
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 3, JUNE 2003 421

Optimal Nonlinear Line-of-Flight Estimation in
Positron Emission Tomography

Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky, and Yehoshua Y. Zeevi

Abstract—The authors consider detection of high-energy pho-
tons in positron emission tomography using thick scintillation crys-
tals. Parallax effect and multiple Compton interactions in such
crystals significantly reduce the accuracy of conventional detec-
tion methods. In order to estimate the photon line of flight based
on photomultiplier responses, the authors use asymptotically op-
timal nonlinear techniques, implemented by feed-forward and ra-
dial basis function neural networks. Incorporation of information
about angles of incidence of photons significantly improves accu-
racy of estimation. The proposed estimators are fast enough to per-
form detection, using conventional computers. Monte Carlo simu-
lation results show that their approach significantly outperforms
the conventional Anger algorithm.

Index Terms—Artificial neural network, emission tomography,
gamma camera, scintillation detector.

I. INTRODUCTION

DETECTION of high-energy photons emitted as the result
of positron decay is one of the most important low-level

stages in positron emission tomography (PET) imaging. In this
study we consider a detector based on the Anger scintillation
camera [1]. Incident high-energy gamma quanta, generated due
to positron decay, produce scintillation effect in the crystal. As
the result, a shower of low energy photons in the visible and
UV spectra is emitted. These photons are collected by an array
of photo-multipliers (PMTs), optically coupled to the scintil-
lation crystal, and invoke electric impulses in them. The PMT
responses are utilized in estimation of the scintillation point co-
ordinates.

A noncollimated Anger camera, based on thick crystals with
high photon penetration depth such as NaI(Tl), is considered in
this study. Application of such thick crystals in PET scanners is
desirable, due to their low cost and very high light output; they
were previously used primarily in gamma ray astronomy [2].

The majority of existing scintillation position estimation al-
gorithms are based on centroid arithmetic, usually combined
with correction maps [3]. Their application appears, however,
to be problematic in the case of thick crystals due to significant
parallax observed at large radiation incidence angles.

Tomitaniet al.[4] proposed an iterative maximum likelihood
algorithm for position estimation and depth encoding in thick
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scintillation crystals, in order to compensate for the parallax ef-
fect. However, an iterative approach necessitate extensive com-
putations that prohibit real-time implementation.

Delormeet al.[5] and Clémentet al.[6] have implemented ar-
tificial neural networks in a depth-encoding scintillation detec-
tion. Their approach is flexible and offers advantages over itera-
tive algorithms. Still, it does not resolve the problem of multiple
Compton interactions, which make the conception of “depth of
interaction” ambiguous.

Our study presents a solution for these problems, incor-
porating side information on the photon incidence angle
into the process of position estimation. We use localized,
asymptotically optimal, nonlinear estimators, implemented by
feed-forward and radial basis functions (RBF) neural networks.
As a byproduct, we get accurate position estimation over the
entire area of detector including the edges. This is difficult
to obtain with centroid arithmetics algorithms. We present a
comparison of algorithms on a Monte Carlo simulation and
discuss the prospects for practical implementation.

II. ESTIMATION OF SCINTILLATION COORDINATES

In order to estimate the line of flight, it is usual to estimate
coordinates of interaction independently in each detector. The
situation becomes more complicated in presence of Compton
interactions. Even in the simple case of a single Compton
interaction, with consequent photoelectric absorption, one can
attempt to estimate the coordinates of both interactions, and
choose one with lower penetration depth. A more accurate
decision would be to choose the first interaction along the
possible line of flight (LOF). This observation demonstrates
the importance of prior knowledge of photon direction.

Due to limited light statistics, the coordinate estimation
process is not perfect, and one can use the Bayesian framework
to optimize it. This would involve knowledge of the distribution
of energy deposit and consequent flight directions at every
Compton interaction, probability of photoelectric absorption,
distribution of visible photons after each interaction, etc.
Finally, we would obtain a complicated estimator, which
provides the coordinates of the first interaction. The resulting
model should include the initial photon direction.

