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Abstract. The relative Newton algorithm, previously proposed for quasi maxi-
mum likelihood blind source separation and blind deconvolution of one-dimensional
signals is generalized for blind deconvolution of images. Smooth approximation
of the absolute value is used in modelling the log probability density function,
which is suitable for sparse sources. We propose a method of sparsification, which
allows blind deconvolution of sources with arbitrary distribution, and show how
to find optimal sparsifying transformations by training.

1 Introduction

Two-dimensionalblind deconvolution(BD) is a special case of a more general prob-
lem of image restoration. The goal of BD is to reconstruct the original scene from an
observation degraded by the action of a linear shift invariant (LSI) system, when no
or very little a priori information about the scene and the degradation process is avail-
able, hence the term ”blind”. BD is critical in many fields, including astronomy, remote
sensing, biological and medical imaging and microscopy.

According to the convolution model, the observed sensor imageX is created from
the source imageS passing through an LSI system characterized by the point spread
function A, X = A ∗ S. We assume that the action ofA is invertible (at least ap-
proximately), i.e. there exists some other kernelW such thatA ∗ W ≈ δ. This as-
sumption holds well especially in the case of blurring kernels resulting from scatter-
ing (such kernels are usually Lorenzian-shaped and their inverse can be approximated
by small FIR kernels). The aim of BD is to find such adeconvolution(restoration)
kernel W that produces an estimatẽS of S up to integer shift and scaling factor:
Ŝmn = (W ∗X)mn ≈ c · Sm−∆M ,n−∆N .

Unlike approaches estimating the image and the blurring kernel [1, 2], we estimate
the restoration kernel only, which results in a lower dimensionality of the problem. Here
we present aquasi maximum likelihood(QML) BD algorithm, which generalizes the
fast relative Newton algorithm previously proposed for blind source separation [3] and
1D BD [4]. We also propose optimal distribution-shaping approach (e.g. sparsification),
which allows to use simple and convenient sparsity prior for a wide class of images.
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2 QML blind deconvolution

Denote byY = W ∗X the source estimate and let us assume thatS is zero-mean i.i.d.
In the zero-noise case, the normalized minus-log-likelihood function of the observed
signalX, given the restoration kernelW , is

`(X; W ) = − 1
4π2

∫ π

−π

∫ π

−π

log |FW (ξ, η)| dξdη +
1

MXNX

∑
m,n

ϕ(Ymn), (1)

where ϕ(s) = − log ps(s), ps(s) stands for the source probability density function
(PDF),MX × NX is the observation sample size, andFW (ξ, η) denotes the Fourier
transform ofWmn. We will henceforth assume thatW is an FIR kernel, supported on
[−M, ...,M ] × [−N, ..., N ]. Cost functions similar to (1) were also obtained in the
1D case using negative joint entropy and information maximization considerations [5].
In practice, it is difficult to evaluate the first term of`(X;W ) containing the integral.
However, it can be approximated with any desired accuracy using FFT.

Source images arising in most applications have usually multi-modal non-log-concave
distributions. These are difficult to model and are not suitable for optimization. How-
ever, consistent estimator ofS can be obtained by minimizing̀(X; W ) even when
ϕ(s) is not exactly equal to− log pS (·). Suchquasi-ML estimationhas been shown
to be practical in instantaneous blind source separation [6, 3, 7] and blind deconvolu-
tion of time signals [4]. For example, when the source is super-Gaussian (sparse), a
smooth approximation of the absolute value function is a good choice forϕ(s) [8, 9].
Although natural images are usually far from being sparse, they can be transformed into
a space of a sparse representation. We will therefore focus our attention on modelling
super-Gaussian distributions using a family of convex smooth functions

ϕλ(s) = |s| − λ log
(

1 +
|s|
λ

)
(2)

with λ being a positive smoothing parameter;ϕλ(s) → |s| asλ → 0+.
The gradient of̀ (X;W ) w.r.t Wij is given by (for derivation see [10]):

∂`

∂Wij
= −Q−i,−j +

1
MXNX

∑
m,n

ϕ′(Ymn) Xm−i,n−j , (3)

whereQmn is the inverse DFT ofFW−1
kl . The Hessian of̀(X;W ) is:

∂2`

∂Wij∂Wkl
=

1
MXNX

∑
m,n

ϕ′′(Ymn) xm−i,n−jxm−k,n−l + R−(i+j),−(k+l), (4)

whereRmn is the inverse DFT ofFW−2
kl . Both the gradient and the Hessian can be

evaluated efficiently using FFT.

