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ABSTRACT: The fundamental problem of denoising and deblurring

images is addressed in this study. The great difficulty in this task is

due to the ill-posedness of the problem. We analyze multi-channel
images to gain robustness and regularize the process by the Poly-

akov action, which provides an anisotropic smoothing term that uses

inter-channel information. Blind deconvolution is then solved by an

additional anisotropic regularization term of the same type for the ker-
nel. It is shown that the Beltrami regularizer leads to better results

than the total variation (TV) regularizer. An analytic comparison to the

TV method is carried out and results on synthetic and real data are
demonstrated. VVC 2005 Wiley Periodicals, Inc. Int J Imaging Syst Technol,

15, 56–63, 2005; Published online in Wiley InterScience (www.interscience.

wiley.com). DOI 10.1002/ima.20038
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I. INTRODUCTION AND PREVIOUS WORK

Noisy images are a practical reality that pose a challenge to any

front-end imaging and vision system. Noise is introduced due to

thermal fluctuations in sensors, quantization effects, and properties

of communication channels. Blurring occurs due to scattering of the

light (e.g. atmosphere turbulence), optical limitations, and motion.

The widely used model of spatially invariant linear blurring opera-

tor and additive Gaussian noise is adopted in this study to account

for the blurring phenomena and the noise characteristics.

Denoting by ua(x, y), a ¼ 1, . . ., d, the source color channels of an
image, the observed degraded color channel za (x, y) is modeled as

za ¼ h � ua þ n; ð1Þ

where h(x,y) is a blurring kernel acting on ua by convolution, n
is a Gaussian white noise with zero mean and � variance. The

channels a ¼ r, g, b are taken here as the RGB basis for color

space. Solving ||h * u � z||2 ¼ �2 for u and h is an ill-posed

problem, because of the nonuniqueness of the solution (Tikhonov

and Arsenin, 1977).

One method of regularization, used for reconstructing gray value

images, is the total variation (TV) blind deconvolution (Chan and

Wong, 1998). This method suggests simultaneous recovery of the

sharp denoised image and its blurring kernel. The recovery process

is based on minimization of the functional

min
u;h

f ðu; hÞ � min
u;h

1

2
h � u� zk k2þ�1TVðuÞ þ �2TVðhÞ

� �
; ð2Þ

where we use the L2 norm in the data term. The TV regularization

operator is defined as

TVðuÞ ¼
Z

ruj j dx dy; ð3Þ

and it was successfully used for edge-preserving image denoising

(Rudin et al., 1992).

A more general regularization operator was recently introduced

in the context of the Beltrami framework for low-level vision

(Sochen et al., 1997; Sochen et al., 1998). According to this frame-

work, color images are represented as surfaces in R5, with the coor-

dinates (x, y, ur, ug, ub). A metric is introduced for measuring dis-

tances on the surfaces, and minimization of the Polyakov action,

adopted from high-energy physics, yields the Beltrami operator. In

an Euclidean space, the Polyakov action (along with the induced

metric) measures the surface area. Minimizing it causes the image

to become smoother, its color channels to co-orient and align, and

consequently, its edges to be preserved and match in position (Kim-

mel et al., 2000) and see Section VI later. This is much unlike the

results of reconstruction by considering the three color channels

independently. Another way of understanding it is via the regulari-

zation flow. The flow can be understood as an adaptive average.

The support of a given gray value or color in a pixel comes from

near-by pixels. The Beltrami flow gives higher influence to pixels

that are near in lattice and in color space. In this way, pixels that
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are near an edge are not influenced by the pixels in the other side of

the edge even if they are close in the lattice. This way of measuring

distances respects, thus, the edge and region structure of the image

(Spira et al., 2005).

In this paper, the approach of minimizing a functional, resem-

bling that of Eq. (2), is combined with the Polyakov action as a reg-

ularization operator, so as to deblur and denoise a blurred color

image contaminated by Gaussian noise. The functional to be mini-

mized is

min
ua;h

f � min
ua;h

1

2

X
a

h � ua � zak k2þ�1SðuaÞ þ �2SðhÞ
( )

; ð4Þ

where the norms are in the L2 sense, and S is the Polyakov action.

