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Abstract. A large class of problems requires real-time processing of complex 
temporal inputs in real-time. These are difficult tasks for state-of-the-art 
techniques, since they require capturing complex structures and relationships in 
massive quantities of low precision, ambiguous noisy data. A recently-
introduced Liquid-State-Machine (LSM) paradigm provides a computational 
framework for applying a model of cortical neural microcircuit as a core 
computational unit in classification and recognition tasks of real-time temporal 
data. We extend the computational power of this framework by closing the 
loop. This is accomplished by applying, in parallel to the supervised learning of 
the readouts, a biologically-realistic learning within the framework of the 
microcircuit. This approach is inspired by neurobiological findings from ex-
vivo multi-cellular electrical recordings and injection of dopamine to the neural 
culture. We show that by closing the loop we obtain a much more effective 
performance with the new Co-Evolutionary Liquid Architecture. We illustrate 
the added value of the closed-loop approach to liquid architectures by executing 
a speech recognition task.  

1   Introduction 

Of the various alternatives, large, random, vastly connected cortical networks are the 
best candidates for a core of biologically-motivated computational architectures. 
Moreover, even a relatively simple model composed of ~100 leaky-integrate-and-fire 
neurons connected by dynamic synapses with stochastic heterogeneous parameters 
has an interesting computational power in a domain of  parallel processing of 
temporal  noisy data in real-time.  

A new computational paradigm, called Liquid-State-Machine (LSM), recently 
presented by [1], provides a theoretical basis for applying a model of neural 
microcircuit to generic computational tasks. The LSM system is composed of two 
parts: (1) Liquid – a model of neural microcircuit is used as a "reservoir" of complex 
dynamics to transform the input time series u(.) into "liquid states" x(t). (2) Readout – 
memory-less function which maps the liquid state x(t) at time t onto the output v(t). 
Readout may be implemented by a simple one-layer network of perceptron, trained by 
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linear algorithm to build a function mapping liquid-states onto desired outputs. It was 
shown [2] by the means of simulations that such a system is computationally effective 
in executing parallel tasks of recognition and classification of temporal data. LSM is 
identified with properties of anytime computing, by processing spatio-temporal input 
in real time. The computational core of LSM is randomly structured generic filter 
with dynamical properties of fading memory and separation.  

In the framework of computational LSM, a neural microcircuit is used as an 
efficient generic filter transforming different temporal inputs into significantly 
different liquid states. The task-dependent part is executed by the readout after being 
trained by supervised-learning algorithm to map these states onto predefined output. 
Turning back to neurobiological facts, the plasticity and learning ability of real 
cortical networks should not be neglected in the biologically-motivated computational 
framework. A feedback from the environment drives the learning process in 
neurobiological systems and allows the success in tasks varying in time rather than 
being predefined. In this study we extend LSM computational framework to a closed-
loop setup wherein feedback from the environment drives the learning process of the 
computational core liquid unit – Neural Microcircuit (NM). 

However, it is not a straightforward task to define a learning algorithm to such a 
large and randomly constructed network, therefore an inspiration from 
neurobiological findings is required again. We use two neurobiological paradigms for 
implementing the learning of the NM – Reward based learning [3] and Dopamine 
induced learning by dispersion mechanism [4]. The learning process of the NM is 
composed of two stages – the exploration of various states of NM and the recognition 
of the appropriate one. In the proposed closed-loop framework, this biologically-
motivated learning of the NM is done in parallel to the supervised learning of the 
readout, i.e. there is a co-evolutionary learning process of NM and readout until the 
best performance of the overall system is reached.  