Since this does not seem to be a straightforward problem
to manipulate or solve, especially in real time, we propose a
learning approach as an alternative. We use a learning approach
in order to develop and solve the approximation of the optimal
statistical model automatically, using training data, which can
be available in large amounts from simulation or from phys-
ical experiment. Relatively computationally intensive training
process results in fast and accurate on-line estimator.
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Fig. 1. Scheme of photon coordinate estimation using the Anger algorithm:
(a) and ANN-based estimator (b) 1—photon pair emission source, 2—actual
LOF, 3—first interaction, 4—secondary interaction, 5—tertiary interaction,
6—scintillation point estimated by Anger algorithm, 7—LOF estimated by
Anger algorithm, 8—entrance point estimated by ANN, and 9—LOF estimated
by ANN.

Our crucial observation is that using the knowledge of photon
direction, one can get a more accurate estimate. In this case,
one do not even need to estimate the three–dimensional (3-D)
coordinates of each interaction. Instead, the two–dimensional
(2-D) coordinate of photon entrance into the detector crystal can
be estimated directly. Together with the incidence angle, this
gives full description of the LOF.

Such an approach reduces the influence of the parallax effect
and multiple Compton interactions, since the point of photon
entrance is well defined in this case as well (Fig. 1). Unlike many
existing approaches, our method does not rely on the average
interaction depth.

III. PARAMETRIC ESTIMATION USING NEURAL NETWORKS

Scintillation detector can be considered to be a complicated
nonlinear stochastic system that maps the photon LOF into a
vector of PMT responses. Given the incidence angle, LOF
is defined by planar coordinates on the surface
of the crystal. For every incidence angle, we implement an op-
timal nonlinear estimator of of the form, , where

is a family of functions, parameterized by the vector
of parameters .

A reasonable criterion for estimator optimality is the expec-
tation of some error function , for example,
the expected squared error .

We are interested in forms of , that possess the prop-
erty of a universal approximator: when the number of parame-
ters is large enough, any bounded function can be ap-
proximated with given accuracy over a bounded domain by an
appropriate choice of .

Fig. 2. Block diagram of a practical ANN-based scintillation coordinates
estimation algorithm. Estimation of scintillation coordinates in detector 1 using
side information from detector 2.

Given the PMT responses to a set of known LOFs
(referred to as atraining

set), we find such , that minimizes the mean-squared error
(MSE) on the training set, i.e:

This process is referred to astraining. When the training set is
sufficiently large, the MSE approximates the expected squared
error with any desired accuracy. Under such conditions, a uni-
versal approximator with sufficient parameters ap-
proaches the optimal nonlinear estimation. In this study we used
two types of universal approximators implemented as artificial
neural networks (see Appendix for description).

A. Two-Level Scheme Using Localized Estimators

A possible implementation can be based on a combination
of coarse and fine estimators (Fig. 2). Fine estimators, imple-
mented as artificial neural networks, are trained on scintillation
events in different (possibly overlapping) regions at a range of
calibrated incidence angles. Coarse estimators, based, for ex-
ample, on the Anger algorithm determine the rough position and
incidence angle of the photon. According to this information,
the appropriate fine estimator is selected. Such a combination
of estimators allows reduction in the size of each network and
accelerates the training.

IV. SIMULATIONS

In order to test the proposed approach and compare it with
other algorithms, we performed a Monte Carlo simulation of ray
tracing and gamma quanta interaction in a scintillation detector.
The simulation was performed using a slightly modified version
of TRIUMF detector modeling platform introduced by Tsang
et al. [8], [9]. The region of interest and the incidence angle
involved in the estimator selection were assumed to be known.

A model of a NaI(Tl) scintillation crystal of size
210 210 45 mm, separated with a 20 mm glass light
guide was simulated. The detector consisted of seven circular
PMTs, each of radius 30 mm, with inter-tube gaps of 10
mm. The inter-tube area was assumed to consist of an ideal
light-absorbing material (Fig. 3). Fig. 4 depicts the coordinate
system of the detector model.
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Fig. 3. Detached NaI scintillation detector used in the simulation.

Fig. 4. Detector coordinate system. All coordinates are given in millimeters.

Using TRIUMF, we simulated narrow beams of 512 KeV
gamma quanta impinging at the detector crystal surface in a
given point and a given incidence angle. The point at which the
beam entered the scintillator surface was recorded for each sim-
ulated event and served as reference for position estimation. In-
cidence angle was measured as shown in Fig. 5.