Minimizing Eq. (4) with respect to ur, ug, ub, and h, recovers the

image-color channels and the blurring kernel, simultaneously. The

parameters �1 and �2 control the degree of smoothness of the

solution.

Alternatively, we will alternate the minimization of the image

and the blurring kernel such that the following free energies are

minimized:

min
u

fuðu; h; zÞ � min
ua

1

2

X
a

h � ua � zak k2þ�1SðuÞ
( )

; ð5Þ

min
h

fhðh;u; zÞ � min
h

1

2

X
a

h � ua � zak k2þ�2SðhÞ
( )

: ð6Þ

The paper is organized as follows: we first introduce the main

ideas regarding the Beltrami framework i.e., the representation of

color images as 2D surfaces embedded in a 5D space, the induced

metric for measuring distances on the surface and the Polyakov

action, which measures the surface area. The numerical scheme for

minimizing Eq. (4) (or equivalently Eqs. (5) and (6)), which is simi-

lar to the alternating minimization scheme, described by Chan and

Wong (1998), is then presented. The Beltrami operator is incorpo-

rated into the Euler–Lagrange equations, by modifying the regulari-

zation parameters (or by adding a functional (Kaftory et al., Techni-

cal Report, in preparation)). The equations are linearized by the

fixed-point lagged diffusive method, discussed by Vogel and Oman

(1996), and solved using the conjugate-gradient method. The regu-

larization parameters are then selected to provide the best possible

results.

Finally, the properties of the Beltrami-based restoration are ana-

lyzed and illustrated by examples, and its advantages over other

techniques are discussed.

II. IMAGES AS SURFACES EMBEDDED IN A HIGHER
DIMENSIONAL SPACE

A color image is represented according to the Beltrami framework

(Kimmel et al., 2000) as a 2D surface embedded in a 5D ‘‘spatial-

feature’’ space via the ‘‘Monge patch’’ (X1, X2, X3, X4, X5) ¼ (x, y,
ur, ug, ub). The blurring kernel can be similarly represented as a 2D

surface embedded in a 3D ‘‘spatial-feature’’ space (x, y, h). The dis-
tance, ds, on the image surface, measured as a function of the local

coordinates on the surface, is defined as follows:

ds2 ¼ g11 dx
2 þ 2g12 dx dyþ g22 dy

2; ð7Þ

where G ¼ (g�v) is a Riemannian metric. Let X : S ? M be an

embedding of S in M, where M is a Riemannian manifold with a

metric (kab)M. We can use the knowledge of the metric on M and

the map X to construct the metric on S. This procedure is called the

pullback procedure and is given as follows:

ðg�vÞ�ð�1; �2Þ ¼ ðkabÞMðXð�1; �2ÞÞ @�Xa @vX
b; ð8Þ

where a, b ¼ 1,. . ., dim M are being summed over, and @�X
a �

@Xað�1;�2Þ
@�� .

For the 2D surface it is given explicitly as

g11 ¼
Xn
a¼1

Xn
b¼1

kab
@Xa

@x

@Xb

@x
;

g12 ¼ g21 ¼
Xn
a¼1

Xn
b¼1

kab
@Xa

@x

@Xb

@y
;

g22 ¼
Xn
a¼1

Xn
b¼1

kab
@Xa

@y

@Xb

@y
; ð9Þ

where n is the dimension of the embedding space, and kab is its met-

ric. Defining kab for the embedding color space, and for the embed-

ding blurring kernel space, as (see other interesting options in

Sochen and Zeevi, 1998)

kab ¼
�ab a, b = 1,2,

�2�ab elsewhere,

�
ð10Þ

and using the pullback procedure, the metric G ¼ g�v can be calcu-

lated for the color surface and the blurring kernel surface

respectively:

Grgb ¼
1þ �2

P
a
ðuaxÞ2 �2

P
a
uaxu

a
y

�2
P
a
uaxu

a
y 1þ �2

P
a
ðuayÞ2

0
B@

1
CA;

Gh ¼
1þ �2h2x �2hxhy

�2hxhy 1þ �2h2y

 !
: ð11Þ

The Polyakov action is defined for a generally defined metric

embedding Xa and metric G as

SðXaÞ ¼
Z

dx dy
ffiffiffiffiffiffiffiffiffiffiffiffi
detG

p X
ab

rXaG�1rXbkab: ð12Þ

The modified gradient descent equations for this functional are

(Sochen et al., 1998)

