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Orthogonalization of Circular 
Stationary Vector Sequences and Its 

Application to the Gabor Decomposition 
Nikolay Polyak, William A. Pearlman, Senior Member, ZEEE, and Yehoshua Y. Zeevi 

Abstract-Certain vector sequences in Hermitian or in Hilbert 
spaces, can be orthogonalized by a Fourier transf‘orm. In the 
Anite-dimensional case, the discrete Fourier transform OFT) 
accomplishes the orthogonalization. The property of a vector 
sequence which allows the orthogonalization of the sequence by 
the DFT, called circular stationarity (CS), is discusped inthis 
paper. Applying the DFT to a given CS vector sequence results 
in an orthogonal vector sequence, which has the same span as 
the original one. In order to obtain coefficients of the decom- 
position of a vector upon a particular nonorthogonal CS vector 
sequence, the decomposition is first found upon the equivalent 
DFT-orthogonalized one and then the required cdcients  are 
found through the DFT. It is shown that the sequence of discrete 
Gabor basis functions with periodic kernel and with a certain 
inner product on the space of N-periodic discrete functions, 
satisfies the CS condition. The theory of decomposition upon CS 
vector sequences is then applied to the Gabor basis functions to 
produce a fast algorithm for calculation of the Gabor coefficients. 

I. INTRODUCTION 

N this paper, we present and utilize extensively properties I of a class of vector sequences called circular stationary 
(CS). The definition and properties of CS vector sequences 
have coI;respondences in the theory of wide-sense stationary 
(WSS) random processes. Both the WSS process and the 
CS vector sequence are sequences in a Hilbert or Hermitian 
space and possess the characteristic of translation invariance. 
Therefore, many theorems from the theory of WSS processes 
can be directly applied to the CS vector sequences. In the 
finite-dimensional case, theorems pertaining to the CS se- 
quences find equivalents in the theory of circulant matrices. 
The translation of relevant theorems into the language of 
vector Hermitian or Hilbert space allows the derivation of 
significant new properties. In the attempt to simplify certain 
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proofs and ascertain whether or not a vector set is stationary, 
we present a group theoretical approach to stationarity. We 
then apply the approach to the Gabor decomposition and derive 
a new fast algorithm for its computation. 

The paper is organized as follows: In Section 11, the main 
theory of circular stationary sequences is expressed as vector 
language, orthogonalization and decomposition of these vector 
sequences are considered, and some examples are given. In 
Section 111, some applications of the orthogonalization and 
decomposition theorems are shown. In Section IV, a group 
theoretical approach to the problem of circular stationarity is 
developed. In Section V, it is shown how to find a vector 
set that is biorthogonal to a given circular stationary vector 
set, even in the case of undersampling. The theory of orthog- 
onalization and decomposition of stationary (not necessarily 
circular stationary) vector sequences is presented in Section 
VI. In Section VII, the decomposition theorems, the group 
theoretical approach, and biorthogonal basis determination 
are extended to multidimensional vector sequences and, in 
particular, to the discrete Gabor functions. In this section, a 
fast algorithm for decomposition on the Gabor basis is derived. 
The resulting formulas are expressed in Section VIII in terms 
of the Zak transform, and comparisons are made between our 
method and the ones developed in [ 1014 123. 

U. THEORY AND DEFINITIONS 
Dehition 1: Given a Hilbert or a Hermitian linear space l-t, 

the continuous (discrete) 1-D vector sequence x ( t )  ( ~ [ n ] )  is a 
mapping of continuous (discrete) variable t (n) into the space. 
The function that yields inner products between any two of 
such vectors Rz( t i , t 2 )  =< ~ ( t i ) , ~ ( t 2 )  > (&[ni,n2] =< 
x[nl ] ,x[n2]  >) is called the autocorrelation function of the 
vector sequence. 

For simplicity, we describe the discrete parameter case 
explicitly with analogous application to the continuous case 
understood. 

DeJnition 2: The homogeneous (stationary) vector se- 
quence is the vector sequence whose autocorrelation depends 
only on the difference between the second and the first 
arguments: 

R[n1, n21 = R[n1 - n2,OI. 

A In this case, we call a single argument function R[n] = R[n, 01 
the autocorrelation function of the sequence. 
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Examples of stationary vector sequences are described be- 
low. 

Example I-Wide Sense Stationary Stochastic Process 

Any wide sense stationary stochastic process x[n] with inner 
product given by < x [ n l ] , x [ n ~ ]  >= E{z[nl]%[nz]}, where E 
denotes the expectation and % the conjugate of x, is a stationary 
vector sequence. 

Example 2--Time Shifts 
Consider a sequence gn(t) = g ( t - n A t )  in C2 space, where 

Lz is a Hilbert space of all square integrable functions with 
inner product between any two functions g(t) and h(t) in the 
space given by the following formula: 

J-00 

and g(t) is a function in &. From the definition and the 
substitution below, gn(t) is a stationary vector sequence. 
Indeed 

Example 3-Frequency Shifs 

the sequence is stationary, as follows: 
Consider a sequence gn(t) = g(t)ejnDtin 132 space. Again, 

Consider now a periodic vector sequence: . . . , x[N - 
11, x[O],x[l], . . , x[N - 11,. . . and the N unique vectors 
in this sequence x[O],x[l],...,x[N - 11. 

DeJinition 3: The sequence of N vectors x[O], x[ 11, 
. - . , x [ N  - 11 is called a CS sequence with period N ,  
if when continued periodically in both directions, it will 
produce a stationary sequence. Note that this condition can be 
reformulated in the following way: For n1 and nz, where n1 
and nz are any integers greater than or equal to zero and less 
than N ,  the following is true: 

where (nl - nz) mod N is the remainder after division of 
nl - n2 by N .  

Note that the definition of CS sequences does not coincide 
with that of cyclostationarity. Actually, the CS sequences are 
precisely those that are periodic stationary and stationary at 
the same time. 

Let us consider examples of CS vector sequences. 

