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Correspondence 

Frame Analysis of the Discrete Gabor-Scheme 

Meir Zibulski and Yehoshua Y. Zeevi 

Abstract-The properties of the discrete Gabor scheme are considered 
in the context of oversampling. The approach is based on the concept 
of frames and utilizes the piecewise finite Zak transform (PFZT). The 
frame operator is represented as a matrix-valued function in the PFZT 
domain, and its properties are examined in relation to this function. 
The frame hounds are calculated by means of the eigenvalues of the 
matrix-valued function, and the dual frame, which is used in calculation 
of the expansion coefkients, is expressed by means of the inverse matrix. 
DFT-based algorithms for computation of the expansion coeflkients, and 
for the reconstruction of signals from these coefficients, are generalid 
for the case of oversamplii of the Gabor space. The atgorithms are 
implemented in an example of representation of a nonstationary signal. 

I. INTRODUCTION 
Whereas the optimal discrete Gabor-scheme, i.e., critical sampling 

(of the combined space), has been thoroughly analyzed [l] ,  [2], 
undersampling and oversampling are less understood. We address the 
issue of oversampling of the discrete Gabor space by combining the 
finite Zak transform ( E T )  with the concept of frames. Our analysis is 
based on the analysis of the continuous-time Gabor scheme presented 
in [3], where the relation between the two schemes is derived as well. 

Consider L-periodic discrete signals, that is, signals that satisfy 
f ( i  + L) = f ( i ) ,  i E 2. For such signals, given two divisors M ,  N 
of L, the discrete (finite) Gabor scheme is [4] 

M-1 N-1 

f ( i )  = cm,ngm,n(i) (1) 
m=O n = O  

where for the window function g(i), we define 

gm,.,(i) = g(i - m N ' )  exp 27rz - , L = N ' M .  (2) ( E) 
The following three categories of the discrete Gabor (combined) 

space sampling are identified. Undersampling-NM < L: The 
number of representation functions is smaller than the length of the 
signal. Critical sampling-NM = L:  The number of representation 
functions is equal to the length of the signal. Oversampling-N M > 
L: The number of representation functions is larger than the length 
of the signal. 

11. PRELIMINARIES 

A.  Frames [SI 
Definition 1 :  A sequence {&} in a Hilbert Space H constitutes 

a frame if there exist numbers 0 < A I B < 00 such that for all 
f E I-I, we have AllfI12 I E, l(f, &)Iz I BIIfI12, where (., .> 
denotes the inner product corresponding to the Hilbert space H. 
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Definition 2:  Given a frame {&} in a Hilbert space H, the frame 

Corollary I: 
1. {S-'1Cln} is a frame with bounds B-', A-', which is called 

the dual frame of {lCln}. 
2. Every f E A can be represented by either the frame or the dual 

frame in the following manner: f = xn(f, S-l&,)+n = 

Note that in general, the reconstruction coefficients (f, S-l$,) 
are not unique (unless the frame is a basis). The choice of the 
dual frame for computing the reconstruction coefficients yields the 
minimal solution in 1' sense [5] .  For a finite-dimensional Hilbert 
space (as is our case), this solution corresponds to the so-called 
pseudoinverse. 

We address the problem of finding conditions for the sequence 
{gm,n} to constitute a frame by examining the frame operator 
associated with {gm,n}. 

operator S is defined by Sf 2 En(!, &)&,. 

E" (f, 6a)S-l1Cln. 

B .  The Finite Zak Transform 
The Zak transform (ZT) is a fundamental tool in the analysis of 

the Gabor expansion. We utilize the discrete finite version of the 
transform as introduced by Auslander et al. [6] for 1-D signals and 
by Zeevi and Gertner [2] for images. Since a detailed presentation 
of the FZT is available in [2], we only review its important relevant 
properties and introduce the piecewise finite Zak transform (PFZT). 

The DFT-based FZT of an L-periodic 1-D signal is defined by 

(i,v) E 

where L = M ' N ,  and its inverse is given by 

(3) 

The FZT satisfies the following periodic and quasiperiodic properties 
PI: 

(Zf)(i, U + M ' )  = (zf)(i, U), 

( Z f ) ( i  + N ,  w )  = exp 2x2 - ( Z f ) ( i ,  U). (5) 

Denote by Z2(Z/L) the Hilbert space of L-periodic, square summa- 
ble, 1-D signals with the following inner-product 

( A 2  
L-1 

i = O  

where f, g E Zz(Z/L).  In this context, the FZT (3) defines a unitary 
mapping of Z2(Z/L) onto l z (  N x M') .  The latter is a Hilbert space 
of square summable 2-D functions with the inner produce 