Xa
t ¼ �GX

a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞp r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞ

p
G�1rXa

� �
; ð13Þ

where Xa
t � @Xa

@t :
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For gray-valued and color images and their induced metrics, as

described above, the functional Eq. (12) is reduced to an area

functional

SðuaÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detGrgb

q
dx dy

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
X
a

ruaj j2 þ 1

2
�4
X
ab

rua;rubð Þ2
s

dx dy;

ð14Þ

SðhÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detGker

p
dx dy ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 rhj j2

q
dx dy; ð15Þ

where (!ua, !ub) stand for the magnitude of the vector product of

!ua and !ub.

III. BELTRAMI-BASED RESTORATION

The Polyakov action is used as a regularization operator for both

the color image and its blurring kernel. The functional to be mini-

mized is as follows:

min
ua;h

f � min
ua;h

1

2

X
a

h � ua � zak k2
(

þ �1

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGrgbÞ

q
dx dyþ �2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGkerÞ

p
dx dy

�
: ð16Þ

The Euler–Lagrange equations for Eq. (16), with respect to ua

and h, are given as follows:

�f

�h
¼
X
a

ua�x;�y � h � ua � zað Þ

� �2r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGkerÞ

p
G�1

kerrh
� �

¼ 0;

�f

�ua
¼ h �x;�yð Þ � h � ua � zað Þ

� �1r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGrgbÞ

q
G�1

rgbrua
� �

¼ 0; ð17Þ

with the boundary conditions @ua

@n ¼ 0 and h(x, y) ¼ 0 for (x, y) 2
@O, where @O is the boundary of the kernel domain, and n is the

normal to the boundary of the image domain.

Since the extent of regularization is controlled by the regulariza-

tion parameter, we want to diminish it near the edges. Since the

term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞp

is basically an edge indicator, we can use a similar

idea to the adaptive TV minimization presented by Strong et al.

(1997) and replace the regularization parameters �1 and �2 with the

terms.

�1ðx; yÞ ! �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGrgbÞ

p ; �2ðx; yÞ ! �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGhÞ

p : ð18Þ

The new definitions of the regularization parameters �1 and

�2 introduce the natural generalization of the Laplacian from flat

spaces to manifolds, and the so-called second order differential

parameter of Beltrami to be denoted by DG:

�f

�h
¼
X
a

uað�x;�yÞ � ðh � ua � zaÞ � �2�Gker
ðhÞ ¼ 0;

�f

�ua
¼ hð�x;�yÞ � ðh � ua � ziÞ � �1�Grgb

ðuaÞ ¼ 0; ð19Þ

with the boundary conditions as in (17), where �GðXÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
detðGÞ

p r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞp

G�1rX:
The functional f(ur, ug, ub, h) in Eq. (16) is not jointly convex.

But, for a given ur, ug, and ub it is convex with respect to h. For a
given ug, ub, and h, f(�, ub, ug, h) is a convex function with respect

to ur and similarly for ug and ub. This enables the adaptation of the

alternating minimization scheme, which was found to be robust and

fast (Chan and Wong, 1999).

The Eq. (19) can be derived alternatively by minimizing two

functionals. Similarly, the image and the kernel are described as

surfaces embedded in a higher dimensional Euclidean space. The

metric of the Euclidean space is kab as described earlier. The fidelity
term is defined then on the manifold:

min
ua;h

fu � min
ua

1

2

X
a

Z
dx dy

ffiffiffiffiffiffiffiffiffi
Grgb

p
h � ua � zak k2

(

þ �1

Z
dx dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGrgbÞ

q
Gij

rgbriX
arjX

a

�
; ð20Þ

min
ua;h

fh � min
h

1

2

X
a

Z
dx dy

ffiffiffiffiffiffiffiffiffi
Gker

p
h � ua � zak k2

(

þ �2

Z
dx dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGkerÞ

p
Gij

kerriX
arjX

a

�
: ð21Þ

The modified Euler–Lagrange equations are

1ffiffiffiffiffiffiffiffiffi
Grgb

p �fu
�ua

¼ 0;
1ffiffiffiffiffiffiffiffiffi
Gker

p �fh
�h

¼ 0 ð22Þ

and are identical to Eq. (19). Note that the fidelity term is weighted

in these functionals by a locally dependent factor. This means that

at each point the relation between the smoothing part and the fidel-

ity part is different. In particular, the fidelity to the measurements is

enforced strongly at points with high gradients where the determi-

nant of the metric is large. Larger deviations from the observations

are permissible at points with low gradients. In the modified Euler–

Lagrange equations, the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGÞp

is shifted to the smoothing

term. This amounts for an adaptive smoothing mechanism: At

points of large gradients, the smoothing term is suppressed and

fidelity of the restored image to the observed values is enforced.

Larger smoothing is allowed to take place at points of low-gradient

values.

The minimization scheme is stated as follows: Take as initial

guess, ua0¼ za and h0 ¼ � (x, y). Assume we have uan and hn, and
solve for hnþ1,

X
a

uanð�x;�yÞ � ðhnþ1 � uan � zaÞ � �2 �Gker
ðhnþ1Þ ¼ 0; ð23Þ
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and impose the following conditions over the solution:
R
� hnþ1

ðx; yÞ dx dy ¼ 1; hnþ1ðx; yÞ ¼ hnþ1ð�x;�yÞ; hnþ1ðx; yÞ � 0; and
hnþ1ðx; yÞ ¼ 0 for ðx; yÞ 2 @�:

Solve for uanþ1 :

hnþ1ð�x;�yÞ � ðhnþ1 � uanþ1 � zaÞ � �1�Grgb
ðuanþ1Þ ¼ 0 ð24Þ

and impose the following condition uanþ1 (x, y) � 0 over the

solution.

The proposed algorithm can be modified to solve first for uanþ1

and then for hnþ1. The Euler–Lagrange equations are linearized

using the fixed-point lagged diffusive method, introduced in (Vogel

and M. Oman, 1996) and solved using the conjugate gradient meth-

ods described in (Hanke, 1995).

IV. REGULARIZATION PARAMETERS

The parameter �, introduced in the induced metric in section II,

interpolates between the Euclidean L1 and Euclidean L2 norms for

the gradient’s magnitude. Since the Euclidean L2 norm penalizes

discontinuities, and therefore prefers smooth restoration, we explore

the more interesting case of a large � (Euclidean L1 norm).

The regularization parameters �1 and �2 control the balance

between goodness of fit of h * ua to the measured data za and the

amount of regularization with respect to the Polyakov action of ua

and h. Intuitive, analytic, and numerical considerations can lead to

the choice of values for the regularization parameters for the

restored color image and the blurring kernel.

A. The Parameter a1 As was described earlier, the Polyakov

action measures the surface area of the manifold. Color image is a

2D surface embedded in a 5D space. Minimizing its surface area

will de-noise the image, since noise is a feature with very large sur-

face area in comparison to its scale.

The first step of the restoration scheme can be solving Eq. (24)

first and then Eq. (23). Inserting the initial guess h0 ¼ �(x, y), Eq.
(24) yields

ðua1 � zaÞ � �1 �Grgb
ðua1Þ ¼ 0: ð25Þ

The problem in this step is reduced by finding the best regulari-

zation parameter for denoising a color channel ua1 when blur is not

introduced.

This parameter was found to be proportional to the noise var-

iance and by numerical experiments, it was found that setting it to

the noise variance is adequate (Kaftory, 2001).

B. The Parameter a2 Unlike the case of the regularization

parameter �1, in which the problem was reduced by finding the

best regularization parameter for denoising a color image when

blur is not introduced, the case for finding the regularization

parameter �2 is not that simple. The analytic tools used so far

for finding the regularization parameter for the color image are

not adequate for finding the best regularization parameter for the

kernel. Intuition and previous work (Chan and Wong, 1998) sug-

gest that the parameter does not depend on the noise level of

the image, but depends on the extent of the desired deblurring.

Experiments show that there is a wide range of values for �2

(from 0.01 to 0.05) that estimate the same kernel. Within this

range, the estimated kernel depends only on the extent of blur-

ring, affecting the observed image (Kaftory, 2001).

