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Abstract. A novel scheme for texture segmentation is presented. Our
algorithm is based on generalizing the intensity-based geodesic active
contours model to the Gabor spatial-feature space of images. First, we
apply the Gabor-Morlet transform to the image using self similar Ga-
bor functions, and then implement the geodesic active snakes mecha-
nism in this space. The spatial-feature space is represented, via the Bel-
trami framework, as a Riemannian manifold. The stopping term, in the
geodesic snake mechanism, is generalized and is derived from the metric
of the Gabor spatial-feature manifold. Experimental results obtained by
applying the scheme to test images are presented.

Keywords: Texture segmentation, Gabor analysis, Geodesic active con-
tours, Beltrami framework, Anisotropic diffusion, image manifolds.

1 Introduction

Image segmentation is an important issue in image analysis. Usually it is based
on intensity features, e.g. gradients. However, real life images usually contain
additional features such as textures and colors that determine image structure. In
order to achieve texture segmentation (detecting the boundary between textural
homogeneous regions), it is necessary to generalize the definition of segmentation
to features other than intensity.

Since real world textures are difficult to model mathematically, no exact
definition for texture exists. Therefore, ad-hoc approaches to the analysis of
texture have been used, including local geometric primitives [8], local statistical
features [3] and random field models [7,4]. A more general theory, based on the
human visual system has emerged, in which texture features are extracted using
Gabor filters [20].

The motivation for the use of Gabor filters in texture analysis is double folded.
First, it is believed that simple cells in the visual cortex can be modeled by Gabor
functions [16,5], and that the Gabor scheme provides a suitable representation
for visual information in the combined frequency-position space [19]. Second,
the Gabor representation has been shown to be optimal in the sense of mini-
mizing the joint two-dimensional uncertainty in the combined spatial-frequency
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space [6]. The analysis of Gabor filters was generalized to multi-window Gabor
filters [23] and to Gabor-Morlet wavelets [19,23,17,12], and studied both analyti-
cally and experimentally on various classes of images [23]. A first attempt to use
the Gabor feature space for segmentation was done by Lee et al [13] who use a
variant of the Mumford-Shah functional adapted to some features in the Gabor
space. Our method differs from theirs in using the entire information obtained
by the Gabor analysis and in using a different segmentation technique.

In the last ten years, a great deal of attention was given to the ”snakes”,
or active contours models which were proposed by Kaas et al [9] for intensity
based image segmentation. In this framework an initial contour is deformed
towards the boundary of an object to be detected. The evolution equation is
derived from minimization of an energy functional, which obtains a minimum
for a curve located at the boundary of the object.

The geodesic active contours model [2] offers a different perspective for solv-
ing the boundary detection problem; It is based on the observation that the
energy minimization problem is equivalent to finding a geodesic curve in a Rie-
mannian space whose metric is derived from image contents. The geodesic curve
can be found via a geometric flow. Utilization of the Osher and Sethian level set
numerical algorithm [21] allowed automatic handling of changes of topology.

It was shown recently that the Gaborian spatial-feature space can be de-
scribed, via the Beltrami framework [22], as a 4D Riemannian manifold [11]
embedded in IR6. Based on this Riemannian structure we generalize the inten-
sity based geodesic active contours method and apply it to the Gabor-feature
space of images. Similar approaches, where the geodesic snakes scheme is applied
to some feature space of the image, were studied by Lorigo et al [14] who used
both intensity and its variance for MRI images’ segmentation, and by Paragios
et al [18] who generates the image’s texture feature space by filtering the image
using Gabor filters. Texture information is then expressed using statistical mea-
surements. Texture segmentation is achieved by application of geodesic snakes
to obtain the boundaries in the statistical feature space.

The aim of our study is to generalize the intensity-based geodesic active
snakes method and apply it to the actual Gabor-feature space of images.

2 Geodesic Active Contours

In this section we review the geodesic active contours method for non-textured
images [2]. The generalization of the technique for texture segmentation is de-
scribed in section 4.

