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Blind Deconvolution of Images Using
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Michael M. Bronstein, Student Member, IEEE, Alexander M. Bronstein, Student Member, IEEE, Michael Zibulevsky,
and Yehoshua Y. Zeevi

Abstract—The relative Newton algorithm, previously proposed
for quasi-maximum likelihood blind source separation and blind
deconvolution of one-dimensional signals is generalized for blind
deconvolution of images. Smooth approximation of the absolute
value is used as the nonlinear term for sparse sources. In addition,
we propose a method of sparsification, which allows blind decon-
volution of arbitrary sources, and show how to find optimal spar-
sifying transformations by supervised learning.

Index Terms—Blind deconvolution, quasi-maximum likelihood,
relative Newton optimization, sparse representations.

1. INTRODUCTION

WO-DIMENSIONAL (2-D) blind deconvolution (BD) is

a special case of a more general problem of image restora-
tion. The goal of BD is to reconstruct the original image from
an observation degraded by the action of a linear shift invariant
(LST) system, when no or very little a priori information about
the image and the degradation process is available, hence the
term “blind.” BD is critical in many fields, including astronomy
[1], [2], remote sensing [3], biological and medical imaging [4],
[5], microscopy [6], [7], etc. Typically, the image is degraded
by imperfections of an optical system and distortions caused by
light propagation in the medium, and can be presented in terms
of convolution of the source image with some blurring kernel
or point spread function (PSF); in such applications, the term
deblurring is synonymous to deconvolution.

A. Problem Formulation

In the general setup of 2-D BD, the observed sensor image x
is created from the source image s passing through a convolutive
system defined by its impulse response a

T = E amsn —m + vp
m

and is possibly contaminated by additive sensor noise v. Some-
times, s can be contaminated by source noise u, usually mul-
tiplicative. For notation convenience, we use bold subscripts to
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denote multi-indices consisting of two variables: n = (n1, ns).
Summation is performed over both of them. We assume that the
action of w is invertible, at least approximately. The aim of BD
is to find such deconvolution (restoration) kernel w that pro-
duces an estimate $ of s up to integer shift A = (A, Ay) and
scaling factor ¢

Sp = E WmIn—m =~ CSp—-A
m

or, equivalently, the global system response should be
gn = (a*xw)p = cdp_A,
where 0y, denotes the Kronecker delta (discrete impulse signal).

B. Previous Work

Among the various BD methods that have been previously
proposed, we briefly outline only the basic approaches (for a
comprehensive comparison see, e.g., [8]). Most of the BD ap-
proaches can be divided into parametric and nonparametric. In
applications where the form of the PSF can be assumed in ad-
vance (e.g., motion blur or defocus), it is possible to use a para-
metric model of the PSF and instead of finding the PSF itself,
one can try to estimate the parameters of its model; the advan-
tages are, obviously, in having a smaller number of variables.
However, in real applications, it is often difficult to derive a good
model for the PSF.

BD approaches can be divided into those that estimate the
blurring kernel, those estimating the source image and the blur-
ring kernel simulataneously, and those estimating the restora-
tion kernel. The first class includes the so-called a priori blur
identification methods, which first estimate the blurring kernel
and then employ a nonblind deconvolution algorithm to find the
source estimate [9]-[11].

The second class includes methods based on statistical or de-
terministic priors of the source image, the blurring kernel, and
the noise [12], [13]. Estimation of the source image is performed
by maximizing some optimality criterion, which includes these
priors. Since the variables in this problem are both the source
image and the blurring kernel, the computational complexity is
a major problem.

The third class of methods usually employs maximum likeli-
hood (ML) estimators of the restoration kernel; such estimators
usually incorporate priors on the image and the kernel and ig-
nore the noise. Since, in this case, § = w * z, there is no need
to estimate the source image; therefore, these approaches de-
mand the solution of more modest optimization problems and,
consequently, are more computationally efficient. However, the
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exact source distribution, required for the ML approach, is often
unknown.

A possible remedy is to use an approximate probability
density function; such a modified ML approach is usually
referred to as quasi ML, or QML. Such estimation techniques
were successfully used in blind source separation (BSS) and
BD [14]-[18]. QML BD has received significant interest after
the introduction of the natural gradient algorithm, a robust and
efficient numerical optimization method for solution of QML
BD estimation problems [19].