V. RESULTS

The proposed algorithm was found to be robust. It converges after

only five iterations. Figures 1–4 illustrate examples of restoration

of color images blurred by Gaussian, motion and out-of-focus

kernels and degraded by Gaussian noise. The restoration uses the

regularization parameters determined in the previous section.

Observe how the restored images are sharp and noiseless, and the

estimated blurring kernels resemble the true kernels.

A quantitative measure of the error, associated with the estima-

tion of the color image and of the blurring kernel, can be obtained

by calculating the peak signal-to-noise ratio (PSNR).

PSNRðXÞ ¼ 20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3N �MP

a

PN
j¼1

PM
k¼1

ðXa
j;k � X̂a

j;kÞ2;

vuuut

where X stands for ua or h, and N � M is the number of pixels.

Table I summarizes the PSNR of the images in Figures 1–4.

VI. PROPERTIES OF THE BELTRAMI-BASED
RESTORATION

The properties of restoration of a 2D surface, embedded in a 3D

‘‘spatial-feature’’ space, similar to the case of gray-value images (or

the blurring kernel) are explored first. The Polyakov action in Eq.

(14) becomes (for a large �) the modified TV operator defined by

Vogel and Oman (1996) as

SðhÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2ðrhÞ2
q

dx dy

¼ �

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðrhÞ2

q
dx dy ¼ � TVðhÞ; ð26Þ

where � ¼ 1
�.

Since the TV does not penalize discontinuities or smooth mono-

tone functions, it was used successfully as a regularization operator

in reconstructing gray-valued images (Rudin et al., 1992; Chan and

Wong, 1998). Reconstruction using the TV operator was explored

by Strong and Chan (2000) and yielded the following properties:

edges are preserved in the reconstructed image; the intensity change

of image features is proportional to the regularization parameter,

and inversely proportional to the feature scale; small-scale details,

like noise, are smoothed out, leaving a sharp noiseless reconstruc-

tion. In the Beltrami-based restoration, the regularization parameter

�1 is replaced in the Euler–Lagrange equation by �1ffiffiffiffiffiffiffiffiffiffi
detðGÞ

p , yielding

an adaptive TV restoration (Strong, 1997). Since the term �1ffiffiffiffiffiffiffiffiffiffi
detðGÞ

p is

basically an edge indicator, it assumes small values in the presence

of an edge, while in smooth areas, in which the gradients are very

close to zero, its values increase up to one. This feature overcomes

the problems of the intensity reduction near edges, and of elimina-

tion of small-scale features. To illustrate this property, consider the

simple R1 function

uðxÞ ¼
0:2 x 2 �1;

0:8 x 2 �2;

0:2 x 2 �3:

8><
>: ð27Þ

A Gaussian noise is added to this function to produce the noisy

function
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Figure 2. Radially symmetric blur. From left to right: 1st row, origi-
nal; 2nd row, blurred and noisy image, restored image; 3rd row, true

and estimated kernels.

Figure 3. Out of focus blur. From left to right: 1st row, original; 2nd
row, blurred and noisy image, restored image; 3rd row, true and esti-

mated kernels.

Figure 1. Radially symmetric blur. From left to right: 1st row, origi-

nal; 2nd row, blurred and noisy image, restored image; 3rd row, true

and estimated kernels.

Figure 4. Motion blur. From left to right: 1st row, original; 2nd row,
blurred and noisy image, restored image; 3rd row, true and estimated

kernels.



zðxÞ ¼ uðxÞ þ n: ð28Þ

Experiment with the Beltrami-based restoration algorithm on

this noisy function suggests that the restored function should be

uðxÞ ¼
0:2þ �1 x 2 �1;

0:8þ �2 x 2 �2;

0:2þ �3 x 2 �3;

8><
>: ð29Þ

where �i is the intensity change in region i. The restoration problem

is given as follows:

min
u

1

2
u�zk k2þ�1� TV uð Þ

� �

¼min
�i

X
i

�ij j�2i
� �þ�1� 0:6þ�2��1þ0:6þ�2��3ð Þ

( )
; ð30Þ

where |Oi| is the length of region i. Minimizing Eq. (30) by deriva-

tion with respect to �i yields

�1 ¼ �1�

�1j j ; �2 ¼ 2�1�

�2j j ; �3 ¼ �1�

�3j j : ð31Þ

Therefore, in the restored function u(x), the intensity change is

directly proportional to the parameter �1 and inversely proportional

to the scale. This result was presented in (Strong, 1997) for the TV-

based restoration.