Example 4-Two Equal Norm Vectors with Real Inner 
Product. (Two Equal Norm Vectors on the Real Plane) 

Let there be two vectors x[O] and x[l] in an Hermi- 
tian space 'FI of the same norm (Ilx[0]llz = Ilx[l]llz = 
< x[l],x[l] >= a), such that their inner product is real: 
< x[O],x[l] >= b. Extending periodically this vector se- 
quence in both directions results in an infinite periodic vector 
sequence . . . , x[O], x[l], x[O], x[l], . . ., which is stationary. In- 
deed, since < x[O],x[l] > is real and < x[O],x[l] >=< 
x[l],x[O] >= b, it is found that 

Since the autocorrelation function depends only on the differ- 
ence of its arguments, the extended sequence is stationary and 
the first sequence is circular stationary. 

Example 5-Equally Spaced Three Vectors on a Real Plane 
Consider a real plane with an Hermitian structure added by 

introducing multiplication by j = m. However, all of the 
inner products of the vectors of the plane will remain real. Take 
a vector sequence on that plane x[O],x[l],x[2] consisting of 
three vectors of the same norm, such that angZe(x[O], x[l]) = 
angZe(x[l],x[2]) = angZe(x[2],x[O]) = F, as shown in 
Fig. 2, where the function angle is an ordinary angle taking 
values from 0 to 27~ and is measured from the first argument 
vector to the second in the counterclockwise direction. The 
extended periodic sequence is stationary and the original 
sequence is CS. 

Example b E m e  Ships of a Periodic Function 
Consider the same situation as in the Example 1, only 

assume that the function g(t) is periodic with period N A t .  
Now, there are only N unique functions in the sequence 
g n ( t )  = g(t - nAt)  for n = 0 , 1 , .  a ,  N - 1.  Since g(t) does 
not belong to CZ, the space is taken now to be Pz[O, NAt]  of 
N A t  periodic functions and square integrable on the interval 
[0, NAt].' For any two functions g(t) and h(t)  in Pz[O, N A t ] ,  
SdYAtg(t)h(t)dt  is defined to be their inner product. The 
periodically extended sequence is stationary (the proof of the 
fact is very similar to that of the Example 1) so that the 
functional sequence gn(t) is CS. 

Example ?-Frequency Shifts (Modulation) 
of a Discrete Function 

Consider a space D2 of discrete, square summable func- 
tions. For any two functions g[k] and h[k] in the space, define 

'This actually means that the function is square integrable on any finite 
interval. 

2Examples 6 and 7 are actually dual since the Fourier transform of a discrete 
function is periodic, and time shifts correspond to modulation in the frequency 
domain. 

. 
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C ~ = - , g [ k ] h [ k ]  to be their inner product. The sequence 
g n [ k ]  ,= g [ k ] e j " % k  in the space is periodic since g n + ~ [ k ]  = 
g[k]eJ(n+N)%k = g[k]ejn%'ejqTk = gn[k], and the extended 
sequence is stationary: 

k = - w  . 
M 

k=-oo 
m 

Therefore, the functional sequence g n [ k ] ,  where n = 
0,1,. . . , N - 1, is CS. 

The orthogonalization theorem for CS vector sequences 
can now be stated. This theorem has an analog not only 
in the theory of stochastic processes, but also in the theory 
of the circulant matrices, where it assumes the form of the 
diagonalization theorem for circulant matrices (see [5 ] ) .  

Theorem 1 (Orthogonalization of CS Vector Sequences): 
Given a CS vector sequence x[O], x[l], . . . ,x[N - 11 in Her- 
mitian (Hilbert) space %, we can obtain an orthogonal vector 
sequence y[O], y[l], . . . , y[N - 11 that spans the same linear 
space as the sequence x, by applying to the original sequence 
the DFT of order N: 

i = O  

The nymber of nonzero vectors in the sequence 
y[O],y[l],..., y[N - 11 equals the maximal number 
of linearly independent vectors among the sequence 
x[O], x[1], . . , x[N - 11. The sequence x[O], x[l], . . . , x[N- 11 
can be recovered from y[O], y[l], . . . , y[N - 11 by applying 
to it the inverse discrete Fourier transform: 

- N-I  

First, we sketch the proof and then give the proof itself. To 
prove that the DFT (as in (2)) really orthogonalizes the basis, 
we can just take the vector product of two different vectors out 
of sequence y[O], y[l], . . , y[N- 13 and use the CS condition 
to prove that it equals,zero. The proofs of the two other 
statements of the theorer$ are also simple and straightforwmd. 
The inversion formula is proved by substituting into it the 
expression for y[i] given by (2). From here, we obtain the 
proof of the fact that the two sets of vectors are equivalent zyld 
therefore the number of nonzero vectors among the orthogonal 
sequence y[i] should equal the dimension of the span of the 
sequence x[ i ] .  It is important to notice that the vectors y[i] 
are not necessarily of the unit norm and not even necessarily 
of the same norm. 

Pro08 To prove that the vectors y[k] obtained according 
to (2) are mutually orthogonal, consider the inner product 

N - 1  N - 1  

i=O n=O 
N - 1  N - 1  

- - , - j + i k , j + n l  < x[i],x[.] > 
i=o n=O 

N - l  N-1 

and utilize the CS property. The expression above is the sum 
eJ%(nl-ik)R,[i,n] over pairs (i, n); therefore, each of them 
is employed once and only once. The terms of the summation 
are rearranged in the following manner. Consider line segment 
[O,N] reformed intd a circle by putting together its ends: N 
and 0. Now, fix an integer p equal to the circular difference 
(i - n) mod N ,  and set up the requirement that when i cycles 
through values from 0 to N - 1, n takes values lying p 
samples away from i, counterclockwise on the circle. For each 
i = 1 , 2 , . . . , N  - 1, with p fixed in tum from 0 to N - 1, 
each of the pairs (2, n)  is traversed only once. Because of the 
CS property, R, [i, n] depends only on the circular difference 
between i and n. 