In [20], the relative Newton QML framework for BD of one-
dimensional (1-D) signals was introduced and was shown to
have superior performance compared to the natural gradient al-
gorithm, while preserving the same order of computational com-
plexity per iteration. Here, we extend this method to the 2-D
case. In addition, we present a novel learning approach of op-
timal sparse representation, which can be used for BD of source
images with arbitrary distributions.

II. QML BLIND DECONVOLUTION

The convolution operation w * x can be thought of as ap-
plication of an infinite Toeplitz-block-Toeplitz operator WV, de-
fined by the impulse response w. Denoting the source estimate
by ¥ = w * x and assuming that s is i.i.d., the likelihood of the
observation z given the restoration kernel w in zero-noise con-
ditions is

Pafw(@;w) = |det W] - [ [ ps(yn) €]
n

where p;(s) stands for the source probability density function
(PDF). For convenience, instead of maximizing the likelihood
Pa|w (2;w), maximum likelihood estimators usually minimize
— log pajw(w; w). Neglecting edge effects, the following nor-
malized minus-log likelihood function is obtained [14], [19]
(see [21] for details):

Mx N
472

Ui w) = [ osli@lde+ Y etm) @

where M x Nx is the observation sample size, Il = [—m, 7] x
[, 7], p(s) = —logps(s), and

W(E) =Y um e ™'

denotes the 2-D Fourier transform of wq,. We will, henceforth,
assume that wp, has finite impulse response (FIR), supported on
ne[-M,. .., M|x[-N,...,N].Wewilluse Ky =2M +1
and Ky = 2N + 1 to denote the dimensions of the restoration
kernel, and denote the first and the second terms of /(x; w) as
¢1 and /s, respectively.

In practice, the first term of #(x; w), containing the integral, is
difficult to evaluate. However, it can be approximated with any

desired accuracy by [20]

472

1
log |w d€é ~ log |w
. g |w(€)|d€ MFNsz: g |l
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where

3

2mky 2wk
@k:f{wn}k:ﬁ)( T T 2>

Mg’ Np

are the 2-D DFT coefficients of wp, zero-padded to the support
kelo,....Mp—1]x][0,..., Np—1]. F denotes the 2-D DFT
operator. The approximation error vanishes as Mg, N grow to
infinity. Choosing M and N as integer powers of 2 allows to
use 2-D fast Fourier transform. The gradient and the Hessian of

£(x; h) are given in the Appendix.

A. Egquivariance

A remarkable property of the QML estimator of the restora-
tion kernel is its equivariance, which implies that for any invert-
ible kernel b, the estimator w(z) of w given the observation z,
obtained by minimization of the target function £(z; w) obeys
[21], [22]

w(bxx) =b"txw(x)

where b—1 denotes the inverse of . In other words, the parame-
ters to be estimated (in our case, coefficients wy, of the invertible
restoration kernel) form a group with the convolution operation.
It must be noted, however, that when the restoration filter is con-
strained to have a fixed finite support, equivariance holds only
approximately.

B. Choice of ¢(s)

A QML blind deconvolution algorithm consists of two
essential parts: the choice of the nonlinear function ¢(s) and
the numerical algorithm for minimization of ¢(z;w). The
choice of ¢(s) depends on the type of sources appearing in the
problem. Natural images encountered in most applications are
usually characterized by nonlog-concave, multimodal distribu-
tions, which are difficult to model and are not well-suited for
optimization.!

However, consistent estimator of s can be obtained by
minimizing ¢(z;w) even when ¢(s) is not exactly equal to
—logps(s). Such QML estimation has been shown to be
practical in instantaneous BSS [15], [18], [23], [24] and BD of
1-D signals [19], [20]. For example, when the source is sparse
or sparsely representable, a smooth approximation of the abso-
lute value function is a good choice for p(s) [20], [24], [25].
Although natural images are usually far from being sparse, they
can be sparsely represented by a proper transformation [18],
[26] (in Section IV, we will show how to transform general
classes of natural images into sparse ones). We, therefore, focus
our attention on modeling distributions of sparse signals using
a family of convex smooth functions

or(0) = I = o (14 51 @

where A is a positive smoothing parameter [16]; ¢a(s) — |s]
as A — 01. For convenience, we, henceforth, omit A\ from our

'Non-log-concave distributions lead to nonconvex prior term in the minus
log-likelihood function.
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notation whenever possible, and refer to ¢ (s) without using
the subscript.