3 The fast relative Newton method

A fast relative optimization algorithm for blind source separation, based on the Newton
method was introduced in [3]. In [4] it was used for BD of 1D signals. Here we use the
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relative optimization framework for BD of images. The main idea of relative optimiza-
tion is to iteratively produce an estimate of the source signal and use it as the observed
signal at the subsequent iteration:

Relative optimization algorithm

1. Start with initial estimates of the restoration kernelW (0) and the sourceX(0) =
W (0) ∗X.

2. Fork = 0, 1, 2, ..., until convergence
3. Start withW (k+1) = δ.
4. Using an unconstrained optimization method, findW (k+1) such that

`(X(k); W (k+1)) < `(X(k); δ).
5. Update source estimate:X(k+1) = W (k+1) ∗X(k).

6. End

The restoration kernel estimate atk-th iteration isŴ = W (0)∗...∗W (k), and the source
estimate iŝS = X(k). This method allows to construct large restoration kernels growing
at each iteration, using a set of relatively low-order factors. It can be seen easily that
the relative optimization algorithm has uniform performance, i.e. its step at iterationk
depends only onA ∗W (0) ∗ ... ∗W (k−1).

Step 4 can be carried out using any unconstrained optimization algorithm. Particu-
lary, it was found that a single Newton step can be used, yielding very fast convergence.
However, its use is limited to small values ofM, N andMX , NX due to the complexity
of Hessian construction, and solution of the Newton system. This complexity can be
significantly reduced if special Hessian structure is exploited. Near the solution point,
X(k) ≈ cS, hence`(X; δ) evaluated at each relative Newton iteration becomes ap-
proximately`(cS; δ). For a zero-mean i.i.d. source and sufficiently large sample size
(in practice,MXNX > 102), the Hessian has an approximately diagonal-anti-diagonal
form with ones on the anti-diagonal [10]. Using this approximation, only the main di-
agonal of the Hessian matrix has to be evaluated at each iteration, and the solution of
the Newton system∇2`d = −∇` separates into the set of2× 2 systems of the form

(∇`−i,−j

∇`ij

)
= −

(∇2`−i,−j,−i,−j 1
1 ∇2`ijij

)(
d−i,−j

dij

)

for (i, j) 6= 0, and an additional equation∇`00 = −∇2`0000 d00. We will henceforth
refer to this approximate Newton step as to thefast relative Newton method, since its
complexity is of the same order as that of the gradient-based methods.

4 Optimal sparse representations of images

The QML framework presented in Section 2 is valid for sparse sources; this type of a
prior of source distribution is especially convenient since the prior term in the under-
lying optimization problem is convex. In addition, deconvolution of sparse sources is
reported to be very accurate. However, natural images arising in the majority of BD ap-
plications can by no means be considered to be sparse in their native space of represen-
tation (usually, they are sub-Gaussian), and thus such a prior is not valid for ”real-life”
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sources. On the other hand, it is very difficult to model actual distributions of natural
images, which are often multi-modal and non-log-concave. This apparent gap between
a simple model and the real world calls for an alternative approach. In this section, we
show how to overcome this problem using sparse representation.

While it is difficult to derive a prior suitable for natural images, it is much easier to
transform an image in such a way that it fits some universal prior. In this study, we limit
our attention to the sparsity prior, and thus discuss sparsifying transformations, though
the idea is general and is suitable for other priors as well. The idea ofsparsificationwas
successfully exploited in BSS [8, 7, 11, 10]. It was shown in [10] that even such simple
transformation as a discrete derivative can make the image sparse. However, most of
these transformations were derived from empirical considerations. Here we present a
criterion for finding optimal sparsifying transformations.