If we fix p ,  we can rewrite the above expression as 

p=o n=O 

.p=o n=O 

,j %(nl-( (n+p)mod N ) k )  = ,j %(?Z-( ( n + p )  m o d N ) k ) m o d N  

e j % (nZ-( n + p )  k )  modN 

e j % (n(l -  k) - p k )  mod N 

- - 
- - 
- ,j % ( n ( I - k ) )  mod N - ( p k ) m o d N  

- ,-j % ( p k ) m o d  N e j %  (n(2-k) )mod N 

- 
- 

(6) 

and observe that 

N-1 s - , - j % ( p k ) m o d N  , j % ( n ( l - k ) ) m o d N  
P -  

n=O 

However, if 2 - IC # 0, then ~~~~ e j % ( n ( l - k ) ) m o d N  = 0, 
Sp = 0, and < y[k],y[l] >= 0. Therefore, the vectors y[k] 
are mutually orthogonal. 
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The straightforward calculation below proves that x[i] is the 
inverse DFT of the y[k] sequence: 

. N-1 . N-l N-l 

- N-1 

~ N-1 N-I 

Because Er:, e-j 9 (n--i)k equals 0 for any n - i # 0 and 
equals N for n = i ,  the expression gives x[i]. 

Every vector of the sequence y[k] can k obtained as a 
linear combination of the vectors x[i]. The opposite is also 
true: Every vector of the sequence x[i] can be obtained as 
a linear combination of the vectors y[k]. Therefore, the two 
sequences must have the same span. Suppose that vectors x[i] 
span a space of dimension D < N .  Therefore, there should be 
D linearly independent vectors among them, which constitute 
a basis of the span and N - D vectors linearly dependent upon 
them. The same should be true about y[k] sequence, but since 
this sequence is orthogonal, the linearly dependent vectors will 
be zero, and D vectors will be nonzero. Therefore, the y[k] 

0 
Another way to prove this theorem is the following: One can 

notice that the autocorrelation of the circular stationary vector 
set is a circulant matrix and then use the circulant matrices 
diagonalization theorem (see [5 ] ) .  

Suppose now that we have a vector r and want to find 
coefficients C O , C ~ , . . - , C N - ~  such that IIr - Cfz;~kx[k]11~ 
is minimal. The vector 

sequence has exactly N - D zero vectors. 

N-1 

k=O 
(7) 

is then the projection of r on the span of vectors 
x[O], x[l], . . -  ,x[N - 11. Since the orthogonal sequence 
{y[z]}Lil is equivalent to {x[k]} f~~  and the transformations 
to and from one to the other are known, we can find the 
decomposition of the vector r on the basis {y[i]}Eil and 
then obtain the coefficients C O ,  c1, . . . , C N - ~  using the above 
transformations. More precisely, we have, the following 
theorem. 

Theorem 2 (Decomposition of CS kctor  Sequences): With 
notations as above, the coefficients C O ,  c1, . . , C N - ~  are ob- 
tained according to the following formula: 

N-1 

In other words, to obtain the coefficients of vector decomposi- 
tion on the CS vector basis {x[i]}&,', one can decompose the 
vector on the orthogonal basis {Y[Z]}Z;~ and take the D m  
of the coefficients. 

1781 

Proof: The projection of vector r on an orthogonal set 
{y[i]}Lil is found to be 

N-1 

Now, substituting for y [ i ] ,  the expression given by (2) yields 
N-1 N-I 

< r,y[i] > e - jgk i .  
1 N-1 N-1 

= c x[lc1 c jjjqqj5 
k=O i=o,1 ly[i]ll#O 

(10) 
0 

Note that after substituting into (8) the expression for the 
yi given by (2),  the coefficients ci of the decomposition 
can be expressed through inner products < r,x[i] > of 
the decomposed vector r and the vectors xi of the original 
sequence: 

The inner summation in (10) is the coefficient Ck.  

- - zN-1 ~=o, I lYb I l l fo  (+(,YZ;~ IIy[z]l 1 <r,x[~]  > e ~ ~ ~ l z ) > - ~ ~ ~ k .  

(11) 
The procedure for finding coefficients c, based on (1 1) is, 
however, longer than that based on (8) because there are two 
FFI"s involved instead of one. In the Gabor decomposition 
case treated later, the difference between the two procedures is 
even greater due to the structure of {x[i]};;' and {y[i]}~;'. 

Notice that the above theorem is applicable in the cases of 
undersampling as well, when the vector r does not belong 
to the span of {x[i]}L-,l and oversampling when the vectors 
{ x [ i] } are linearly dependent. 

In. EXAMPLES OF &PLICATION OF 
ORTHOGONALIZATION AND DECOMPOSITION THEOREMS 

Example I-Two Equal N o m  Vectors with Real Inner 
Product (Two Equal N o m  Vectors on a Real Plane) 

Consider the vector sequence given in Example 4 of the 
previous section. The vectors x[O] and x[1] are orthogonalized 
by DFT: 

y[o] = x[~le- j%O~~ + X[l]e-j%1xO - - x[O] + x[1] 

If x[O] and x[1] have the same norm and a real inner product, 
vectors y[O] and y[l] are orthogonal, as illustrated in Fig. 1. 
Given a vector z, its projection on the span(x[O],x[l]) is 

z p r  = COX[O] + C I X [ ~ ]  

where . 
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y2 = x1- x2 discrete, square summable functions, by taking the DFT of 
the original set y1= x1 +x2 

N-1 N-1 

~ , [ I C I  = ~ J I C ] ~ - J + ~  = g [ k ] e j ~ ~  2 r  k e - 37'" 2S 

a=O -z=O x2 

N-1 
- - g[k] e3%*(k-n) 

w 
Fig. 1. "bo vectors of equal length, XI and xz on a teal plane and their 
orthogonalization. Note that y1 and yz are orthogonal to one another. 

a=O 
CO 

= N ~ [ I C ]  S[IC - n + ZN] (14) 
k - C O  

where n = 0 , l . a  . N  - 1 and S[k] is a discrete impulse 
function, which equals 1 at zero and 0 everywhere else. 
Analogous to (8), the coefficients of the decomposition of 
some function f [k] on the sequence 9% [ I C ]  are 

1 
= 2 -N Example 2-Three Equally Spaced Vectors on a Real Plane 

section. This example is of interest because in this case the 
dimensionality of the space D is less than the number of 

"=(),I lhn [kll IZO 
03 Consider the situation as in Example 5 of the previous 

( f [ n  - N Z I ~ [ ~  - N Z I ) ~ - ~ % . " ~  (15) 
I = - 0 3  

and l l~n [~1 I l2  = N 2  cp"=-, 1g[n - NZ]I2). vectors N in the sequence. D = 2, and N = 3, so that 
N - = 1. We find that 

y[O] = x[O] + x[l] + x[2] = 0 

and the other two vectors y[l] and y [2 ]  are nonzero. This 
example illustrates the fact that the number of nonzero vectors 
among the sequence y i equals the dimensionality of the space 
spanned by ( { ~ [ i ] } ~ = ~  !VLl)* 

Example 3 - E m  Shifts of a Periodic Function 

Consider the functional sequence gi in Example 6 of the 
previous section. By applying the orthogonalization theorem, 
we obtain an orthogonal functional sequence h k .  