N-1 MI-1 

As a consequence, we obtain the inner product preserving property 
(f, 9) = (Zf, zg>.  
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The ZT is useful in the analysis of the critical sampling case. 
For the case of oversampling, the piecewise Zak transform (PZT) 
introduced in [3] generalizes the role of the 2T in the analysis of the 
Gabor scheme. In this case of oversampliig L = MN' = N M ' .  
Let L / ( M N )  = p / q ,  where p, q are relatively prime integers, then 
M ' / p  = M/q is an integer. Based on the definition of the FZT (3), 
we define the PFZT as a vector-valued function of size p: 

F ( i ,  U) = [Fo(i, v ) ,  . * .  , Fp-i( i ,  .)IT (6) 

where 

The vector-valued function F belongs to a Hilbert space of vector- 
valued functions with the inner product 

Here, we also obtain the inner-product preserving property (f, g )  = 
(Zf, Z d  = ( F , G ) .  

III. ANALYSIS OF THE DISCRETE GABOR SCHEME 

A.  Discrete Gabor Frames 

{gm,n}, we examine the operator: 
In order to characterize the frame properties of the sequence 

M - 1  N - 1  

m = O  n=O 

If the sequence {gm,,,} constitutes a frame, this is clearly the frame 
operator. The action of the frame operator in the PFZT domain can 
be expressed in terms of matrix algebra as [3] 

( S F ) ( i ,  U) = S( i ,  v ) F ( i ,  v) (9) 

where S( i ,  v) is a p x p matrix-valued function with S k , l ( i ,  U) 
elements given by 

q - 1  

Sk ,J( i ,  v) = - (Zg) ( i  - rN' ,  v + k M ' / p )  
P r = O  

. (Zg) ( i  - rN' ,  v + j M ' / p )  (10) 

and F is a vector-valued function of size p, which is defined by 
(6). The matrix S( i ,  v) is self-adjoint and positive semi-definite for 
each (i, v). since by defining a q x p matrix-valued function G ( i ,  v) 
with elements G,.,,(i, v) = (Zg) ( i  - rN',  v + j .M' /p) ,  we obtain 
S( i ,  v )  = ( N / p ) G * ( i ,  v )G( i ,  v), where * denotes the conjugate 
transpose. 

Considering the frame property of the sequence {gm,, ,}  in the 
cases of critical sampling and oversampling, based on representation 
(9) of the frame operator and on the unitary property of the PFZT, 
Theorem 1 follows: 

Theorem I: Given g E l ' (Z/L) ,  M N  2 L and a matrix-valued 
function S(i ,  v) as in (lo), the sequence {gm,n}  associated with g 
constitutes aframe if and only i€det(S)(i, v) # 0 for all (i, v )  E 2'. 

Note that (i, v )  can be restricted to a rectangle of size N x M'/p  
in 2'. We also note that for finite-dimensional spaces, as in this 
case, frame property and completeness are identical. Therefore, if 
the sequence {gm,"} is not a frame, it is impossible to expand any 
desired signal by means of {gm,n} .  

In the case of critical sampling, i.e., for L = M N ,  S is a scalar- 
valued function (a 1 x 1 matrix), S = NIZg(', in which case, 

det(S) = NIZgl'. Therefore, the sequence {gm+}  constitutes a 
basis (a frame is equivalent to a basis in this case) if and only if 
Zg(i ,  v) does not vanish. Theorem 1 generalizes this known fact 
to the case of oversampling. Note that, in general, S is scalar- 
valued if L / ( M N )  = l/q, q E N, in which case, we obtain 
S( i ,  v) = N I(Zg)(i - rN',  v)I'. 

B. Stability, Frame Bounds, and Tight Frames 
Utilizing the frame bounds A,  B ,  the ratio B / A ,  which is the so- 

called condition number, expresses the stability of the representation. 
Maximum stability is achieved if B / A  = 1. Based on representation 
(9) of the frame operator and on the unitary property of the PFZT, 
the frame bounds can be derived by calculating the eigenvalues of 
the matrix-valued function S, where a total number of N ( M ' / p )  
matrices should be examined: 

where Al(S)(i, v) are the eigenvalues of the matrix S( i ,  U), and we 
can again restrict (i, v) to a rectangle of size N x M ' / p  in 2'. 
Note that in the case of critical sampling (and oversampling with an 
integer ratio), the matrix S is a scalar-valued function. Therefore, in 
order to find the frame bounds, the minimum and maximum values 
of the function itself should be examined. 