Fig. 5. Incidence angle measurement: normal angle� and azimuthal angle'.

Fig. 6. Estimated pulse spectrum: number of scintillation events versus the
number of photoelectrons produced in an event. Events below the photopeak
(dotted) were rejected.

PMT responses to the simulated scintillation events,
expressed as the number of the produced photoelectrons
(assuming quantum efficiency of 25%) were recorded. Pulse
spectrum (Fig. 6) was estimated in order to determine the
threshold for low-energy events rejection.

Four tests were performed in order to analyze the effectiveness
of different scintillation coordinates estimation algorithms. The
tests were performed in small regions of the detector. In each test,
two sets of data were simulated: a training set and a test set.

The training set consisted of simulated PMT responses to
scintillation events resulting from gamma quanta impinging at
the crystal surface on an evenly-spaced grid (3131 points with
1 mm step, 500 gamma quanta per grid point). The test set was
used for error estimation and error distribution analysis over the
entire tested region and was created on an evenly-spaced 1616
grid with 2 mm step, 5,000 gamma quanta per grid point.

The following tests were performed:

1) Region: [0 mm, 30 mm] [0 mm, 30 mm];
Incidence angle: ,

2) Region: [0 mm, 30 mm] [0 mm, 30 mm];
Incidence angle: ,

3) Region: [0 mm, 30 mm] [0 mm, 30 mm];
Incidence angle: ,

4) Region: [40 mm, 15 mm] [70 mm, 15 mm];
Incidence angle: , .
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TABLE I
ERRORDISTRIBUTION—TEST 1 (� = 0 )

TABLE II
ERRORDISTRIBUTION—TEST 2 (� = 10 )

TABLE III
ERRORDISTRIBUTION—TEST 3 (� = 30 )

TABLE IV
ERRORDISTRIBUTION—TEST4 (PERIPHERALREGION, � = 0 )

Test 1 served as a reference. Tests 2 and 3 were used to ex-
amine the sensitivity to parallax effect. Test 4 was used to ex-
amine the influence of edge effects. The following algorithms
for estimation of scintillation coordinates were compared:

• Anger algorithmwith threshold pulse pre-amplification,
which is used in many modern scintillation detectors [3],
[12], [13]. The output of the Anger algorithm was cor-
rected by an ideal infinitely-dense bias correction map
(unachievable in practice).

• Localized linear regression(LLR). Position estimation
was carried out according to the formula

where is the estimated position ( coordinate), is
the vector of PMT responses, and is the vector of

regression coefficients found by minimizing the MSE over
the training set in the tested region

where is the training set.
• Multilayer perceptron(MLP) with three nonlinear (tanh)

layers (ten neurons each) and one linear neuron, imple-
mented using the MathWorks MATLAB NN Toolbox
[14].

• Radial basis function network(RBF) with 100 Gaussian
neurons, implemented using the MATLAB RBF toolbox
by Müller et al. [10].

In all of the estimations employing these algorithms, the input
was a vector of 7 PMT responses and the output was the
coordinate of the estimated LOF entrance position. Root mean
squared (RMS) estimation error was calculated at each node of
the test set grid according to

Minimum, maximum and average RMS error over the test set
grid was found. Position estimation error histogram was com-
puted on the data of the test set and error distribution parameters
such as bias (mean error), RMS error, standard deviation and
FWHM were estimated.

A. The Influence of Multiple Interactions

An additional test (Test 5) was performed to study the influ-
ence of multiple interactions in the scintillation crystal on scin-
tillation position estimation accuracy. For this purpose, a test
set, consisting of 100 000 gamma quanta impinging the crystal
at incidence angle in the center of the region used in
Test 3, was generated. For each event, the total number of inter-
actions, of which it comprised, was recorded. Then, the test set
was divided into subsets containing events with fixed number of
interactions (from 1 to 5). RMS error of the estimators obtained
in Test 3 was calculated on these sets.

V. RESULTS

Tables I–IV summarize the estimation error distribution pa-
rameters for different algorithms obtained in Tests 1–4, respec-
tively. Figs. 7–10 show the position estimation error histograms
obtained in Tests 1–4, respectively. All the histograms are nor-
malized by the peak value to make easier FWHM comparison.