Let assume that there exists asparsifying transformationTS , which makes the
sourceS sparse (wherever possible, the subscriptS in TS will be omitted for brevity).
In this case, our algorithm is likely to produce a good estimate of the restoration ker-
nel W since the source properties are in accord with the sparsity prior. The problem
is, however, that in the BD setting,S is not available, andT can be applied only to
the observationX. Hence, it is necessary that the sparsifying transformation commute
with the convolution operation, i.e.(T S) ∗ A = T (S ∗ A) = T X, such that applying
T to X is equivalent to applying it toS. Obviously,T must be a shift-invariant (SI)
transformation.1

Using the most general nonlinear form ofT , we have a wide class of sparsifying
transformations. An important example is a family of SI transformations of the form
(T S)mn =

√
(T1 ∗ S)2mn + (T2 ∗ S)2mn, whereT1, T2 are some convolution kernels.

After sparsification withT , the prior term of the likelihood function becomes
∑
m,n

|(T Y )mn| =
∑

n

√
(T1 ∗ Y )2mn + (T2 ∗ Y )2mn, (5)

which is a generalization of the 2Dtotal-variation (TV) norm. The TV norm, which
has been found to be a successful prior in numerous studies related to signal restoration
and denoising [12–14], and was also used by Chan and Wong as a regularization in BD
[1], is obtained whenT1, T2 are chosen to be discretex- andy-directional derivatives.

For simplicity, we limit our attention in this study to linear shift-invariant (LSI)
transformations, i.e.T that can be represented by convolution with asparsifying kernel
T S = T ∗ S. Thus, we obtain a general BD algorithm, which is not limited to sparse
sources. We first sparsify the observation dataX by convolving it withT (which has to
be found in a way described in Section 4.1), and then apply the sparse BD algorithm on
the resultX ∗T . The obtained restoration kernelW is then applied toX to produce the
source estimate.

An important practical issue is how to find the kernelT . By definitionT must pro-
duce a sparse representation of the source; it is obvious thatT would usually depend on
S, and also,T does not necessarily have to be stable, since we use it as a pre-processing
of the data and hence never need its inverse. Let assume that the sourceS is given

1 In BSS problems, the sparsifying transformation needs to be linear and not necessarily shift-
invariant, e.g. wavelet packets were used for sparsification in [8, 7].
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(this is, of course, impossible in reality; the issue of what to use instead ofS will be
addressed in Section 4.1). It is desired that the unity restoration kernelδmn be a local
minimizer of the QML function, given the transformed sourceS ∗ T as an observation,
i.e.:∇`(δmn; S ∗ T ) = 0. Informally, this means thatS ∗ T optimally fits the sparsity
prior (at least in local sense). Due to the equivariance property,∇`(δmn;S ∗ T ) = 0 is
equivalent to∇`(T ; S) = 0. In other words, we can define the following optimization
problem:

min
T

`(T ; S), (6)

whose solution is the optimal sparsifying kernel forS. This problem is equivalent to the
problem solved for deconvolution itself. The log-spectrum term in`(T ;S) eliminates
the trivial solutionT = 0.

4.1 Finding the sparsifying kernel by training

Since the source imageS is not available, computation of the sparsifying kernel by the
procedure described before is possible only theoretically. However, empirical results
indicate that for images belonging to the same class, the proper sparsifying kernels are
sufficiently similar.

Let C1 denote a class of images, e.g. human faces, and assume that the unknown
sourceS belongs toC1. We can find find imagesS(1), S(2), ..., S(NT ) ∈ C1 and use
them to find the optimal sparsifying kernel ofS. Optimization problem (6) becomes in
this case

min
T

{
− 1

4π2

∫ π

−π

∫ π

−π

log |FT (ξ, η)| dξdη +
1

MXNX

NT∑

i=1

∑
m,n

ϕ((T ∗ S(i))mn)

}
,

i.e.T is required to be the optimal sparsifying kernel for allS(1), S(2), ..., S(NT ) simul-
taneously. The imagesS(1), S(2), ..., S(NT ) constitute atraining set, and the process of
finding suchT as training. Given that the images in the training set are ”sufficiently
similar” to S, the optimal sparsifying kernel obtained from training is similar enough
to TS .