Another important advantage of working with sparsely rep-
resented sources is the fact that the asymptotic restoration error
is significantly smaller compared to the original ones, i.e., the
deconvolution is more accurate. This issue is addressed in [21].
Moreover, sparse representation reduces the statistical depen-
dence between the signal samples. Thus, natural images, which
usually have high correlation between neighbor pixels, become
less dependent and better fit the i.i.d. source assumption.

III. RELATIVE NEWTON ALGORITHM

In their fundamental work, Amari ef al. [27] introduced an
iterative algorithm for 1-D BD based on the natural gradient
learning, which was originally used in the context of blind
source separation (BSS) [22], [28], [29]. A more general rel-
ative optimization approach was introduced in [16], again, in
the context of BSS. This method was extended in [20] to BD of
time series. Here, we extend these results to BD of images.

A. Relative Optimization Algorithm

The main idea of relative optimization is to iteratively pro-
duce source estimate and use it as the current observation. This
yields the following algorithm.

Relative Optimization Algorithm
1) Start with w(®), and with 2(©) = z.
2) For k = 0,1,2, ..., until convergence:
a) Start with: w = 4.
b) Using an unconstrained optimization method, find w**
such that £(z(F); w*+1)) < ¢(2(*); §).
¢) Update the source estimate z(*T1) = o(F+1) s z(k)
3) End loop.
The restoration kernel estimate at & -th iteration is

1

w = w® % w® % .. qpw® (5)

and the source estimate is § = z(*). The method allows to con-
struct large restoration kernels using a set of low-order factors.
The algorithm assumes infinite memory and produces a restora-
tion kernel of order growing at each iteration. In real applica-
tions, it might be necessary to limit the support of the restora-
tion kernel. This can be done by cropping w after each update.
A remarkable property of the relative optimization algorithm is
its uniform performance, i.e., its step at iteration k£ depends only
on g% D = g« w® % ... 5 1),

Unfortunately, even when a convex ¢(s), such as the
smoothed absolute value is used, the log-spectrum term /; is
nonconvex, and, consequently, the QML function is nonconvex
(e.g., if w* is a minimizer of ¢(z;w), then —w* is also a
minimizer). Yet, our observations show that the QML function
is well behaving and when the relative update is used, the
minimization algorithm does not converge to “wrong” local
minima, especially when the restoration kernel stability is
enforced. Similar behavior of QML estimators is known in the
context of BSS as well [15], [16]. This remarkable fact deserves
additional research.
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Fig. 1. Hessian structure for w = é with M = N =1 (3 x 3 kernel). White
stands for near-zero elements of the matrix.
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Fig. 2. Scheme of blind deconvolution using sparsification.

B. Newton Method

Newton method is often used for unconstrained optimization,
since it provides a very fast (quadratic) rate of convergence. In
this approach, the direction d at each iteration is given by solu-
tion of the linear system

V2. d=—VI. (©6)

Since the objective function is nonconvex, in order to guarantee
descent direction, positive definiteness of the Hessian is forced
by using modified Cholesky factorization [30]. Having the di-
rection d, the new iterate w(**1) is given by

wkHD) = () 4 (8 g(k)

where ;%) is the step size determined, e.g., by backtracking line
search restricted to the set where the inverse of the restoration
kernel is stable, i.e., log | det W| > —oc [21].

The Newton method is used in Step 4 of the relative optimiza-
tion algorithm [16], [20]; such an optimization algorithm will be
referred to as the relative Newton method. Apart from gradient
and Hessian computation, required at each relative Newton it-
eration, additional (1/3)K3, K3 + K3, K3 operations are re-
quired for solution of the Newton system (6) using modified
Cholesky factorization [30].

C. Fast Relative Newton Step

Practical use of the relative Newton step is limited to cases of
small M, N, Mx, Nx, due to the complexity of Hessian con-
struction and solution of the Newton system. This complexity
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Fig. 3.
sparsifying kernel; right: sparsified signal.

can be significantly reduced if special Hessian structure at the
minimum is exploited.

Substituting w = 6§ and x = cs to the Hessian (14) from the
Appendix yields w = 1 and y = c¢s, from where

0% 1 "

3wi8w]- - 6":+j T MpNp ; v (csn)csn_":cs""—j'
It can be seen that the first term contributes a unit anti-diagonal
to the Hessian. For sufficiently large sample size M x x Nx, the
second term becomes approximately

04y

— 2 ~EY’
awiawj v (esm)e

Sp—iCSn_j-

Let us assume that sy is zero mean. Since s is i.i.d.