Special types of frames for which A = B are called tight frames. 
The frame operator for tight frames is S = dI, where Z is the 
identity operator. One of the advantages of having a tight frame 
{&} in H is the simple reconstruction formula associated with 
it: f = A-' C,, (f, qn)$,, for f E H. For the Gabor scheme, 
the condition for tight frames in the PFZT domain is S( i ,  U) = 
AI ,  where I is the identity matrix, and A = Ilgll'(MN/L). An 
interesting fact is that for the maximal oversampling rate, i.e., for 
M = N = L, the sequence {gm+}  is always a tight frame for any 
window function with A = Lllg11' (see the Appendix). This property 
is called resolution of identity. 

C .  Expansion Coefficients and the Dual Frame 
Assuming {gm,n}  constitutes a frame, according to Corollary 1, 

the expansion coefficients c ~ , ~ ,  as in (l), can be calculated utilizing 
the dual frame. The dual frame { Y ~ , ~ }  has the same structure as the 
frame {gm,n}  [3], i.e., it is generated by a single window function 
Y(i)  

ym,n(i) = y(i - mN') exp 2nz - . ( E) (12) 

The function y can be found by using the inverse of the frame 
operator: y = S- lg .  Utilizing the matrix approach, the dual frame . 
window can be expressed by the inverse of the matrix S: 

r(i, U) = S-'(i ,  v)G(i, U) (13) 

where r , G  are the PFZT of y , g .  Generally, L / ( M N )  = 
p / q ,  p ,  q E N. If p = 1, we obtain 
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Moreover, an explicit solution in the ZT domain can be found for 
any given p [7]. Note that (13) can be used in order to prove that the 
dual frame is genkrated by a single window function. 

We can find the expansion coefficients by calculating the inner 
products of the signal and the dual frame: cm," = ( f , ~ ~ , ~ ) .  This 
calculation can be done in either the signal or the transform space 
[2]. In the case of oversampling, the expansion coefficients are not 
unique. As was pointed out in [4], these coefficients can be calculated 
by projecting the signal on sequences that are generated by different 
dual window functions. The dual window that corresponds to the 
unique dual frame provides the coefficients that are of minimal norm 
in I' sense. 

For the case of critical sampling, as was shown in [6] and 
[2], the FZT lends itself to efficient algorithms for computation 
of the expansion coefficients and for reconstruction of the signal 
from these coefficients. For the case of oversampling, the PFZT 
generalizes these algorithms. Since ( Z Y ~ , " ) ( ~ ,  U) = (Zy)(i - 
m N' , U )  exp ( 2 7 4  i n / N ) )  , for the expansion coefficients in the FZT 
domain we obtain 

(Zy)(i - mN',  U) exp 27rz - . (15) ( r;"> 
Utilizing the PFZT domain, form = m'q+T, 0 5 q-1, 0 5 m' 5 

( M ' / p )  - 1, ( M ' / p  = M / q ) ,  by reordering v = U' + jM' /p ,O _< 
U' 5 M ' / p  - 1,0  5 j 5 p - 1, (15) can be rewritten as 

N-1 (M'/p)-l 

2=0 v=o 

(16) 

which yields the following DFT-based algorithm for calculating the 
expansion coefficients: 

1. Precompute the FZT of the dual frame window function 

2. Compute the FZT of the signal (Zf)(i, v). 
3. Compute q times the sum: FJ(i, v)r,(i - TN', v) as a 

function of T .  

4. Compute q times a 2-D DIT of size N x M ' / p  of the sum 
obtained in the previous stage. 

This algorithm can be also used by interchanging the roles of the 

The reconstruction of the function from its expansion coefficients 

(ZY)(i, U). 

frame and the dual frame. 

is given by 

M-1 N-1 ' . \  
(Zf)(i, U) = cm,n(Zg)(i - mN',  v) exp 

m=O n = O  
(17) 

Introducing m', T as above, for 0 5 j 5 p - 1, we obtain 
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Fig. 1. Example of nonstationary signal representation by a discrete Gabor 
scheme. The expansion coefficients obtained in the critical sampling and 
oversampling cases are compared (a) Original signal; (b) Gaussian window 
function; (c), (d) level crossings of smoothed distribution of the absolute 
values of the coefficients obtained in the cases of critical and overcritical 
sampling, respectively; (e), (f) absolute values of the expansion coefficients 
obtained in the cases of critical sampling and oversampling, respectively. Note 
the better temporal clustering (separation) of the Gabor expansion Coefficients 
obtained in the case of oversampling. 

exp (2az $) exp ( -2nr s). (18) 

The reconstruction algorithm consists of the following stages: 
1. Precompute the FZT of the window function (Zg)(i, U). 
2. Compute q times a 2-D DFT of size N x M ' / p  of the 

3. Compute p times the sum x:zA G,(i - TN', U )  

4. Compute the inverse EZT of (Zf)(i, v). 

expansion coefficients cnrq+,.," as a function of T .  