Anger algorithm appeared the worst method in all tests. Local
linear regression, which did not appear to be the best among
the compared adaptive estimation algorithms, yielded in all tests
better results than Anger’s algorithm. This fact emphasizes the
importance of locality. Nonlinear estimation, using MLP and
RBF networks, showed the best results in all tests.

The best nonlinear methods showed about 33%, 40%, 54%
and 11% of improvement in the RMS error compared to the
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Fig. 7. Error histogram of the unbiased Anger algorithm (dashed) and the best
ANN estimator (solid) in Test 1.X-axis represents error in millimeters.

Fig. 8. Error histogram of the unbiased Anger algorithm (dashed) and the best
ANN estimator (solid) in Test 2.X-axis represents error in millimeters.

Anger algorithm in Tests 1–4, respectively. The improvement
rose with the incidence angle and was especially significant in
Test 3 (incidence angle 30). This fact demonstrates the ability
of our method to treat large-incidence-angle events more accu-
rately than the Anger algorithm.

Error distributions produced by the nonlinear estimators tend
to have smaller FWHM:standard deviation ratio, compared with
that characteristic of the Anger algorithm; this can potentially
result in additional image resolution improvement [11].

Fig. 11 demonstrates the RMS error in Test 5 as a function
of the number of interactions in the crystal. ANN estimators ap-
pear to be less sensitive to multiple interactions than the Anger
algorithm.

VI. COMPUTATIONAL COMPLEXITY

MLP network used in this study performs 280 multiplica-
tions, 31 additions and 30 computations of the nonlinear func-
tion per detected photon. Nonlinear function can be efficiently
computed using look-up tables and, in general, its computa-
tion is estimated to be equivalent to 5–6 multiplication opera-
tions. Preliminary coarse scintillation position estimation and

Fig. 9. Error histogram of the unbiased Anger algorithm (dashed) and the best
ANN estimator (solid) in Test 3.X-axis represents RMS error in millimeters.

Fig. 10. Error histogram of the unbiased Anger algorithm (dashed) and the best
ANN estimator (solid) in Test 4.X axis represents RMS error in millimeters.

Fig. 11. Test 5: RMS error in mm versus number of interactions. Anger
algorithm (dashed) and the best ANN estimator (solid).

network selection can be carried out in practically negligible
time. Hence, about 500 FLOPs are required per scintillation
event.
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Fig. 12. Multilayer preceptron with three hidden layers and single output
neuron.

Fig. 13. RBF network with single output neuron.

The RBF networks used in this study require about 700 ad-
ditions, 100 multiplications and 100 computations of the non-
linear function, which requires about 1000 FLOPs per scintilla-
tion event. A 1 GFLOPS processor would be capable of handling
about 1 10 events per second, which is sufficient for PET ap-
plications. Since most types of artificial neural networks have a
highly parallelizable pipeline-like architecture, implementation
using dedicated hardware may be advantageous.

VII. CONCLUSION

The proposed method of LOF estimation in PET, based on
training of and processing with artificial neural networks, incor-
porates information about the incidence angle in the estimation
algorithm. Unlike the conventional algorithms, which estimate
the scintillation coordinates, our approach estimates directly the
photon LOF, given PMT responses from a pair of detectors. This
allows compensation for the parallax effect, multiple Compton
scattering and increases effective detection area.

In practice, a different version of the algorithm can be imple-
mented. The neural networks can be fed with the angle as addi-
tional input and trained over small regions of the detector on a
range of angles with given angular resolution. The implementa-
tion of localized estimators allows reduction in the complexity
of each estimator. The proposed algorithm is sufficiently fast to
be implemented in real time using standard software or special
purpose hardware.

APPENDIX

The following neural network architectures were used in this
work.

1) Multilayer perceptron (MLP), shown in Fig. 12

where is the number of layers; is the number of neu-
rons in each layer; and are the output and the
parameter vector ofth neuron in th layer, respectively;

and are the network input and output, respectively;
is some nonlinear function, usually of a sigmoidal type

[7].
2) Radial basis function (RBF) network, shown in Fig. 13

where is the number of neurons in the nonlinear layer;
are the network weights; is a Gaussian with con-

trollable variance, , and mean, [7].
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