2 - -
2 ac®, 1=3=0
—aa_? Q0% i=j#0
W%y 0, otherwise

where o = E¢”(cs)(cs)?, v = E¢”(cs), 02 = Es?,and o’ =
ca. We conclude that V2/(cz; §) has an approximate diagonal-
anti-diagonal form (see Fig. 1). When vo'2 > 1, V2{(cx; 6) is
approximately diagonal. When y20’* < 1, the Hessian at the so-
lution point is not positive-definite, which means that the QML
estimator is asymptotically unstable. This issue is addressed in
depth in [21].

The use of the diagonal-anti-diagonal approximation of the
Hessian, allows to reduce Newton system solution to regularized
solution of a set of 2 x 2 systems of the form

(7 ) (i) (50)

and an additional 1 x 1 system

(V20 ej2 - dicjp = —(VO) 52

One-dimensional example of optimal sparsification. First row, left: image; right: a 1-D signal (line 140 from the image). Second row, left: optimal

where K = Kj; + Ky + 1. Regularization is performed by
forcing positive definiteness of each of the 2 x 2 submatrices
in (7) by inverting the sign of negative eigenvalues and forcing
small eigenvalues to be larger than some positive threshold.
When o’ 2> 1, the main diagonal is dominant and, hence, the
diagonal approximation can be used. Consequently, the Newton
system (6) can be solved as a set of K s K independent linear
equations.

The use of the diagonal-anti-diagonal approximation
in a relative Newton iteration requires about MxNx +
4Mx Nx logy Mx Nx operations for approximate Hessian
construction, which is of the same order as gradient com-
putation. Additional O(Kp;Ky) operations are required
for approximate Hessian inversion in the case of diagonal
approximation, and slightly more in the case of the di-
agonal-anti-diagonal approximation. This is compared to
operations for exact Hessian evaluation and additional
(1/3)(KaKn)? + (Kar K n)? computations for exact Newton
system solution required for the full relative Newton step.

IV. OPTIMAL SPARSE REPRESENTATIONS OF IMAGES

The QML framework presented in Section II is valid for
sparse sources; this type of a prior source distribution is es-
pecially convenient for the underlying optimization problem
due to its convexity and results in very accurate deconvolution.
However, natural images arising in the majority of BD applica-
tions can by no means be considered to be sparse in their native
representation (usually, they are sub-Gaussian).

Nevertheless, it is possible to transform an image in such
a way that it fits some universal prior. In this study, we limit
our attention to the sparsity prior and, thus, discuss sparsifying
transformations, though the idea is general and is suitable for
other priors as well. The idea of sparse representations has been
successfully exploited in signal and image processing. In [31],
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Fig. 4. Optimal sparsification of images. First column: Original image. Second column: Sparsified image. Third column: Optimal sparsifying kernel.

First row: Synthetic block image. Second row: Brain image with Poisson noise.

Gradient norm

5 10

Iteration

15 20 25 5 10 15 20 25
Iteration

Gradient norm

10 10’ 10 1e°

Time (sec)

Time (sec)

10" 10° 10° 10’ 10°

Time (sec)

Fig. 5. Convergence of the (solid) Newton and of the fast relative (dashed) Newton methods, for various sizes of the restoration kernel versus (first row) the

number of iterations and (second row) the CPU time.

Field and Olshausen proposed learning optimal bases for effi-
cient sparse representation of signals and images. Sparsification
was also proved efficient in BSS [18], [23], [26]. In [26], it was
shown in that even such simple sparsifying transformation as a
discrete derivative can be useful in BSS. Here, we present a cri-
terion for finding optimal sparsifying transformations for BD of
images.

Let us assume that there exists a sparsifying transformation
T[S], which makes the source s sparse (wherever possible, the
subscript s in 7, will be omitted for brevity). In this case, our
algorithm is likely to produce a good estimate of the restoration
kernel w since the source properties are in accordance with the
sparsity prior. The problem is, however, that in the BD setting, s
is not available, and 7 can be applied only to the observation z.
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Fig. 6. First row, left to right: training synthetic image; source aerial image s; blurred image s * w. Second row, left to right: sparsified training image; sparsified

source; restored image.