DF'Ucmtq+,,,]. 

D. Example of Implementation 
In various cases of signal (and image) representation by partial 

information, it is' desirable to oversample the Gabor space. Pre- 
viously, oversampling was applied by implementing the (unstable) 
biorthogonal function, which corresponds to critical sampling [ 11, or 
by derivation of the dual window by minimum energy constraint [4], 
where the computation of the representation coefficients is accom- 
plished in the signal space. In the following example, we illustrate the 
application of a discrete (finite) Gabor scheme in the PFZT domain. 
The analyzed signal of length 240 (Fig. I(a)) is comprised of two 
temporally separated tones. The cases of critical sampling, where 
M = 16, N = 15, and oversampling with p / q  = 2/3, where M = 
24,N = 15 are compared. The absolute values of the expansion 
coefficients are shown in Fig. l(e) and (f) for the critical sampling 
and oversampling cases, respectively, and the level crossings of the 
smoothed absolute values of the coefficients are shown in Figs. 
l(c) and (d) for the cases of critical sampling and oversampling, 
respectively. It appears that in the oversampling case better temporal 
clustering (separation) than in the critical sampling case is obtained. 
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rwmhuction from 50 coefficients ~ critical sampling 
2 

APPENDIX 
PROOF OF THE &SOLUTION OF IDENTITY 

1 

0 

1 L - 1  L - 1  L-1 

For M = N = L,  we get gm,n(i) = g(i - m )  exp (27rz(in/L)). 
A direct calculation yields 

(sf)(i) = gm,n(i> 
50 100 150 200 m = O  n = O  3=0 

-2 

(a) 

r w ” c t i o n  from 50 coefficients - owvmpling plq=Zn 

-1 
1 

0 

1 

I I 
-0 50 100 150 200 

(b) = f (i)Lllgl12 
Fig. 2. Signal reconstruction from partial information of the Gabor expansion 
coefficients. Reconstruction (approximations) of the signal shown in Fig. l(a) 
are compared by using the 50 coefficients of the highest magnitude: (a) 
Reconstruction in the case of critical sampling; (b) reconstruction in the case 
of oversampling. Note the better reconstruction and separation of the two tones 
obtained from the same number o fcoefficients in the case of oversampling. 

where 6, denotes the Kronecker delta function. It therefore follows 
that {gm,n} is a tight frame. 

Obviously, the temporal separation depends significantly on the type 
of signal and width of the Gaussian window, but for a given window- 
width, the temporal separation can be improved by the choice of 
proper rate of oversampling. To further stress the advantage offered by 
oversampling, we also compare the reconstructions (approximations) 
of the signal from partial information in the above two cases of critical 
sampling and oversampling. The signal is reconstructed by using the 
50 coefficients of the highest magnitude. Fig. 2(a) and (b) show the 
reconstructed signals (dashed lines) superimposed on the original ones 
(continuous lines) in the cases of critical sampling and oversampling, 
respectively. Again, the reconstructed signal appears to be better in 
the case of oversampling. 

IV. CONCLUSION 
Representation in the PFZT domain provides new results con- 

ceming frame properties of the sequence {gm,n} in relation to the 
matrix-valued function S(i, E ) .  In case {gm,n} constitutes a frame, 
this matrix-valued function represents the frame operator in the 
PFZT domain. The minimum and maximum eigenvalues of S are 
the frame lower and upper bounds, respectively. In cases of tight 
frames, the matrix S is simply the identity matrix. In the context 
of matrix algebra, finding the dual frame (which is important for 
finding the expansion coefficients) is also possible by calculating 
the inverse of the matrix S. Utilizing the matrix algebra approach 
in the PFZT domain, DFT-based algorithms for computation of the 
expansion coefficients and for the reconstruction of signals from these 
coefficients are generalized for the case bf oversampling of the Gabor 
space. 

Finally, we conclude that the application of the approach presented 
in this correspondence to analysis of Gabor-type frames highlights the 
conditions required of a set of functions to constitute a frame, a tight 
frame, or a complete sequence. This approach lends itself also to the 
development of algorithms for construction of frames and bases. 
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