Iv. GROUP THEORY APPROACH TO cs 
Proofs of the theorems regarding CS can be simplified by 

adopting a somewhat different viewpoint. 
Definition 4: Given a Hermitian (Hilbert) space H, a linear 

transformation P of the space onto itself is called a linear 
isometry, if it preserves the norm, i.e., for every a E 'H, 

We shall need the following property of a linear isometry: 
With the conditions as above, for any two vectors a, b E H, 
we have 

< Pa, Pb >=< a,b > . (16) 

IlPall = Ilall. 

To prove this, notice that ilP(a + b)1I2 = Ila + b1I2, i.e., 
JIPal12 + 2Re < Pa,Pb > +JIPb1I2 = 11a1I2 + 2Re < 
a, b > +llb112, or, since IIPa1I2 = lla1I2 and llPb1I2 = llb1I2, 
we have Re < Pa, Pb >= Re < a, b >. By considering 

I m  < a, b >. Noticing that P-l is also a linear isometry, by 

< P"a, Pnb >=< a, b > (17) 

for any integer n. 
Dejnition 5: Given a linear isometry P, P" is also a linear 

isometry for any integer n. Denoting the identity transfonna- 
tion (which is also a linear) isometry by I, one can see that 

N-1 N-1 

h k ( t )  = (12) 

for IC = o , i . .  . N - 1. NOW, taking llh.112 = SdyAt Ihi(t)lZdt, 
of NAt-ped&c 

function f(t) E P2[0; NAt] (notation as in previous Example 
6) on the sequence gn(t):  

ga ( t ) e -3sak  = g(t - iAt)e-'q-2k 
0=0 E=O 

we can use the decomposition theorem and (8) to obtain the the difference I I a  - bI121 we Prove that Im < Pa, Pb >= 
of an 

(16), we Obtain 

N- l  N At  
f (t)& (t)dte-3 %*k .  c, = 

(13) 

Enample 4-Frequency Sh@s of a Discrete Function 
the set . . . , P-l, I, P, P2, - . , P", . . constitutes an Abelian 
(commutative) group with respect to multiplication. We shall 

Given the conditions of Example 7 of the previous section, call P a basis of the group and say that the group is established 
by the use of the orthogonalization theorem, a set of orthogonal by P since all of the nonzero elements of the group are orders 
functions h,[IC] can be found in D2, which is the space of of P. If PN = I, and there is no positive NI < N such that 
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PN1 = I, the group established by P is called an N-cyclic 
P U P .  

neorem3: A set {x[i]}E;l is cs iff there is a linear 
isometry P, which is a basis of an N-cyclic group, such that 
x[i mod NI = Pix[O] for any integer i .  

Proofi Suppose there is such an isometry P. Then, we 
have R[nl,na] =< x[nl],x[nz] >=< Pnlx[O], Pn2x[O] >. 
Now, using (17), we obtain 

< Pnlx[O], Pn*x[o] > =< P-""Px[O]), P-n'Pn2x[O] > 
=< Pnl-nzx[O], x[O] > 
= R[nl - nz,O] 

and the sequence is CS. 
TO prove the converse, assume that {x[i]}&l is CS. 

Suppose it spans a subspace S E 'FI. Applying DFT to the 
set {xjl}lzil,we obtain an orthogonal sequence of vectors 
{y[i]}i=o that may contain zero vectors. Consider now the 
linear transformation Ps of the subspace S onto itself, such 
that 

pS(y[l~]) = ejgky[k]. (18) 

The transformation is an isometry of 5' since for every vector 
a = aiy[i], where ai is assumed to be zero if y[i] is 
zero, we have 

N-1 N- 1 

=< ej%-iaiy[il>, ej%kaky[k~) > 

= ailii < y[i],y[i] >= lla112. (19) 

i = O  k=O 
N-1 

i = O  

Ps establishes a cyclic group since P$ = I. In addition, we 
have 

1 N-l 
~Sx[ i ]  = ~ s ( y [ k ] ) e j % ~ ~  

k=O . N-I 

= - 1 N-l y[k]ejgk(i+l) 

k=O 
N 

= x[(i + 1) mod NI. (20) 

If SI is a complement of S in 'FI, then we can write 
'FI = S'- @ S. If I S l  is the identity operator on SI, then 
the operator P = I S l  @ Ps is a linear isometry of 'FI, 
and Px[i] = x[(i + 1) mod NI, and therefore, Pnx[O] = 

The linear isometry P associated with a CS set {x[i]}Ei' 
x[(n) mod NI. 0 

is called the linear isometry of the set. 

In addition, from the proof, one can see that the linear 
isometry P of a cs set {x[i]}Eil will transform the elements 
of the set {y[i]}Eil, which is obtained by applying the DFT 
to {x[z]}:=f-', according to the following formula: 

~ ( y [ l ~ l )  L= ej%-"y[l~]. (21) 

v. BIORTHOGONAL BASIS AND PROOF OF THE OPTlMALITY 
OF THE SET OF THE COEFFICENTS IN CASE OF OVERSAMPLING 

Suppose that there exists a finite set of vectors {x [ i ]}~ i l  
that spans a subspace S of some Hilbert or Hermitian space 
IH. Suppose that there exists a set {X[i]}&,', such that for 
every i %[i] E S,  and for every r E 'FI, the following holds: 

N-1 

rpr = < r,x[i] > x[i] 
i = O  

where rpr is the projection of r on S. Then, the set {%[2]}Ei1 
is called a biorthogonal vector set of the original vector set 
{x[i]}z;'. Note that it need not be unique. 