Hence, it is necessary that the sparsifying transformation com-
mute with the convolution operation, i.e.

(Ts)xa=T(s*xa)=Tzx ®

such that applying 7 to z is equivalent to applying it to s. Ob-
viously, 7 must be a shift-invariant (SI) transformation.>

In this study, we limit our attention to linear shift-invariant
(LSI) transformations, i.e., 7 that can be represented by convo-
lution with a sparsifying kernel

Ts=txs. 9

Thus, we obtain a general BD algorithm, which is not limited
to sparse sources. We first sparsify the observation data x by
convolving it with ¢ (which has to be found in a way described
below), and then apply the sparse BD algorithm on the result
x * t. The obtained restoration kernel w is then applied to z to
produce the source estimate (see Fig. 2).

A. Learning the Sparsifying Kernel

For a general source s, which does not fit the prior, w(z) #
ca~1; yet, we would like to find such a sparsifying kernel ¢, that
w(t * z) = ca™L. Due to the equivariance property

W(t* ) = argmin £(t x a * s;w)

1

=a Yxargminf(t x s;w) = a L xw(t * s).

w

2In BSS problems, the sparsifying transformation needs to be linear and not
necessarily shift-invariant, e.g., wavelet packets were used for sparsification in
[18], [23].

TABLE 1
SIR, SIR .., AND PSIR OF THE OBSERVED IMAGES

Source SIR [dB] SIR. [dB] PSIR [dB]
s1  Susy -1.46 7.84 22.83
sy Aerial -1.46 7.84 19.89
s3  Gabby 4.90 11.55 30.41
ss Hubble 3.40 10.65 27.18

Hence, we demand w (¢ * s) = ¢6. Assuming ¢ is invertible and
invoking again the equivariance property, we obtain

cd = w(t*s) =t xw(s)
from where omitting the scaling factor ¢

(10)

t = w(s) = argmin £(s; w).
In other words, the optimal sparsifying kernel ¢[,] is obtained
by applying the QML BD algorithm to the source image s. We
note that although such a formulation does not allow us to obtain
noninvertible sparsifying kernels (such as discrete derivatives),
it is still able to produce an invertible approximation of such
kernels. The kernel ¢ does not necessarily have to be stable or
invertible, since it is used as a preprocessing of the data, and,
hence, there is never a need to invert it.
Figs. 3 and 4 (first row) show examples of optimal sparsifying
transformations of 1-D and 2-D signals. In the 1-D case, a row
from a natrual image was taken; the optimal sparsifying kernel
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Fig. 7. First column: Source images. Second column: Blurred images. Third column: Restoration results using the QML deconvolution approach.

is approximately a discrete derivative. In the 2-D case of a block
signal, as expected intuitively, the optimal sparsifying kernel is
approximately a corner detector.

Since the source image s is not available, computation of the
sparsifying kernel by the above procedure is possible only the-

oretically. However, empirical results indicate that, for images
belonging to the same class, the proper sparsifying kernels are
sufficiently similar. Let C denote a class of images (e.g., aerial
photos) and assume that the unknown source s belongs to C. We
can take images s(1), s, ..., s(N7) ¢ C and use them to find
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the optimal sparsifying kernel of s. Optimization problem (10)
becomes, in this case

Ny
1 .
= i — (Z)
t arginm {Zl(t) + o 321(2(5 * t)} (11)

ie., t is required to be the optimal sparsifying kernel
for all s s® . s(N1) simultaneously. The images
s @) s(N1) constitute a training set and the process of
finding such ¢ as training. Given that the images in the training
set are “sufficiently similar” to ¢, the optimal sparsifying kernel
obtained from (11) is similar enough to #[,;.

Being similar to the deconvolution problem, the training
problem (11) can be solved efficiently using the relative
Newton method presented beforehand. In addition to compu-
tational efficiency, the use of relative optimization forms the
sparsifying kernel of several low-order kernels, which has a
regularizing effect.

In the most general case, the sparsifying kernel can be com-
plex:t = tr+1;. After sparsification with such ¢, the prior term
/5 of the likelihood function, in which the real absolute value is
replaced by the complex one, becomes

STl = S tr w)a + (tr+p)h. (12)

The latter is a generalization of the 2-D total-variation (TV)
norm. The TV norm, which has been found to be a successful
prior in numerous studies related to signal restoration and de-
noising [32]-[34], and was also used by Chan and Wong as a
regularization in BD [35], is obtained when tg, t; are chosen to
be discrete z- and y-directional derivatives.