Let C(q) : [0, 1] → IR2 be a parametrized curve, and let I : [0, a]×[0, b] → IR+

be the given image. Let E(r) : [0,∞[→ IR+ be an inverse edge detector, so that E
approaches zero when r approaches infinity. Visually, E should represent the
edges in the image, so that we can judge the ”quality” of the stopping term E by
the way it represents the edges and boundaries in an image. Thus, the stopping
term E has a fundamental role in the geodesic active snakes mechanism; if it does
not well represents the edges, application of the snakes mechanism is likely to fail.
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Minimizing the energy functional proposed in the classical snakes is generalized
to finding a geodesic curve in a Riemannian space by minimizing:

LR =
∫

E(|∇I(C(q))|) |C′(q)|dq. (1)

We may see this term as a weighted length of a curve, where the Euclidean
length element is weighted by E(|∇I(C(q))|). The latter contains information
regarding the boundaries in the image. The resultant evolution equation is the
gradient descent flow:

∂C(t)
∂t

= E(|∇I|)kN − (∇E · N) N (2)

where k denotes curvature.
If we now define a function U , so that C = ((x, y)|U(x, y) = 0), we may use

the Osher-Sethian Level-Sets approach [21] and replace the evolution equation
for the curve C, with an evolution equation for the embedding function U :

∂U(t)
∂t

= |∇U |Div
(

E(|∇I|) ∇U

|∇U |
)

. (3)

A popular choice for the stopping function E(|∇I|) is given by:

E(I) =
1

1 + |∇I|2 .

3 Feature Space and Gabor Transform

The Gabor scheme and Gabor filters have been studied by numerous researchers
in the context of image representation, texture segmentation and image retrieval.
A Gabor filter centered at the 2D frequency coordinates (U, V ) has the general
form of:

h(x, y) = g(x′, y′) exp(2πi(Ux + V y)) (4)

where
(x′, y′) = (x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ)), (5)

and

g(x, y) =
1

2πσ2
exp

(
− x2

2λ2σ2
− y2

2σ2

)
(6)

where, λ is the aspect ratio between x and y scales, σ is the scale parameter,
and the major axis of the Gaussian is oriented at angle φ relative to the x-axis
and to the modulating sinewave gratings.

Accordingly, the Fourier transform of the Gabor function is:

H(u, v) = exp
(
−2π2σ2((u′ − U ′)2λ2 + (v′ − V ′)2)

)
(7)
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where, (u′, v′) and (U ′, V ′) are rotated frequency coordinates. Thus, H(u, v) is
a bandpass Gaussian with minor axis oriented at angle φ from the u-axis, and
the radial center frequency F is defined by : F = U2 + V 2, with orientation θ =
arctan(V/U). Since maximal resolution in orientation is wanted, the filters whose
sine gratings are cooriented with the major axis of the modulating Gaussian are
usually considered (φ = θ and λ > 1), and the Gabor filter is reduced to:
h(x, y) = g(x′, y′)exp(2πiFx′).

It is possible to generate Gabor-Morlet wavelets from a single mother-Gabor-
wavelet by transformations such as: translations, rotations and dilations. We
can generate, in this way, a set of filters for a known number of scales, S, and
orientations K. We obtain the following filters for a discrete subset of trans-
formations: hmn(x, y) = a−mg(x′, y′), where (x′, y′) are the spatial coordinates
rotated by πn

K and m = 0...S − 1. Alternatively, one can obtain Gabor wavelets
by logarithmicaly distorting the frequency axis [19] or by incorporating mul-
tiwindows [23]. In the latter case one obtains a more general scheme wherein
subsets of the functions constitute either wavelet sets or Gaborian sets.

The feature space of an image is obtained by the inner product of this set of
Gabor filters with the image:

Wmn(x, y) = Rmn(x, y) + iJmn(x, y) = I(x, y) ∗ hmn(x, y). (8)

4 Application of Geodesic Snakes to the Gaborian
Feature Space of Images

The proposed approach enables us to use the geodesic snakes mechanism in the
Gabor spatial feature space of images by generalizing the inverse edge indicator
function E, which attracts in turn the evolving curve towards the boundary in
the classical and geodesic snakes schemes. A special feature of our approach is
the metric introduced in the Gabor space, and used as the building block for the
stopping function E in the geodesic active contours scheme.

Sochen et al [22] proposed to view images and image feature space as Rie-
mannian manifolds embedded in a higher dimensional space. For example, a
gray scale image is a 2-dimensional Riemannian surface (manifold), with (x, y)
as local coordinates, embedded in IR3 with (X, Y, Z) as local coordinates. The
embedding map is (X = x, Y = y, Z = I(x, y)), and we write it, by abuse
of notations, as (x, y, I). When we consider feature spaces of images, e.g. color
space, statistical moments space, and the Gaborian space, we may view the
image-feature information as a N -dimensional manifold embedded in a N + M
dimensional space, where N stands for the number of local parameters needed
to index the space of interest and M is the number of feature coordinates. For
example, we may view the Gabor transformed image as a 2D manifold with
local coordinates (x,y) embedded in a 6D feature space. The embedding map
is (x, y, θ(x, y), σ(x, y), R(x, y), J(x, y)), where R and J are the real and imag-
inary parts of the Gabor transform value, and θ and σ as the direction and
scale for which a maximal response has been achieved. Alternatively, we can
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represent the transform space as a 4D manifold with coordinates (x, y, θ, σ) em-
bedded in the same 6D feature space. The embedding map, in this case, is
(x, y, θ, σ, R(x, y, θ, σ), J(x, y, θ, σ)). The main difference between the two ap-
proaches is whether θ and σ are considered to be local coordinates or feature
coordinates. In any case, these manifolds can evolve in their embedding spaces
via some geometric flow.

