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On the Role of Biorthonormality in Representation 
of Random Processes 

Victor A. Segalescu, Meir Zibulski, and Yehoshua Y. Zeevi 

Abstract-The representation of a random process by a set of uncor- 
related random variables is examined. The main result indicates that a 
basis decorrelates a random process if and only if it satisfies an integral 
equation similar to the type satisfied by the Karhunen-Loeve expansion, 
but by relaxing the requirement of orthogonality of the representation 
functions. 

Index Terms- Karhunen-Lohe expansion, biorthonormal bases, 
decorrelation of random processes. 

I. INTRODUCTION 

The representation of a random process { z ( t ) ,  t E T }  by a set 
of random variables is discussed in [ I]-[5]. Given a real zero-mean, 
mean-square continuous random process z ( t ) ,  with autocorrelation 
R(s, t )  such that 

.II. R(t,  t )  d t  < CC 

and given a basis of La (T ) ,  the process can be represented in general 
in the following way: 

z ( t )  = 1.i.m. C a 2 4 2 ( t )  
z 

(1) 

where {&(t )}  is the biorthonormal basis of {&(t)}.  
The question which naturally arises is under what conditions, if 

any, the basis { d Z ( t ) }  decorrelates the process z ( t ) ,  i.e., the set of 
variables { a , }  is uncorrelated. It is well known that if ( 4 z ( t ) }  are the 
eigenfunctions of R(s,  t )  then the expansion (1) possesses a double 
orthogonality: orthogonality of the expansion functions {q5z ( t ) }  and 
orthogonality of the random variables {a , }  [6] .  The eigenfunctions 
are the solution of the following equation: 

and {A , }  are the corresponding eigenvalues, A, = E[aP]. The set of 
orthonormalized eigenfunctions is unique, and sometimes the func- 
tions so obtained are quite complicated. In some applications (see, 
e.g., [2]-[4]) it is desirable to relax the requirement of oahogonality 
of the functions and retain only the orthogonality of the random 
variables. This more general case of decorrelation of a random 
process is the subject of this correspondence. 

11. THE CONTINUOUS CASE 
The following theorem presents the necessary and sufficient con- 

dition for a basis to decorrelate a random process. 
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Theorem I :  Given a random process { z ( t )  , t E T }  which satisfies 
the conditions listed above, a basis { d t ( t ) }  of &(T)  decorrelates 
z ( t )  if and only if it satisfies the following equation: 

.I; R(s,t)?L,(t)dt = nzdz(s), vi 

s, 4 z  (t)?L, (4  d t  = &, , VZ, .i. 

(3) 

where {&(t)} is the biorthonormal basis of {qA(t)}, i.e. 

Prooj? Since { d z ( t ) }  is a basis of Lz(T) ,  the following equa- 
tions hold 

z ( t )  = 1.i.m. C a , d z ( t )  
2 

where {dt} is the biorthonormal basis of {&} [7]. 
Equation (3) degenerates to (2) in the case of the Karhunen-Lobve 

(KL) expansion. In this case, the basis is orthonormal. In other words, 
the orthonormal basis utilized in the KL expansion is a special case 
of a general type of decorrelating bases, all of which satisfy (3). We 
therefore refer to the general case as the pseudo Karhunen-Lobve 
(PKL) expansion. 

The PKL expansion behaves a great deal like the KL expansion. 
For one thing, we can order the representation functions according to 
their contribution. Define the approximation error function E N  ( t )  

(7) 

 EN(^) is a monotonic decreasing function (of N )  for all t ,  since by 
a straightforward calculation, one can easily show that 

N 

2=1 

Define the global approximation error function EN (7') 
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Based on (S), it follows that we can order the basis functions, {qA ( t ) } ,  
according to the value of a,llg5z(t)112 (where 1 1  + 11 is the usual norm 
in LZ (T)) ,  i.e., according to their contribution to the mapping of the 
process z ( t ) .  

Naturally, if the process z ( t )  is Gaussian, {a , }  is a set of zero- 
mean independent random variables, where E[a3  = at. 

