulates other neurons except those participating in the clique, the
network also exhibits background activity that is not related to cliques (gray
arrows in Fig. 7).
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Using our spatio-temporal BSS approach, we then project the data deduced
from slices onto a scatter plot wherein each axis represents activity in one
mixture slice. Each point then represents the activity of a neuron at a specific
time in the slice.
Investigating the mutual activity of two slices, one often observes that two
slices that are selected within the duration of co-activation do not necessarily
exhibit coincidence of spike activity. In fact, the spatio-temporal activity may
be almost exclusively restricted to only one slice. Under these circumstances,
the distribution of activity projected onto the scatter plot will form either a
vertical or a horizontal cluster (Fig. 8). The diagonal cluster corresponds to
the coincident activity.
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Fig. 8. A scatter plot of two slices of data.

In order to see how cliques appear on the scatter plot, we simulated a network
and tested its response to two inputs that activate the same clique. We then
projected the data points onto a 2D scatter plot. To better highlight the clique
we also show a 3D visualization of the same scatter plot, in which the height of
each point (z-axis) represents the number of data points at each coordinate.
The spiking patterns and results are shown in Fig. 9. The 3D scatter plot
shows that the main diagonal has relatively many data points which constitute
a clique. We highlight those data points by a piecewise-linear trajectory for
clarity.
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Fig. 9. (a) Comparison of two spiking patterns. (b) A 2D scatter plot. (c) A 3D
scatter plot of the same clique. Note that the diagonal elements are much higher
than the other scatterplot data points.

To further illustrate the emergence of a clique from the co-activation of 3
different activity slices, we depict in Fig. 10 a 3D scatter plot wherein the
color and size of the dot in the plot depends on the number of data points
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along each coordinate. The main diagonal (red dots) shows data points of the
emerging clique, while the other points show points not related to the clique
activity.
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Fig. 10. Left: Comparison of three spatio-temporal spiking patterns. Right: The
emergence of a clique illustrated in a 3D scatter plot.

It should be stressed, however, that unlike the example of blind separation of
’sources’ out of video data, here we face a non-linear phenomenon that limits
the power of ICA-type techniques. The projection of nonlinearly-mixed data
onto the scatter plots generates distributions that are not yet well understood.
Nevertheless, the formalism and approach of projecting the data onto a scatter
plot is powerful in gaining some insight into the structure of non-linearly
interacting sources or cliques.

4 Non-linearity of the neural network

Both biological and artificial neural networks process their inputs non-linearly
[15]. We therefore examine the effect of a non-linear mixing process on a
pattern of neural spikes. We consider a simple model for a neuron, with a
shifted version of the parametric non-linear logistic function:
fλ(x) = 1

1+exp(x/λ)
, (Fig. 11).
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Fig. 11. (a) A model of a non-linear mixing of spatio-temporal spike patterns S1
and S2. (b) The non-linear logistic function is depicted for various values of the
parameter λ.

10



In order to see the effects of non-linearity, we consider the mixing of two spatio-
temporal spike patterns, characterized by having some mutual spikes within
the two patterns (Fig. 12). We now test the effect of nonlinear processing of the

Pattern 1

ne
ur

on
s

time
20 40 60 80

5

10

15

20

Pattern 2

ne
ur

on
s

time
20 40 60 80

5

10

15

20

Mutual components

ne
ur

on
s

time
20 40 60 80

5

10

15

20

Fig. 12. Two spatio-temporal spike patterns and their mutual activity pattern. Pat-
terns are shown as a 2D image for clarity, where the x-axis is time and y-axis is the
neuron number.

mixtures using different weights of the linear mixing and for different values
of the parameter λ that changes the nonlinearity from ’soft’ to ’hard’. Results
such as those depicted in Fig. 13 indicate that the mutual components are most
salient when the mixing coefficients, i.e. the synaptic weights, are roughly of
the same strength (rightmost column). The hard non-linearity (bottom row)
then preserves only the highest values of the signal. Hard limiter (i.e. non-
linearity) quantizes the signal to an approximately 1-bit signal.
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Fig. 13. Post-nonlinear mixture of two spike patterns for different mixing coefficients
and non-linearity constants.

It is interesting to compare the correlation coefficient between the mutual
components of the patterns (right pattern in Fig. 12) and the different outputs
of mixing process:
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correlation f(0.9*S1+ 0.1*S2) f(0.7*S1+ 0.3*S2) f(0.5*S1+ 0.5*S2)

λ = 1 0.4477 0.5225 0.5692

λ = 0.1 0.4280 0.5136 0.6567

λ = 0.01 0.3947 0.4949 0.7671
Table 1
A comparison of correlation coefficients between the mutual components of neural
patterns and the output of a non-linear neuron model.

When the mixing process is linear (Fig. 13 top row), both patterns can be
identified in the output pattern, according to the linear mixing weights. Hard
non-linearity emphasizes components of activity with higher amplitudes.
As the mixing coefficients become symmetric (right column of Fig. 13), the
mutual components become more salient and the correlation to the mutual
components become larger. The highest correlation is achieved when the in-
teraction is highly non-linear and for symmetric mixing, i.e. equal coefficients
(a1 = a2 = 0.5). In this case, the mutual components are dominant while the
non-mutual components almost disappear.

5 Discussion

Identifying coherent sources of neural activity in neural networks is a chal-
lenging and demanding task. Our understanding of neural activity still lacks
a clear definition of what type of activities constitute coherent sources. Here
we coin the term ’neural cliques’, where sources are defined by the concep-
tual meaning of the activity, i.e. each source is associated with a concept in
our brain. The cliques can be composed by several Synfire chains and can be
represented by a matrix associating clique activity with Synfire activity.

We extend the SCA approach [8] to three-dimensional sources, and show good
separation results for the simple case of removal of reflections from a video
sequence. The extension to 3D problems is rather simple, and it broadens the
kind of problems dealt with until now to dynamic sources, which are usually
the sources generated by real-world systems. However, unlike the physics of
separation of superimposed reflections, which can, to a good approximation,
be considered linear and stationary, the neural cliques separation is necessarily
non-linear, and most likely non-stationary. Nevertheless, as we have demon-
strated here, the novel approach of using BSS techniques in isolation of the
fingerprints of coherent neural activity, can be instrumental in highlighting the
functions of biological neural networks. It may be also instrumental in stud-
ies attempting to reverse engineer the structures of linear skeletons of such
networks using spatio-temporal spiking activity. We show how practical is it
to use scatter-plots in order to visualize the clique and find coherent mutual

12



activity in neural networks. We conclude by examining how various degrees
of post non-linearity (PNL) processing affects the output of a simple neuron.
We further show that hard non-linearity and symmetric neural connections
emphasize mutual components in neuronal patterns.
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