A basic concept in the context of Riemannian manifolds is distance. For
example, we take a two-dimensional manifold Σ with local coordinates (σ1, σ2).
Since the local coordinates are curvilinear, the distance is calculated using a
positive definite symmetric bilinear form called the metric whose components
are denoted by gµν(σ1, σ2):

ds2 = gµνdσµdσν , (9)

where we used the Einstein summation convention : elements with identical
superscripts and subscripts are summed over.

The metric on the image manifold is derived using a procedure known as
pullback. The manifold’s metric is then used for various geometrical flows. We
shortly review the pullback mechanism. More detailed information can be found
in [22].

Let X : Σ → M be an embedding of Σ in M , where M is a Riemannian
manifold with a metric hij and Σ is another Riemannian manifold. We can use
the knowledge of the metric on M and the map X to construct the metric on Σ.
This pullback procedure is as follows:

(gµν)Σ(σ1, σ2) = hij(X(σ1, σ2))
∂X i

∂σµ

∂Xj

∂σν
, (10)

where we used the Einstein summation convention, i, j = 1, . . . , dim(M), and
σ1, σ2 are the local coordinates on the manifold Σ.

If we pull back the metric of a 2D image manifold from the Euclidean em-
bedding space (x,y,I) we get:

(gµν(x, y)) =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
. (11)

The determinant of gµν yields the expression : 1+Ix
2+Iy

2. Thus, we can rewrite
the expression for the stopping term E in the geodesic snakes mechanism as
follows:

E(|∇I|) =
1

1 + |∇I|2 =
1

det(gµν)
.

We may interpret the Gabor transform of an image as a function assigning
for each pixel’s coordinates, scale and orientation, a value (W). Thus, we may
view the Gabor transform of an image as a 4D manifold with local coordinates
(x, y, θ, σ) embedded in IR6 of coordinates (x, y, θ, σ, R, J). We may pull back
the metric for the 4D manifold from the 6D space, and use it to generate the
stopping function E for the geodesic snakes mechanism. The metric derived for
the 4D manifold is:
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(gµν) =

⎛
⎜⎝

1 + R2
x + J2

x RxRy + JxJy RxRθ + JxJθ RxRσ + JxJσ

RxRy + JxJy 1 + R2
y + J2

y RyRθ + JyJθ RyRσ + JyJσ

RxRθ + JxJθ RyRθ + JyJθ 1 + R2
θ + J2

θ RθRσ + JθJσ

RxRσ + JxJσ RyRσ + JyJσ RθRσ + JθJσ 1 + R2
σ + J2

σ

⎞
⎟⎠

(12)
The resulting stopping function E is the inverse of the determinant of gµν .

Here gµν is a function of four variables (x, y, θ and σ), therefore, we obtain an
evolution of a 4D manifold in a 6D embedding space.

Alternative approach is to derive a stopping term E which is a function of x
and y only. One way to achieve this is to get the scale and orientation for which
we have received the maximum amplitude of the transform for each pixel. Thus,
for each pixel, we obtain: Wmax, the maximum value of the transform, θmax

and σmax – the orientation and scale that yielded this maximum value. This
approach results in a 2D manifold (with local coordinates (x, y)) embedded in a
6D space (with local coordinates (x, y, R(x, y), J(x, y), θ(x, y), σ(x, y)). If we use
the pullback mechanism described above we get the following metric:

(gµν) =
(

1 + R2
x + J2

x + σ2
x + θ2

x RxRy + JxJy + σxσy + θxθy

RxRy + JxJy + σxσy + θxθy 1 + R2
y + J2

y σ2
x + θ2

x

)
(13)

Again, we use the fact that the determinant of the metric is a positive definite
edge indicator to determine E as the inverse of the determinant of gµν . Here gµν

is a function of the two spatial variables only x and y, therefore, we obtain an
evolution of a 2D manifold in a 6D embedding space.