Rearranging (8) 
N-1 

and one can see that the set {%[k]}Z;', which is given by 

is a biorthogonal set of the CS set {x[i]}z;'. Indeed, every 
x[k] is in the span of the set {y[i]}gil and, therefore, in 
the span of the original set {x[i]}~i'. In addition, using 
(lo), one can see that (22) also holds, and the coefficients 
of the decomposition of an arbitrary vector r E 'FI on the set 
{x[z]}zil are given by 

ci =< r,%[i] > . (25) 
Theorem 4: With notations as above, given that P is the lin- 

ear isometry of the CS vector set {x[i]}Zi', the biorthogonal 
set {5i[k]}Ei1 is also cs with the same linear isometry P. 

Proofi As was shown, P acts on the set {y[i]}gil 
according to (21), and therefore 

= %[(k + 1) mod NI. 
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Note that finding the cdefficients of the decomposition either 
through the biorthogonal set or through the Fourier transform 
is equivalent and also works in the cases of undersampling 
and oversampling. 

Suppose that there is a Hilbert or Hermitian space 1-I and a 
cs set of vectors { x [ i ] ) ~ i l  in it. Suppose that this set spans 
a subspace S of 1-I and that the dim(S)  < N, i.e., vectors 
{x[i]};;' are linearly dependent. Then, given a vector r, 
one can see that the set of the coefficients {ci}ZL1 of the 
decomposition of the vector on the set {x[ i ] }L; ' ,  such that 

N-1 

i=O 

will not be unique. However, we can prove the following the- 
orem concerning the optimality of the representation obtained 
through (8) or (25). 

Theorem 5: Under the above conditions, (8) and (25) pro- 
vide the optimal set of coefficients, i.e., the set with minimal 
sum of the squares of their norms: 

N-1 

i = O  

Proofi Since (8) adduces (25), it is sufficient to prove 
the fact only for coefficients obtained by means of (8). 

Consider 
N - 1  

Then, using (9), one can write 

N - 1  

VI. COMPARISON WlTH STATIONARY SEQUENCES 
Consideration of the orthogonalization and decomposition 

technique for the CS vector sequences was actually prompted 
by the existence of a theorem stating that any stationary vector 
sequence can be orthogonalized by the Fourier transform, 
which in turn is related to the fact that the Fourier transform 
of a wide sense stationary ( W S S )  random process is a white 
(uncorrelated) process. 

Theorem &Orthogonalization of Stationary Stochastic Se- 
quences: The Fourier transform of a continuous (discrete) 
WSS random process o(t) ( ~ [ n ] )  is a white noise process 
y(w), where w assumes values from -CO to 00 (from --x to -x 
in the discrete case), with power equal to the power spectral 
density (psd) of the process z ( t )  ( ~ [ n ] ) .  The psd is the Fourier 
transform of the autocorrelation function of the process. (For 

From here, we obtain the following theorem regarding any 
stationary vector sequence: 

Theorem 7-Stationaly Vector Sequences Orthogonalization 
Theorem: The Fourier transform of a continuous (discrete) 
stationary vector sequence x ( t )  ( ~ [ n ] )  is an orthogonal vector 
sequence 

proof see [l].) 

W 

y ( w )  = 1 x(t)e-jwtdt (31) 
-W 

or (for the discrete case) 
W 

y(w) = x[n]e-jwn (32) 
n=-W 

where w assumes values from -cm to CO (from --x to T in 
the discrete case), with the square of its norm equal to the psd 
of the vector sequence x ( t )  (x[n]):  

The psd is the Fourier transform of the autocorrelation function 
of the vector sequence or taking di = 0 for such i that Ily[i]lI = 0, one can rewrite 

the above equation as 

Since y [ i ]  is an orthogonal basis and d,'s are zero for I ly[i] I I = 
0, these d, coefficients are optimal in the mean square sense 
for the basis { y [ i ] } z ; '  (the sum of their squares is minimal). 
Indeed, the only other possibility for choosing the d, coeffi- 
cients, so that (30) would still yield a projection, would be 
to choose nonzero coefficients for such i's that Ily[i]ll = 0, 
which could only increase the norm. Because of (8), one can 
see that the Ck coefficients are the DFT of the d, coefficients. 
Suppose that another set Ck has a smaller sum of the squares 
than the C k ' s ,  and the formula analogous to (7) still holds "th 
Ck instead of C k .  Then, the corresponding coefficients d, of 
the decomposition on the { y [ i ] } z i l  basis would be obtained 
through the inverse DFT of the Ck. Since the inverse DFT 
preserves the ,"arms up to a scalar, the sum of the square 
norms of the d, would be less then the sum of dz's, which is 
a contradiction. 0 

W 

&(U) = 1, Rz(t)e-jwtdt (34) 

or in the discrete case 
W 

sZ(w) = ~ , [ n ] e - j ~ ~ .  (35) 
n=-w 

We can also derive a decomposition theorem for stationary 
vector sequences, which we state here only for the discrete 
case. 

Theorem 8-Decomposition of Stationary Vector Sequences: 
Given a stationary vector sequence ~ [ n ]  in a Hilbert space 1-I 
and a vector r whose projktion rpT on ~ p a n { x [ n ] } ~ ! - ~  is to 
be decomposed on the sequence x[n] ,  the coefficients c, of the 
decomposition are found by projecting r first on the orthogonal 
sequence y (w)  and then taking the Fourier transform, the result 
of which is 

r?F 4 

c,=J- < r , y ( w )  > (36) 
?r IlY(W)ll2 
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The integration in (36) is performed only over regions of 
the interval [-7r,7r], where I ly (w) l )  # 0. It is important to 
notice that in this case, vectors y may not be in the space X, 
but they must be linear functions on 'FI. The proper definition 
of the norm, which is utilized in our examples, is a subject by 
itself and will not be treated here. 