This property of bases which decorrelate a random process, sug- 
gests the following iterative algorithm for generating a decorrelating 
basis. 

Algorithm 1: 
Step 1: Choose a function $l( t ) .  Define qh(t) in the following 
manner: 

R(s ,  t)$i ( t )  dt = flldi (s) 

41 ( t ) h  ( t )  dt = 1. 

Step 2: 
following manner: 

Find $ 2 ( t )  orthogonal to &(t) .  Define 42(t) in the 

JI. R(s,t)llz(t)dt = 0 2 4 2 ( s )  

s, $z(t)4z(t)dt = 1. 

The function $ z ( t )  defined in this manner is orthogonal to &(t) .  
Stepk+l: Find a function gk+l(t) orthogonal to {qb(t), 
qb(t), . . . , dk(t)}. Define q5k+l(t) in the following manner: 

End: when a sufficient number of pseudo eigenfunctions are 
obtained. 
(For example, sufficient under the criterion that the summation over 
the k pseudo eigenfunctions, determined during the k iterations 
of the algorithm, results in a representation with a mean-squared 
stochastic error smaller than e). 

Note that there exist several methods for finding a function ( t )  
orthogonal to {41( t ) ,4z ( t ) , . . .  , dk(t)}.  For example, if a function 
f ( t )  is known such that f $Z span {&}:=l then, we can choose 

2 = 1  

where (., .) is the inner product in Lz(T).  Also note that throughout 
the algorithm we assume that the integral operator R, with the kernel 
R(s,  t ) ,  is positive-definite. If not, the functions & should not belong 
to the null-space of R. 

The following result presented in [2] is of relevance and importance 
to the main result presented in this note in that it considers a 
special application where the simultaneous decorrelation of two 
random processes is desirable (and therefore cannot employ the KL 
expansion). 

Let Kl(s , t )  and Ir 'z(s, t) ,  -T 5 s, t 5 T ,  be real continuous 
symmetric and square-integrable functions, and let Ki and K Z  be the 
integral operators with the kernels X I  ( 5 ,  t )  and K Z  (s, t ) .  Assume that 
K1 and K Z  are positive-definite and nonnegative-definite, respec- 
tively. Assume also, that the operator K;1'2K2K,1/2 is densely 
defined, bounded and its extension to the entire Lz(T) ,  denoted by 
S ,  has eigenfunctions which span Lz( [ -T ,T] ) .  Let {$%(t)} and {A,} 
be the set of eigenfunctions and the corresponding eigenvalues of s. 
Then, for ~ ( t )  a sample function of either one of two (separable and 

measurable) zero-mean processes with autocorrelations A-1 (s, t )  and 
ICz(s, t ) ,  and associated probability measures Pi, PZ we have 

z 

in the stochastic mean, uniformly in t ,  where 

Moreover, the random variables {a , }  are uncorrelated under both 
measures. 

Let & = KY1"pt, 4% = K1/'y, .  One can easily check that, 
indeed, {&}, {d2} are biorthonormal (since K112 is self-adjoint and 
{pz} is orthonormal) and (3) holds for either R(s,  t )  = I<l(s, t )  or 
R( s, t )  = IC2 ( s ,  t ) .  Clearly, the above result guarantees the existence 
of an infinite number of bases which decorrelate the random process 
z( t ) ,  since we can find an infinite number of operators satisfying the 
condition imposed on Ki (s, t).  Moreover, it provides an alternative 
way of generating the decorrelating bases. 