2   Neural Microcircuit as a Generic Computational Unit 

The neocortex is characterized by precise structure of columns and layers.  Within 
neocortical layers neurons are mapped into each other, where anatomical and 
physiological properties are unique for each type of pre- and post-synaptic 
combination. However remarkable morphological, electrophysiological and spatial 
stereotypy exists in these networks, in addition to very stereotypical connectivity and 
patterning of synaptic connections between neighboring cells.  This clear stereotypy 
exists across different regions of the brain, suggesting that there is a generic template 
of microcircuit and that all neocortical microcircuits are merely subtle variations of 
that common microcircuit template. Such templates could subserve the apparent 
omnipotent functional capacity of the neocortical microcircuitry [5]. A computational 
model of generic neural microcircuit is inherently endowed with powerful and 
versatile information processing capabilities. We used a similar model to [2], 
composed of a 3-dimentional recurrent network of 135 Leaky-Integrate-and-Fire 
(LIF) neurons with random connectivity, and similarity to generic cortical 
microcircuit, 20% of the neurons are randomly chosen to be inhibitory and, 
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accordingly, 80% excitatory. The probability of connection between two neurons 
depends on the distance between them according to, 

2exp( ( , ) / ) ,C D i j λ⋅ −  (1) 

wherein λ and C are  parameters that determine the average number of connections for 
a certain Euclidean distance D between the neuron i and neuron j. This connectivity 
characterization by primary local connections and a few longer connections is 
biologically realistic. Long range connections will be incorporated, and their 
functional effects on the computational properties of the network will be investigated 
within a context of a different study. 

Random, heterogeneous parameters of NM model fit neurobiological data from rat 
somatosensory cortex [2]. Synaptic short-term plasticity of the NM is implemented by 
dynamic synapses in which the amplitude of each post-synaptic-current depends on 
the spike train that is impinging on the synapse [6], and causes facilitation and 
depression processes. The model was implemented using CSIM simulator [7].  

3   Learning by Dispersion  

Learning process drives a neural microcircuit to a desired state defined by 
configuration of sets of associations between stimuli and responses. This dynamical 
process begins with exploration of various network’s states through modification of 
neuronal correlations. Two mechanisms which may be responsible for changing 
neuronal correlations are driving stimuli and neuromodulation by dopamine. 
Experiments on ex-vivo culture have shown [4], [8] that both mechanisms enhance 
changes in neuronal correlations by dispersing existing correlations, i.e. decorrelating 
previously acquired correlated activity. It is assumed that both mechanisms that cause 
decorrelation (dispersion) are mediated by a biophysical jittering of the synaptic 
strengths at polysynaptic level. This has led to the idea of modeling both mechanisms 
by what Eytan and Marom [10] coined as “Dispersing Mechanism”. 

The second phase of learning, the recognition, is responsible for "freezing" the NM 
state by stopping the exploration process. In recent years, a major effort was devoted 
to mapping of the behavioral concept of reward to neural mechanisms that change the 
functionality of a given NM based on its past performance [9]. The regulation of 
exploration process, driven by dopamine neuromodulation, is enabled by reward 
prediction error (RPE) signals. Dopamine neurons appear to emit RPE signal, as they 
are activated by rewards that are better than predicted, uninfluenced by rewards that 
occur exactly as predicted and depressed by rewards that are worse than predicted [9].  

Learning by reward can occur by associating a stimulus or an action with a reward 
[3]. The learning is a function of RPE, defined by Schultz as a scalar difference in 
value (magnitude x probability) between a delivered (DR) and a predicted reward 
(PR):  

( ).RPE DR PR f error in task execution= − =  (2) 

We apply a constant delivered reward, i.e. p(DR)=1, as long as there is any success 
in task execution. The predicted reward is a function of the system’s previous success 
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in executing the task, i.e. PR=f(success in task execution). Since the performance of 
the system at the beginning of learning is lower than 100%; the predicted reward is 
lower than the delivered; dopamine neurons should be activated and emit dopamine to 
the system. We implement a feedback mechanism based on this reward mechanism in 
our Co-Evolutionary Learning of Liquid Architecture. 

According to this "exploration and recognition" paradigm the dopamine jitters 
network’s formed associations and thus enables state transition across the NM states 
space. In other words, the mechanism of jittering the synaptic efficacies, discovered 
by Eytan and Marom, is instrumental in avoiding trapping into a fixed point. When 
the best state dictated by the environment is found, the system reaches the recognition 
phase, and by stopping the dopamine emission, network’s associations are "frozen".  