Example 1-Bme Shifi Sequence 

Consider a functional sequence g n ( t )  = g ( t  - nAt) as in 
Example 1 of Section II. The Fourier transform of the sequence 
is 

00 

(37) 
n=-m 

When attempting to decompose a function f(t) on the basis 
g n ( t ) ,  it is desirable to decompose it first upon the sequence 
h,(t) and then take the Fourier transform. 

Example 2-Frequency Shifi Sequence 

Consider the sequence of frequency shifts of a function as 
in Example 3 of Section II. Orthogonalization of the sequence 
g n ( t )  = g(t)ejnnt  is accomplished by application of the 
Fourier transform to yield 

CO 

n=-m 
m 

= 2 a g ( t )  6(Rt - w - 2lrn) 
n=--00 

27r w 21r 
5 2 R  52 

21r w 21r w 21r 
R R  R R  R 

= -g ( t )  S ( t  - - - -n) 

- _  - g ( -  + -n)6(t - - - -71) (38) 

.n=-m 

n=-m 

where 6 ( t )  denotes the Dirac function. One may verify that 

The coefficients of the decomposition of any function f ( t )  
on the basis g n ( t )  may therefore be obtained through the 
following formula: 

VII. MULTIDIMENSIONAL VECTOR SEQUENCES 

A. Dejinitions 

The theory presented above can easily be generalized to 
consideration of multi-dimensional vector sequences. 

Dejinition 6: The continuous (discrete) R-dimensional vec- 
tor field x( t l ,  t2 , .  - . ,  t R )  (x[nl, n2, e . , n ~ ] )  is a mapping of 
the continuous (discrete) R-dimensional space (t l ,  t 2 ,  . . , t ~ )  
( ~ ~ 1 , 1 2 2 ,  . . . , n ~ )  into a Hilbert or Hermitian space. The func- 
tion Rx ( t l ,  t2,. * . , t ~ ;  S I , S ~ ,  . . , SR) = < x (ti,  t 2 ,  . . * , t R ) ,  

. 

X(Sl,S2, * ' .  , S R )  > (Rx[nlr n2, * * *  , nR;ml,m2r , m R ]  = 

< x[n1,n2,...,nR],x[ml,m2,...,mR] >) is called the 
autocorrelation function of the vector sequence. 

In the rest of this section, we shall restrict our attention to 
discrete multi-dimensional vector sequences. 

Dejinition 7: The homogeneous, (stationary) multidimen- 
sional vector sequence is the vector sequence whose autocor- 
relation function depends only on the difference between the 
corresponding elements of the first and the second arguments: 

Dejinition 8: The multidimensional set of NI x N2 x . . . x 
NR vectors {x[n1, n2,. . . , ~ R ] } , l = ~ , n z = o  ,..., nR=O is called a 
CS sequence, with period N; in the zth dimension, if its pen- 
odic extension in each of the dimensions generates a stationary 
sequence. By periodic extension of an N I  x N2 x . . x NR se- 
quence, {x[nl, n2,. . , n ~ ] } ~ ~ = ~  n2=0 ... is meant to be 
a sequence {p[~1,~2,~~~,~R]),,~~,,,,~-, ,..., ,R=--OO of 
infinite extent in each of the dimensions, with the property that 

for any integers u ~ , u ~ , - . . , u R ,  where, for 0 5 ni < N;,  

The orthogonalization and decomposition theorems can be 
applied to multidimensional stationary and CS vector se- 
quences by substitution of multidimensional Fourier trans- 
forms for one dimensional ones. In addition, the biorthogonal 
basis can be obtained in exactly the same way by means of 
multidimensional Fourier transforms. 

N~,Nz,...,NR 

NI,Nz,...,NR 
& , m , . ? . , p = O  

p[nl+alNl ,  n2+a2N2, ' , n R + a R N R ]  = x[nl, 722, * * ' n R ]  

i = 1 , 2 , * . - , R .  

B. Group Theory Approach to Multidimensional 
Circular Stationarity 

The properties of multidimensional circular stationary se- 
quences can be readily expressed through group theory. For 
this purpose, we begin with a basic theorem from Abelian 
group theory. 

Theorem 9: Given a finite Abelian (commutative) group 
G, we can always find a set of elements of the group 
{PI, P2, - , PR}, such that the groups established by the 
elements of the set are cyclic, with the length of the cycle 
corresponding to P; equal to N,,  and every element A of 
G can be represented as PF'P;", where UI, u2, . . . , UR are 
integers. The set { P I ,  P 2  . . PR} is called the basis set of the 
group. The number R is called the dimension of the group. 
The basis and the dimension of the group may not be unique. 

We state the most pertinent theorem of this subsection. 
Theorem 10: An R-dimensional set { x[nl, 722, . . . , 

is CS iff there exists a finite Abelian 
(commutative) group G of linear isometries of a Hermitian 
(Hilbert) space onto itself, with basis { P I ,  P 2 ,  . , PR}, with 
the length of the cycle corresponding to Pi being equal to 
N,,  such that 

x[nl  mod NI,  n2 mod N2,. . . , n R  mod NR] 

NI,Nz,...,NR 
nRl 1 nl =0,n2 '0,"',12R =0 

= P;'P;' . . . P;"x[o, 0 , .  . . , 01. (41) 

We call {PI, P2 ,  . . , P E }  the set of isometries of the CS 
sequence {x[n1,n2,. . , ~ R ] } n 1 = 0 , n 2 = o  ,..., n R = O .  The proof of N~,Nz,...~NR 
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the theorem is very similar to that of the analogous theorem 
for 1-D CS sequences. The theory for the multidimensional 
case is very similar to that for the 1-D one. 

The following theorem is helpful for further considerations: 
Theorem I I :  The set biorthogonal to a multidimensional 

CS set is also multidimensional CS and has the same set of 
isometries. 