For simplicity, let us assume that |O1| ¼ |O3|, and therefore �1 ¼
�3. Modifying the regularization parameter �1 to �1ffiffiffiffiffiffiffiffiffiffi

detðGÞ
p ¼

�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2jruj2

p , introduces the Beltrami operator to the solution. The

regularization parameter can be explicitly expressed by

�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 ruj j2

q ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2ð0:6þ�2��1Þ2
p x 2 @12;

�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ð0:6þ�2��1Þ2

p x 2 @23;

�1 elsewhere;

8><
>: ð32Þ

where @12 stands for the boundary of region 1 and 2, and @23 stands
for the boundary of region 2 and 3.

Considering only the boundary points and implementing the

modified �1, Eq. (31) becomes

�1 ¼ �1�

�1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð0:6þ �2 � �1Þ2

q ðon @12Þ;

�2 ¼ � 2�1�

�2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð0:6þ �2 � �1Þ2

q ðon @12Þ;

�2 ¼ � 2�1�

�2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð0:6þ �2 � �1Þ2

q ðon @23Þ;

�3 ¼ �1�

�1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ð0:6þ �2 � �1Þ2

q ðon @23Þ: ð33Þ

Since � is assumed to be very large, Eq. (33) can be approxi-

mated as follows:

�1 ¼ �1

�1j jð0:6þ �2 � �1Þ ðon @12Þ;

�2 ¼ � 2�1

�2j jð0:6þ �2 � �1Þ ðon @12Þ;

�2 ¼ � 2�1

�2j jð0:6þ �2 � �1Þ ðon @23Þ;

�3 ¼ �1

�1j jð0:6þ �2 � �1Þ ðon @23Þ: ð34Þ

Since �1 ¼ �3 the solution to (34) is

�1¼
0:6 �1j j �2j j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1j j2 �2j j20:36�4j�2jð �1j j �2j jþ2 �1j j2Þ�1

q
2ð �1j j �2j jþ2 �1j j2Þ ;

�2¼�
0:6 �1j j �2j j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1j j2 �2j j20:36�4j�2jð �1j j �2j jþ2 �1j j2Þ�1

q
ð �2j j2þ2 �1j j �2j jÞ :

ð35Þ

In this case, intensity change �i is not directly proportional to the

regularization parameter �1 or inversely proportional to the scale in

the boundary points. In fact the intensity change is minimal.

The function z is actually divided into two types of regions. Step

regions in which the intensity change is defined in (35), and smooth

regions in which the parameter

�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 jru j2p � �1;

and the intensity change are defined in Eq. (31).

Restoration of the function u using the TV operator and the Bel-

trami operator are shown in Figure 5. Gaussian noise with variance

0.05 was added to the function u. The size of the regions is |O1| ¼
|O3| ¼ 25, |O2| ¼ 10, �1 ¼ 1/60 and � ¼ 60.

The TV restoration should yield

�1 ¼ �3 ¼ �1�

25
¼ 0:04; �2 ¼ ��1�

5
¼ �0:2; ð36Þ

and the Beltrami-based restoration should yield

Table 1. PSNR (in dB) of the restored images and kernels.

Image

Observed

Image PSNR

Restored

Image PSNR

Restored

Kernel PSNR

Coin 21 23 60

Baby 28 32 62

Frog 25 27 59

Color bar 24 31 47
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�1 ¼ �3 ¼ 150� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22500� 60000�1

p
3000

¼ 0:001;

�2 ¼ � 150� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22500� 60000�1

p
600

¼ �0:005: ð37Þ

Observe the contrast reduction between O1 and O2/3 in the TV-

based restoration (caused by the direct relation to the smoothing

parameter �1). The value of O2 is extensively reduced because of

its small scale (caused by the inverse relation to the feature scale).