A. An Example 
The following example shows that the PIU expansion can prove 

itself as an efficient mathematical tool. We refer to the classical 
problem of detection of a known deterministic signal in Gaussian 
colored noise, which has been solved in various manners [8]. The 
two hypotheses are 

where f ( t )  is the signal, and n(t)  is a real zero-mean, mean-square 
continuous Gaussian random process with autocorrelation function 

The optimal receiver can be constructed in this case, under the 
assumption that f ( t )  belongs to the space spanned by the KL basis 
of n(t) ,  as follows. Construct a basis {gh(t)} which decorrelates 
n( t )  according to Theorem 1, s.t. & ( t )  = f ( t ) .  This can be done 
by first solving 

R(s ,  t ) .  

for g1( t ) ,  and then proceeding according to Algorithm 1 from Step 
2. We can express r ( t )  in the following manner: 

z 

is an uncorrelated set of variables, it follows that {n,}, and therefore 
{ r t }  as well, are independent random variables. We have therefore 
to consider only r1 and use only &(t )  which is obtained by 
solving (10). The optimal detector which emerges out of this analysis 
(Fig. 1) is in accord with standard decision-making schemes known 
in communication [8]. We stress again that this example is given only 
in order to illustrate how the concept of PKL expansion can be used 
in practical applications. 
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+i(t) 

Fig. I. 
Gaussian noise. 

An optimal detector of a deterministic signal with additive colored 

111. THE DISCRETE CASE 
Let {x., n E M } ,  where M is a countable set, be a real discrete 

zero-mean random process, s.t. 

E E z Z  <CO. 

Let R, be its (possibly infinite) autocorrelation matrix. Given {&} 
a basis of 1 2  ( M )  which satisfies the following equation: 

Rr$k = u k d k i  Vk (11) 

where {$k) is the biorthonormal basis of { # ) k } ,  i.e., &+‘IT = 
S k J , V ( l c , l ,  the expansion coefficients of x. according to { $ k )  are 
uncorrelated. 

Note that, in accordance with the result presented in [2], for 
any symmetric, positive-definite matrix A, s.t. R,A-l/’ 1s ’ 

bounded and its eigenvectors span 12(M),  the set {A1/’&} decor- 
relates the random process {xn , n E M } .  

Equation (11) can be written as 

R,* = @E (12) 

where the columns of q, @ are the sets {+k), {q5k} respectively, 
and C is a diagonal matrix with the set { u k }  along its diagonal. 
Moreover, qT@ = I ,  where I is the identity matrix. In the finite 
case, i.e., M is a finite set, (12) can be expressed as the following 
congruence relation: 

R, = @EaT. (13) 

A particular example of (13) relates to the so-called LU decomposi- 
tion. Then, it is known that a symmetric positive-definite matrix has 
a unique decomposition of the type R, = LCLT,  where L is a lower 
triangular matrix with 1’s on its diagonal. 

Note that in the finite case, the iterative algorithm presented above 
converges in exactly n steps, where n is the number of elements in 
the set M .  

IV. CONCLUSION 
The generalization of the basic KL expansion presented in this 

correspondence can be summarized as follows. Given { x ( t ) , t  E T } ,  
a real zero-mean, mean-square continuous random process, we can 
always express z ( t )  as 

provided { g5z ( t ) }  forms a basis of the space spanned by the KL basis 
of z ( t ) .  Define B as the set of all possible bases of the space spanned 
by the above KL basis 0 as the set of all orthonormal bases in B, 
BPKL as the set of all PKL bases in B, and OKL as the KL basis. 
Fig. 2 depicts the relationships between all of these sets. 

The KL expansion is a special case of the PKL expansion. The 
KL expansion is optimal under the least mean-square criterion [8]. 
Thus the PKL expansion proposed in this correspondence cannot 
be better in this respect. Any PKL basis does retain, however, 
most of the important properties of the KL basis: in particular a 
PKL basis represents a random process by a set of uncorrelated 

Fig. 2. 
spaces of the representation bases. 

A schematic diagram illustrating the relationship of the various 

random variables, and we can order the representation functions 
according to their contribution to the mapping process. Furthermore, 
the PKL expansion offers a degree of freedom in the selection of 
the representation functions which can be advantageous in certam 
applications such as representation of certain classes of images or 
signals which can be considered as realization of stochastic processes, 
and for which certain constraints prohibit the utilization of the KL 
representation. Thus the PKL expansion can be a useful mathematical 
tool in a variety of applications where the specific properties of the 
KL expansion, but other functions, are desirable. Specific applications 
of the PKL expansion are currently under investigation. 
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