C. Orthogonalization and Decomposition of a 
Sequence of Discrete Gabor Functions 

Here, we apply results obtained in previous sections to the 
discrete Gabor decomposition of functions (signals). Gabor 
decomposition is the representation of a function f ( t )  E 122 
by a linear combination of time (or position) and frequency 
shifts of another function, which 'is called the kemel of the 
transform, i.e., the problem is to find a function 

00 

f ( t )  = cn,,g(t - n A t ) e J w o m  (42) 
n,m=-cc 

where f is the best approximation of the function f ( t )  in the 
mean-squared sense. Here, At and WO are time and frequency 
shifts. The Gabor expansion was first introduced in [2] and 
has been applied to signal and image decomposition (see [3], 
[13], and [14]). Gabor decomposition of discrete signals was 
considered in [8]. 

Here, we consider the Gabor decomposition for discrete 
periodic signals. The same problem was also considered in 
[lo]-[12]. 

Consider a linear space FL of discrete L-periodic functions 
(functions with period L). One can introduce inner product on 
this space in the following way: For two functions f ,  g E 3 ~ ,  
take 

L - 1  

< f , g  >= c f [ i  + io]g[ i  + i o ]  (43) 

where g denotes the complex conjugate of 9, and io, which is 
the starting point of the summation, is some integer. One can 
see that the inner product defined as above does not depend on 
io. The functions from FL can be obtained in the following 
two ways: Either one can take a discrete square integrable 
function f and consider the sum of its L-shifts: 

Z=O 

m 

n=--00 

or one can let such a function assume any values for k = 
io, io + 1, io + L - 1 and extend it periodically for all L. 

Assuming N and M are some divisors of L, let us define 
two unitary operators on FL of time shift and frequency shift 
TM and EN for f E FL in the following way: 

%f(f)[kl = f[k - L/MI (45) 

and 

Definition 9: The periodic M x N Gabor set for the space 
FL is the set of functions {gn,m}r=<f;n"<' such that 

~ n , m [ k ]  = ( E ~ ) ~ ( T ' ) ~ ( g ) [ k l  = e'"g[k - nL/M] .  (47) 

The function g E FL is called the kemel of the transform. 
The strong point of the methods for the Gabor decomposi- 

tion presented in this paper is that all of them (including the 
method considered below) work in case of undersampling (the 
Gabor functional set {gn,m}F=.f$=<l does not span the whole 
space FL) and in the case of oversampling (the functional set 
is linearly dependent) since all of the methods are based on 
the method described in the decomposition of the CS vector 
sequences theorem or the biorthogonal functions approach. 

One can check that ( T M ) ~  =   EN)^ = I ,  where I is 
the identity operator on the space. We will show that the two 
operators commute if M = &, where p is an integer: 

T M E N ( f ) [ k ]  = e F - ( k - L / M ) f [ k  - L / M ]  
- - e%('-Np)f[k - ~ p ]  = e % k f [ k  - ~ p ]  

= E N T M ( f ) [ k ] .  (48) 

The conditions of Theorem 10 are hence satisfied, and the 
Gabor set {gn,m}n=o,m=O is 2-D circular stationary when 
M = &. Therefore, it can be orthogonalized by the 2-D 
Fou.rier transform. 

M - l , N - - 1  

Let us find the orthogonalization: 
M - 1  N - 1  

h, , , [k]  = g [ k  - ~ p n ] e ~ 3 S m " - j % n s e - ~ ' m t  
n=O m=O 

n=O 
M--1 

m=O 
m 

n=O I = - 0 0  

I = - 0 0  n=O 

(49) 

where s and t are integers; 0 5 s < M ,  and 0 5 t < N .  
Now, using the analog of (8), with the sequence h, , t [k ]  in 

place of yi, f [ k ]  instead of r, and gn,m[k]  instead of xi, we can 
find the coefficients cn,m of the decomposition of an arbitrary 
function f [ k ]  E FL on the Gabor basis ~ ~ , ~ [ k ] :  

. g [ t  + N E -  ~ p i ] e - j % ' s ) f [ t  + ~ l l ) e - j % s n e - j ? j t m .  

(50) 

Notice that Ilhs,tl12 and h8,t[k] can be calculated offline and 
stored in memory beforehand. 

Once the coefficients of the Gabor decomposition have been 
obtained, we can apply the fact that the hs , t [k ]  functions 
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are nonzero only on k samples of one period and zero on 
the rest. This offers a method of fast signal reconstruction 
from the Gabor coefficients. From (50), it is seen that the set 
I lhs,t l12.  < f, hs,t > can be obtained from the set of the Gabor 
coefficients c , , ~  by taking the inverse Fourier transform: 

1 

1 < f ,  hs,t >= N M  cn,,ejSsn e iatm N . (51) 
Ilhs,tl12 n,m 

Since the functions hs,t[k] form an orthogonal set of functions, 
we can write 

where f p r  [k] is the projection of the signal on the span of the 
Gabor functions s p a n ( { g n , m } ~ ~ ~ m , o ) .  From (51) and (52), 
we obtain 

s , t  n,m 

D. The Biorthogonality Approach 
Using tools developed in Section lY, one can find a ba- 

sis {&,m}n=O,ljn=O that is biorthogonal to {gn,m}r=;tljntil. 
Using (24), which is modified for the 2-D case, we have 

M-k N-1 

Observing that the original and biorthogonal sequences have 
the same set of linear isometries, we find 

All the other functions of the biorthogonal set can be 
obtained by applying linear isometries of the original set 
{gn,m}n=O,m=o shifted along time and frequency axes, i.e. 

(56) 

M-1,N-1 

gn,m[k]  = j o , o [ k  - Npn]e jgmk.  

The biorthogonal function method also works in the cases of 
oversampling and undersampling. 

The biorthogonal functions decomposition overall is slower 
than the method described in the previous section (h-functions 
method) and the one of the next section (the Zak transform 
method) when using serial computation by one processor, 
but it is faster when using parallel computation. Once the 
biorthogonal functions are computed and stored in memory, 
the process of taking the inner products with them can be 
parallelized and does not require Fourier transforms, as do 
other methods considered in this paper. 

vm. RESTATEMENT BY ZAK TRANSFORM 
AND COMPARISONS OF METHODS 

The Zak transform was successfully used by Janssen as 
a tool for the exploration of continuous-time signal Gabor 
decomposition [9]. Auslander er al. [ 101 and Zeevi and Gertner 
[ 111 developed an algorithm for calculation of coefficients of 
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the Gabor decomposition based on the discrete Zak transform. 
Gertner and Zeevi [ 121 and Zeevi and Gertner [ 1 11 modified 
this algorithm for the decomposition of images. 