The proposed optimal sparsification can be also viewed as
construction of optimal problem-specific prior of the form

> o(Tyn) (13)
n

parameterized by 7. In addition to optimizing over 7, one can
also find the optimal nonlinear function ¢(s). Such an approach
is related to optimal regularization of MAP-type inverse prob-
lems using supervised learning, proposed by Haber and Tenorio
[36].

B. Sparsification in the Presence of Noise

In the case of source noise (for example, arising due to a low
number of emitted photons in an imaging setup), the training
can be performed on training images, degraded by the expected
level of noise. Also, the function ¢(s) can be modified in order
to account for the noise distribution. For a detailed discussion,
see [21]. Fig. 4 (second row) depicts the optimal sparsification
of a medical image contaminated by Poisson noise. The optimal
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TABLE 1II
SIR, SIR.,, AND PSIR OF THE RESTORED IMAGES
Source SIR [dB] SIR., [dB] PSIR [dB]
s1 Susy 17.80 22.21 27.23
so  Aerial 17.04 23.55 25.16
s3  Gabby 19.32 23.81 40.64
s4  Hubble 14.51 17.16 33.67

sparsifying kernel (constructed using the relative Newton algo-
rithm), in this case, is a smoothed corner detector.

The problem of sensor noise is more complicated. Although
the relative Newton algorithm was found to be robust to noise
levels of up to about 10 dB [20], the use of sparsification ker-
nels (which are typically high-pass filters, since, by their na-
ture, sparse signals have high-frequency components) is liable
to lower the SNR. To cope with this problem, the signal should
be smoothed with a low-pass filter f and, afterward, the sparsi-
fying kernel ¢ should be applied. Due to commutativity of the
convolution, it is equivalent to carrying out the sparsification
with a smoothed kernel ¢ x f.

V. SIMULATIONS

The presented approach was tested in three experiments under
zero-noise conditions. In the first experiment, the goal was to
compare between the performance of fast relative Newton and
full relative Newton algorithms. The purpose of the second ex-
periment was to demonstrate the utility of the training approach
for finding optimal sparse representations. In the third experi-
ment, we used the sparsification approach to perform deconvo-
lution of natural images. The fourth experiment demonstrates
the performance of our method in the presence of Poisson source
noise. As a criterion for evaluation of the reconstruction quality,
we used the signal-to-interference-ratio (SIR) in sense of the Lo,
Lo norms, and the peak SIR (PSIR) in decibel units [21].

A. Deconvolution of Sparse Images

A 101 x 101 sparse normally distributed image, generated by
the MATLAB function sprandn with 20% density, was used
as the source in the first experiment. The image was convolved
with a 3 x 3 FIR kernel with a slowly decaying inverse (see
Fig. 5). Full Newton and fast relative Newton (with a diag-
onal Hessian approximation) were used to estimate the inverse
kernel. 3 x 3, 5x 5,7 x 7, and 9 X 9 restoration kernels were
used. The smoothing parameter was set to A = 1072, Opti-
mization was terminated when ||V/|| reached 107*°. Gradient
norms, SIR, and SIR,, were measured as a function of CPU
time3 and iteration number.

The experiments demonstrate convergence of both algorithms
(Fig. 5). The fast relative Newton converged about ten times
faster in terms of SIR, compared with the full Newton algorithm,
and provided better restoration by about 2-5 dB for the same

3All algorithms were implemented in MATLAB and executed on an ASUS
portable computer with Intel Pentium IV Mobile processor and 640MB RAM.
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Fig. 8.

values of M and N. This improvement is since the effective
restoration kernel was of higher order.

B. Training

In the second experiment, a real aerial photo of a factory was
used as the source image, and a synthetic one (drawn using
PhotoShop) as the training image (Fig. 6). A 3 x 3 sparsifying
kernel is found by training on a single image, then the same
kernel is used as a preprocessing for BD applied to a different
blurred source image from the same class of images. The source
image was convolved with a symmetric FIR 31 x 31 Lorenzian-
shaped blurring kernel. Deconvolution kernel was of size 3 x 3.
The sparsifying kernel obtained by training was very close to a
corner detector. The signal-to-interference ratio in the deconvo-
lution result was SIR= 20.16 dB and SIR., = 25.72 dB.