5 Results and Discussion

Geodesic snakes provide an efficient geometric flow scheme for boundary detec-
tion, where the initial conditions include an arbitrary function U which implic-
itly represents the curve, and a stopping term E which contains the information
regarding the boundaries in the image. Gabor filters are optimally tuned to local-
ized scale and orientation, and can therefore represent textural information. We
actually generalize the definition of gradients which usually refers to intensity
gradients over (x, y) to other possible gradients in scale and orientation. This
gradient information is the input function E to the newly generalized geodesic
snakes flow.

In our application of geodesic snakes to textural images, we have used the
mechanism offered by [15] to generate the Gabor wavelets for five scales and four
orientations in a frequency range of 0.1− 0.4 cycles per pixel. We note that this
choice is different from the usual scheme in vision, where there are four scales
and at least six orientations in use. In the geodesic snakes mechanism U was
initiated to be a signed distance function [2].
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Fig. 1. A synthetic image made up of 2D sinewave gratings of different frequen-
cies and orientations
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Fig. 2. The stopping function E calculated by means of the 2D manifold metric
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Fig. 3. The stopping function E of the first image calculated by using the in-
tensity based definition E(I) = 1

1+|∇I|2
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Fig. 4. The resultant boundary
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Fig. 5. An image comprised of two textures are taken from Brodatz album of
textures [1]
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We present the results of the 2D manifold approach for a synthetic image:
the original image, the resulting stopping term E and the final boundary de-
tected. We present some preliminary results for the 4D manifold approach with
a Brodatz image: the resultant E is projected on the X-Y plane for each scale
and orientation.

scale 2, orientation 2 scale 2, orientation 3 scale 2, orientation 4

scale 3, orientation 2 scale 3, orientation 3 scale 3, orientation 4

scale 4, orientation 2 scale 4, orientation 3 scale 4, orientation 4

scale 5, orientation 2 scale 5, orientation 3 scale 5, orientation 4

Fig. 6. The stopping function E for the Brodatz texture image, calculated by us-
ing the 4D manifold metric. For full size images see the web-page: http://www-
visl.technion.ac.il/gaborsnakes

The first image (Fig. 1) is a synthesized texture composed of linear combina-
tion of spatial sinewave gratings of different frequencies and orientations. When
the stopping term E is calculated using the 2D manifold metric, we obtain a
clear picture of the texture gradients (i.e. where significant changes in texture
occur) in the image (Fig. 2). So, our initial contour is drawn to the wanted
boundary. As can be seen in figure (3), when E is calculated using intensity
values only, E(I) = 1

1+|∇I|2 , the texture gradients are not visible, and the re-
sultant E will probably not attract the initial contour towards the boundary.
Application of the geodesic snakes algorithm using the 2D manifold approach
results in an accurate boundary, as can be seen in figure (4).

When we consider the entire Gabor spatial feature space, the stopping term E
is a function of four variables x, y, θ, and σ. In more complex (texture-wise) im-
ages such as the Brodatz textures (Fig. 5), taken from [1], we may see the addi-
tional information that can be obtained. In figure (6) we present E as calculated
for five scales and four orientations; however, only the components containing
significant information is presented in the figure. We can see that information is
preserved through scales. The E function contains more information when it is
calculated by using the 4D manifold approach than the E function obtained by
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Fig. 7. The stopping function E used in the application of the proposed scheme
to the Brodatz image using: (left) the 4D manifold approach incorporating spe-
cific scale and orientation (right) the intensity based definition E(I) = 1

1+|∇I|2

using the intensity based approach (Fig.7). In other words, we obtain a clear di-
vision of the image into two segments, which differ in their texture, and thereby
get information about the relevant edges. As our main goal is to determine the
boundaries in the image, we may deconvolve E for each scale and orientation
with an appropriate gaussian function in order to obtain better spatial resolu-
tion.

The proposed texture segmentation scheme applies the geodesic active con-
tours algorithm to the Gabor space of images, while the original geodesic snakes
implements intensity gradients. The implementation of the feature space of im-
ages results in detection of texture gradients. We treat the Gabor transformed
image as a 2D manifold embedded in a 6D space, or a 4D manifold embedded
in a 6D space, and calculate the local metric on the manifold using the pull-
back method. We then integrate the metric information to the geodesic snakes
scheme. We have shown the feasibility of the proposed approach, and its advan-
tages over the intensity geodesic snakes applied to multi-textured images. This
is currently further extended by completing the application of geodesic snakes
to a 4D manifold (x,y,θ,σ) embedded in a 6D space (R,J,x,y,θ,σ), and by the
application of both schemes to medical images.
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