5 Simulation results

The QML-based deconvolution approach was tested on simulated data under zero-
noise conditions. As a criterion for evaluation of the reconstruction quality, we used
the signal-to-interference-ratio (SIR) in sense of theL2, L∞ norms, and the peak SIR
(PSIR) in dB units [10]. In the first test, a real aerial photo of a factory was used as
the source image, and a synthetic one (drawn using PhotoShop) as the training image
(Figure 1). A3 × 3 sparsifying kernel is found by training on a single image, then the
same kernel is used as a pre-processing for BD applied to a different blurred source
image from the same class of images. The source image was convolved with a symmet-
ric FIR 31 × 31 Lorenzian-shaped blurring kernel. Deconvolution kernel was of size
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) training synthetic image, (b) source aerial imageS, (c) blurred imageS ∗ A, (d) spar-
sified training image, (e) sparsified source, (f) restored image.

Table 1.SIR, SIR∞ and PSIR of the restored images.

Source SIR [dB] SIR∞ [dB] PSIR [dB]

S1 Susy 17.7994 22.2092 22.6132

S2 Aerial 17.0368 23.5482 9.6673

S3 Gabby 19.3249 23.8109 29.8316

S4 Hubble 14.5152 17.1552 19.8083

3 × 3. The sparsifying kernel obtained by training was very close to a corner detector.
The signal-to-interference ratio in the deconvolution result wasSIR = 20.1561 dB,
SIR∞ = 25.7228 dB.

In the second test, four natural source images were used:S1 (Susy),S2 (Aerial), S3

(Gabby) andS4 (Hubble) (Figure 2, top). Nearly-stable Lorenzian-shaped kernels were
used to model the convolution system. This type of kernels characterizes scattering me-
dia, such as biological fluids and aerosols found in the atmosphere [15]. The observed
images are depicted in Figure 2 (middle). Fast relative Newton step with kernel size set
to 3× 3 was used in this experiement. The smoothing parameter was set toλ = 10−2.
Corner detector was used as the sparsifying kernel. Optimization was terminated when
the gradient norm reached10−10. Convergence was achieved in10−20 iterations (about
10 sec). The restored images are depicted in Figure 2 (bottom). Restoration quality re-
sults in terms of SIR, SIR∞ and PSIR are presented in Table 1.
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Susy Aerial Gabby Hubble

Fig. 2. Top: source images used in the simulations; middle: blurred images (observations); bot-
tom: restored images.

6 Conclusion

The QML framework, recently presented in the context of 1D deconvolution [4] is also
attractive for BD of images. We presented an extension of the relative optimization
approach to QML BD in the 2D case and studied the relative Newton method as its
special case. Similarly to previous works addressing deconvolution in other spaces (e.g.
[16]) and our studies of using sparse representation in the context of BBS, in BD the
sparse prior appears very efficient as well. We showed a training approach for finding
optimal sparse representations, yielding a general-purpose BD method. A particular
class of LSI sparsifying transformations generalizes some previous results such as the
total variation prior [12–14]. We also showed how optimal sparsifying transformations
can be found by training.

Simulation results demonstrated the efficiency of the proposed methods. Although
we have limited our attention to noiseless BD, it is important to emphasize that the
sparsification framework is applicable to the noisy case as well. Sparsifying kernels are
typically high-pass filters, since by their very nature sparse signals have high-frequency
components. Such kernels have the property of amplifying noise – thus in case when
the signal is contaminated by additive noise, using such kernels in undesired. To cope
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with the problem of noise, the signal should be smoothed with a low-pass filterF and
afterwards the sparsifying kernelT should be applied. Due to commutativity of the
convolution, it is equivalent to carrying out the sparsification with a smoothed kernel
T ∗ F .

Potential applications of our approach are in optics, remote sensing, microscopy and
biomedical imaging, especially where the SNR is moderate. This approach is especially
accurate and efficient in problems involving slowly-decaying (e.g. Lorenzian-shaped)
kernels, which can be approximately inverted using a kernel with small support. Such
kernels are typical of imaging through scattering media.
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