A mathematical model of this process, in which the synaptic efficacies are 
randomly jittered by regulation of RPE is formulated by: 

0( ) ,W W K RPEψ∆ = ⋅ ⋅  (3) 

wherein ψ is uniformly distributed between positive and the negative values of the 
argument, W0 is the previous value of the synaptic strength, K is a constant, and ∆W is 
the change in the strength of the synapse. The model illustrates exploration and 
recognition processes, by dispersion of the NM synaptic strengths, regulated by the 
success in achieving the task of the overall system. 

4   Co-evolutionary Learning in a Closed-Loop Framework 

We propose a new closed-loop liquid architecture based on a NM as a core 
computational unit. The components of the system, illustrated in Fig.1, are NM, 
Readout function and a Decorrelator. In the open-loop setup the system is equivalent  
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Fig. 1. Closed-loop liquid architecture implemented in a classification task of time-varying 
inputs. NM is composed of 135 LIF neurons. Time-varying stimuli Pi(t) are transformed by NM 
onto liquid states, Qi(t),  defined as firing patterns of NM at time t0. Readout neurons are trained 
by supervised learning to identify the input applied to the system by transforming NM liquid 
states onto discrete value j. A feedback on system’s performance is sent by the environment in 
form of reward signals to determine the RPE. Decorrelation, regulated by RPE, enables the co-
evolution of the Readout and NM until a desired performance is obtained 
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to recently-proposed general theoretical model, called Liquid-State-Machine [1]. 
LSM presented a convenient framework for neural computations in real time for 
rapidly-time-varying continuous input functions. NM stores information about past 
inputs with high dimensional dynamics in its internal perturbations. Different input 
streams to the microcircuit cause different internal sates (liquid states) of the system 
and enable the inputs to be separated. Liquid states of the NM are read by memoryless 
Readout. Readout is trained by supervised learning algorithms to transform high-
dimensional transient liquid states of the NM onto desired outputs. After the Readout 
learns to define a needed class of equivalence, it can perform the learned task on 
novel inputs. The separation property (SP) requirement of the NM for functionality of 
LSM framework was illustrated in [2]. 

Within LSM framework the learning process is applied to the readout only, while 
the function of the NM as a generic filter is not changed. We propose an extended 
closed loop framework in which we apply to NM a previously-described learning-by-
dispersion, driven by a feedback from the environment.  

The overall framework is described in Fig. 1. Time-varying stimuli from the 
environment excite NM with a continuous input stream (Pi(t)). At any time t0, the 
internal liquid state of the microcircuit (Qi(t0)) holds a substantial amount of 
information about recent inputs Pi(t< t0). Memoryless readout neurons are trained to 
map liquid states Qi(t0) onto discrete predefined values (j).  Discrete value j is a 
decision/action of the system in its environment. If the system succeeds in the task, 
i.e. i=j for classification task, reward signal is sent by the environment to the system. 
Reward signals, injected by the environment, are determined by system’s 
performance and activate the Decorrelator by setting the value of RPE.  Decorrelation 
mechanism modifies the NM synaptic strengths according to previously defined 
algorithm and drives the exploration phase of learning. During the exploration of NM 
states, the Readout is trained by supervised learning to transform the new formed 
liquid states onto system’s output. When system’s performance is sufficient, RPE is 
low, the recognition phase is reached and NM state is “frozen” by stopping the 
dispersion of the synaptic strengths. 

We applied this co-evolutionary learning of the liquid architecture in general 
computational task of classification time varying stimuli. Randomly generated 
Poisson spike trains were injected to the system with a certain noise. Analysis of 
system’s performance in a closed-loop versus an open-loop setup will be described in 
the next section. 