Dejinition 10: Let g[k] be zero outside the interval [0, L-1] 
or L-periodic, where L = N M .  The discrete N x A4 Zak 
transform of the function g[k] is 

N-1 

z(g)(-, n m  -) = g [ m  + iM]e-j%in, 
i = O  

N M  
0 5 n < N,O 5 m < M. (57) 

Our method can be expressed in terms of the Zak transform. 
Starting from expression (49) for h,, ,[k],  rewriting the inner 
sum, and using representation 1 = pq + r ,  where r is the 
remainder after division of 1 by p ,  yields 

M-1 
g[t  + NI - Npn]e- i sns  

n=O 
M-1 .. 

= C g [ t  + Npq + N r  - Npnle-jg"" 
n=O 
M-1 

n=O 
M-1 

Substituting the above expression into (49) after some alge- 
braic manipulations yields 

-00 

. e-jgqsS[lc - t - Nqp - N r ] .  (59) 

Using (59), we can find < f, hs,t > for any L-periodic 
function f [ k] : 

L-1 

< f,hs,t > = f [ ~ ] ~ s , t [ k l  
k=O 

00 

. e jsqs6[k  - t - Nqp - N r ] f [ k ]  
q=-m 
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and 

Substitution of (60) and (61) into (50) yields 

%,m = c .,t:c::,' Iz(g)(-+?*)I2#0 

1 

The coefficients of the decomposition are expressed according 
to (62) in terms of the Zak transforms of the decomposed 
function f and the kernel of the Gabor basis. Let us consider 
a special case when p = 1 and, correspondingly, M N  = L 
(thenumber of samples in the signal equals the number of 
basis functions). The orthogonal functions are 

s t  O0 
M '  N h,,t[k] = NZ(g) ( - -  -) e- jBQSS[k- t -Nq]  (63) 

q=--m 

with 

Note that in the case p = 1, a zero in the Zak domain means 
that the corresponding hs,t is zero, and 

s t -  s t  
< f,h,,t >= Z ( f ) ( - z ,  z)z(g)(-- M ' N  -). (65) 

We obtain then the following formula for the coefficients: - 

Up to some notational differences, the above formula is the 
same as the one of the Auslander et al. method (for the case 
when there are nq zeros in the Zak domain). Our method offers, 
however, the following advantages: 

The discrete symmetric functions always have a zero in 
the middle of the Zak plane [12], [17]. To circumvent this 
problem, Gertner and Zeevi [12], and Khaled et al. [17] have 
translated the Gaussian by a subpixel distance. They showed 
that for maximum stability, the Gaussian has to be shifted 
by half a pixel. Further, they took the inner products of the 
functions from the Gabor set and the decomposed function 

in the time domain, which prevented them from using the 
extra advantages of the FFT. By comparison, our method uses 
the h functions. These functions are nonzero only every Nth 
sample, and therefore, taking the inner product with them is 
faster. The corresponding Zak transform approach would be 
even faster since it would require just one inner product in the 
Zak transform domain instead of N x M in case of the time 
domain or the h functions domain. In addition, because they 
operate in the time domain, their approach required two FFT's 
(as in (11)) as opposed to one FFT as in our case. 

Moreover, when p > 1, our method (which is no longer 
equivalent to the discrete Zak transform method) gives the 
projection of the signal on the span of the Gabor set (the 
best mean-squared approximation for this basis), whereas the 
discrete finite Zak transform method yields an approximation 
that is not a projection and, hence, is not as close as ours. 

Our algorithm using biorthogonal functions complements 
the one developed by Wexler and Raz [8]. They considered 
only the oversampling and critical sampling cases, whereas we 
developed an algorithm using biorthogonal functions for the 
case of undersampling as well. Further, using the approach 
developed by us one does not encounter the problem of 
inverting possibly noninvertible matrices in order to obtain the 
biorthogonal basis. Through our method, we are able to obtain 
the basis that yields the Gabor coefficients producing the 
best approximation of the decomposed function. In this way, 
one can use the method for the Gabor bases with symmetric 
elementary functions. 

For large enough periods, in case of the sequential process- 
ing, the Zak transform approach is definitely the best among 
the h functions and the biorthogonal functions since it requires 
only one inner product (in the Zak domain), one Zak transform 
of the signal, and one FlT, provided that the Zak transform 
of the kernel and the divisors for (62) have been precomputed 
and stored in memory. In the case of parallel processing, the 
biorthogonal functions approach would have an advantage as 
shown in Section VII-D. 

IX. CONCLUSION 
In this paper, we utilized the theory of CS vector sequences 

and applied it to the Gabor decomposition of signals in the 
case of undersampling. Zibulski and Zeevi in [15] and [16] 
considered the oversampling case of the Gabor decomposition 
when the number of functions in the set is greater then the 
number of samples in the signal. Our approach can also be 
applied to that problem, although in the oversampling case, 
the Gabor set is not CS. The approach considered herein leads 
to results that are more general in their applicability than those 
of Zibulski and Zeevi since there is no requirement that the 
Gabor basis must constitufe a frame. 

The theory can be easily extended and applied to the Gabor 
decomposition of images, in which case, the Gabor functions 
are 2-D and the corresponding FFT is 4-D. Various other 
fast decomposition algorithms can be developed, by which we 
can decompose a signal (image) on time (space) or frequency 
shifts of any kernel function. The decomposition of a signal 
on time shifts of a kernel corresponds to N = 1, whereas 
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the decomposition of a signal on frequency shifts of a kernel 
corresponds to M = 1 in our Gabor decomposition algorithm. 
The same approach can be applied to the development of 
multiresolution algorithms. Such decomposition algorithms 
may be quite useful in image and signal processing and 
compression since they have the characteristic of separating 
coefficients bearing little information from those bearing a 
lot of information. Moreover, the decomposition schemes can 
emulate, to some degree, the functions of the human eye and 
ear and, consequently, find applications in image and speech 
processing. 
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