In the Beltrami-based restoration, the change in the contrast is

hardly seen because of the wick relation to �1 and the feature scale.

The numerical results, as seen in Figure 5, match perfectly with the

analytic prediction of Eqs. (36) and (37).

As mentioned in Section II, the Polyakov action for a 2D surface

embedded in a 5D ‘‘space-feature’’ space as in the case of a color

image is

SðuiÞ ¼
Z ffiffiffiffiffiffiffiffiffi

Grgb

p
dx dy

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
X
a

ruaj j2
� �

þ 1

2
�4
X
ab

rua;rubð Þ2
s

dx dy; ð38Þ

where (!ua, !ub) stands for the magnitude of the vector product

of the vectors !ua and !ub. While minimizing the Polyakov

action, the term 1þ �2
P

a j rua j2 regularizes each color channel,

as described in the gray-value case earlier. The term �4 Sab (!ua,
!ub)2, which is more dominant in the limit of a large �, measures

the directional difference of the gradients between color channels.

The minimization of the Polyakov action takes care, therefore, of

the alignment and location matching of the edges over the three

channels. To illustrate this, a noisy color image was produced by a

digital camera (Fig. 6 up-left). The angles between the orientations

of the gradient in the noisy image are plotted by arrows (Fig. 6

down-left). When an arrow points right the angle is zero (the gra-

dients are of the same orientation). A Beltrami-based restoration is

illustrated on the upright side of Figure 6. Note that in the original

image the gradient of the channels do not align together, the image

looks noisy, and the edges are not sharp. In the restored image,

however, the angles between the gradient orientations are reduced

(Fig. 6 down-right) and the restored image looks sharper and less

noisy.

Color image reconstruction is hardly addressed, owing to the

common belief that color image reconstruction can be treated as

Figure 5. Original noisy image. Down-left: After denoising by TV.
Down-right: After denoising with the Beltrami operator.

Figure 6. Up–down, left to right: original noisy image, denoised
image, the angles between color gradients before, and after the

denoising process.

Figure 7. Left to right, top to bottom: original, noisy, TV and Bel-

trami images.
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reconstructing three gray-valued independent channels. This is a

wrong assumption in applications in which the human visual system

(HVS) is the receiver. The HVS is very sensitive to the slightest

edge misalignment, or to intensity reduction in one of the color

channels. Blomgren and Chan (1998) reported that the color TV

was defined as a regularization operator for the restoration of vec-

tor-valued images. A coupling between the color channels was

achieved through the regularization parameter, assigning small reg-

ularization parameter to channels with smaller TV. In the recon-

structed color image, ‘‘weaker’’ channels are smoothed less, and

therefore preserve the intensity relationship between the channels.

In the Beltrami-based restoration, a coupling between the color

channels is introduced not only through the regularization parame-

ter but also through the regularization operator itself. Comparison

between the best color TV reconstruction and the best Beltrami-

based reconstruction of a noisy image, in which blur is not intro-

duced, is depicted in Figure 7. Table II summarized the PSNR of

these images. Observe how in both the reconstructed images, the

noise is removed completely. However, only in the Beltrami-based

reconstruction the edges are sharp and visually satisfying and color

artifacts are not introduced. The blur and color artifacts in the TV

process are caused probably because of misalignment of the edges

in the different color channels (Tschumperlé, 2002).

VII. CONCLUDING REMARKS
Using the Beltrami operator in the objective functional, and adopt-

ing the alternating minimization scheme for minimizing Eq. (4),

yields a robust algorithm for simultaneous recovery of a blurred

noisy color image and of its blurring kernel. The parameters �1 and

�2 of this process are automatically selected to yield good results.

The restored images depict sharp edges and the gradients of the

channels are well aligned. The RGB color space was adopted in this

study. However, the approach can incorporate just as well the HVS

color coordinates (Wolf et al., 1996). The HVS color space was

shown to be effective in spatio-chromatic image enhancement.

Another issue to be further explored relates to question of what is

the ‘‘right’’ metric for measuring distances in the higher dimen-

sional space (Sochen and Zeevi, 1998). Further such insight will

most likely improve the results of the proposed approach to image

deblurring and denoising.
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