5   Computational Analysis of the Closed-Loop Framework 

The added value of a closed-loop setup is examined in a general computational task of 
classification of a Poisson spike train. The error-in-task of the open-loop setup 
remains almost constant, since the optimal performance of the system is reached after 
the first supervised learning of the Readout is completed. In a closed-loop setup, in 
parallel to the supervised learning of the Readout, we apply a learning-by-dispersion 
of the NM. This co-evolutionary learning, of NM and Readout, generates an 
exploration process until the optimal performance of an overall system is obtained. 
The learning curve of a closed-loop versus an open-loop setup is illustrated in Fig. 2.  
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Fig. 2. Learning curve of a closed-loop (1) versus open-loop (2) setup implemented in 
classification task of time-varying stimuli 

As the computational results depicted in Fig.2 indicate, the curve of co-
evolutionary learning in a closed-loop setup does not converge gradually to the 
optimal point, since there is no a-priori knowledge of such a point. Various states of 
the NM are explored. This type of exploration is manifested by “jumps” characteristic 
of the learning curve. The exploration continues until a sufficient performance is 
obtained, at which time the NM state is “frozen”.    
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Fig. 3. Error-in-task for a closed-loop (bright bars) and open-loop (dark bars) setups versus 
noise in input 

The closed-loop architecture exhibits superior performance, compared with the 
open- loop, insofar as the signal-to-noise ratio (SNR) is concerned. As the data 
depicted in Fig. 3 illustrates, the SNR of the closed-loop setup is by far lower than 
that characteristic of the open-loop setup. Whereas the error increases with noise level 
in the open-loop, as expected, in the closed-loop it even decreases, until at a certain 
noise level this advantage of the closed-loop breaks down. This abrupt shift in 
performance may be due to a network's phase transition to a chaotic state. It is 
likewise possible that at a certain noise level network's performance breaks down due 
to its saturation by the reward.  
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6   Voice Recognition Task 

Co-evolutionary learning of liquid architecture was applied in a well-studied 
computational benchmark task for which data had been made publicly available – a 
speech recognition task [11]. The dataset consists of 500 input files: the words "zero", 
"one", "two", …, "nine" are spoken by 5 different speakers, 10 times by each speaker. 
The task was to construct a network of I&F neurons that could recognize each of the 
spoken words.  

The waveforms of the input sound were preprocessed by performing Fourier 
transform. Each of the frequency bands was composed of one or more of the 
following three events: onset (the start of the phase of significant energy), offset (the 
end of this phase), and peak (the first maximum of energy). The entire waveform is 
normalized to have maximum amplitude of 0.7, the sampling rate used in this case is 
12000 samples/sec. The running average power and its second derivative are 
subsequently used in identification of events in the sound's spectrogram. This sound 
preprocessing converts the sound signal into a spatiotemporal sequence of events, 
suitable for recognition. Monosyllabic words are encoded into such sequences by 
retrieving features in different frequency bands in their spectrogram.  Finally, sound 
waveform is converted into a list of 40 single events that are converted in turn into 
their respective times of occurrence. 

Internet competition was publicized on this dataset for finding a network with the 
best classification performance. The best performance in this competition exhibited an 
error of 0.15, and was accomplished by a network with 800 pools of neurons [12]. 
The same task was solved by Maass, Natchlaeger and Markram in 2002 [2] using 
LSM framework with 145 I&F neurons. The average error in this classification task, 
achieved by this network, was 0.14.  

We tested the co-evolutionary learning of the liquid architecture on the same task and 
the same dataset. A randomly chosen subset of 300 input files was used for training and 
the other 200 for testing. A previously described, randomly generated NM was 
implemented in a co-evolutionary learning of a closed-loop setup. The average error in 
this classification task, achieved by this closed-loop system, was 0.06.  

7   Discussion 

Liquid architectures embed interesting computational learning features in NM model. 
These emerging architectures are motivated by neurobiological findings obtained in 
experiments with neural culture. The common component of these liquid architectures 
is a core computational unit implemented by a generic heterogeneous model of NM. 
The proposed feedback mechanism adds a significant computational power to liquid 
architectures, illustrated for example in our simulations comparing the performance of 
the open and a closed-loop as a function of a noise level.   

Liquid architecture exhibit a broad spectrum of solutions obtained under the 
condition of an identical task, manifested by its internal parameters. Co-evolutionary 
learning, illustrated in this study, provides a robust mechanism that exploits this 
computational feature, by randomly exploring the states space.  Feedback mechanism 
regulates the exploration process until a sufficient solution is obtained. Converging 
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the ideas of liquid architecture, feedback mechanism and learning by exploration 
reveals a powerful paradigm for real-time, parallel computation in a rapidly varying 
environment. 
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