C. Deconvolution of Natural Images

In the third experiment, four natural source images were
used: s; (Susy), so (Aerial), s3 (Gabby), and s, (Hubble).
Nearly stable Lorenzian-shaped kernels were applied to the
corresponding sources. This type of kernels characterizes scat-
tering media, such as biological fluids and aerosols found in
the atmosphere [37]. Quality of the degraded images in terms
of SIR, SIR, and PSIR is presented in Table I.

Fast relative Newton step with kernel size set to 3 x 3 was
used in this experiment. The smoothing parameter was set to
A = 1072, Corner detector was used as the sparsifying kernel.
Optimization was terminated when the gradient norm reached
10719, Convergence was achieved in 10-20 iterations (about
10 s). The images are depicted in Fig. 7. Restoration quality re-
sults in terms of SIR, SIR., and PSIR are presented in Table II.
The use of the total variation prior in the place of {5 with the
optimal sparsifying kernel yielded relatively poor results.

D. Deconvolution in Presence of Source Noise

In the fourth experiment, we performed deconvolution of a
source contaminated by multiplicative Poisson noise with max-
imum SNR of 10 dB. Such a type of noise arises in emission
processes (e.g., emission tomography and optical imaging with

Left to right: source image contaminated by Poisson noise; blurred noisy source image; deconvolution results.

low-photon yield). A brain image was used as the source. The
noisy source was convolved with a Lorentzian-shaped blurring
kernel, resulting in SIR= 3.99 dB, SIR,, = 11.50 dB, and
SIR= 23.43 dB in the observed image.

The sparisification kernel was obtained by training on a dif-
ferent brain image (see Fig. 4, second row) and had the form
of a smoothed corner detector. The restoration resulted in SIR=
12.44 dB, SIR= 16.50 dB, and PSIR= 33.20 dB (Fig. 8).

VI. CONCLUSION

We showed that the QML framework, recently presented in
the context of 1-D deconvolution is also useful for BD of im-
ages. We presented an extension of the relative optimization
approach to QML BD in the 2-D case and studied the relative
Newton method as its special case. Simple Hessian structure ob-
tained for near i.i.d. sparse sources allows to perform the relative
Newton iteration with the complexity of a gradient descent iter-
ation, leading to the fast relative Newton algorithm. We showed
a supervised learning approach for finding optimal sparse rep-
resentations, in order to yield a general-purpose BD method. A
particular class of LSI sparsifying transformations generalizes
some previous results such as the total variation prior.

Simulation results demonstrated the efficiency of the pro-
posed method. Potential applications of our approach are in op-
tics, remote sensing, microscopy and biomedical imaging, es-
pecially where the SNR is moderate. The method is especially
efficient in problems involving slowly decaying (e.g., Lorenzian
shaped) blurring kernels, which can be approximately inverted
using a kernel with small support. Such kernels are typical of
imaging through scattering media.

APPENDIX
GRADIENT AND HESSIAN OF £(z; w)

The relative Newton algorithm requires the knowledge of the
gradient and the Hessian of £(:; w). Since the optimization vari-
able w is a K yy X K y matrix, the gradient V/isalsoa Ky x Ky
matrix, whereas the Hessian V2/ is a Ky x Ky X Ky X
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K n fourth-order tensor. For convenience, we parse the variables
columnwise into a Ky K X 1 vector

vec(w) = [’w_]\,[’_N, ceoy WM, —Ny--- ,U}ALN]T

and define the gradient and the Hessian of /(z;w) as a
Ky Ky x 1 vector and a Ky Ky x Ky Ky matrix,
respectively.

The elements of the gradient and the Hessian are given by

or 1

= _.7:'—1 { A—l} - / ;
u Uk S it Ny 2 )T

and

0% PR G
8wi8wj =7 {wk }_(i+j)

1 1/
+m zn: ¥ (yn)xnfixn—j (14)

respectively. For derivation, see [21]. Computational
complexity of the target function ¢ and its gradient is
O(MFNF 10g2 MprNr 4+ MxNx 10g2 MXNX), whereas
evaluation of the Hessian requires O(MpNp log, Mp N +
MNMxNxlog, Mx Nx) operations, assuming efficient
implementation involving the FFT.
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