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histograms needed to arithmetic encode the quantizer indexes. Such 
an arithmetic coding achieves rates equal to or slightly more than the 
zeroth-order entropy of its input, so no additional compression has 
been achieved by arithmetic coding in our simulations. The possible 
advantage of an adaptive arithmetic code needs to be studied. 

For the Lena image, average bit rates versus peak-signal to rms- 
noise-ratios (PSNR’s) for different schemes are plotted in Fig. 6. The 
bit rate includes all the information necessary to decode the image. 
In this plot, we compare the four-class subband FSSQ with five other 
techniques. The one-class subband FSSQ refers to the case where all 
the pixels of a subband belong to a single class and is equivalent 
to a simple 10-subband coding scheme with scalar quantizers. The 
[T. & F.], [Y.H.K.], [M. & N.], [J.M.S.] and [J. et al.] results in 
this plot are taken from [l], [2], [4], [6] and [7], respectively. Note 
that the results in [M. & N.] and [J. et al.] could be improved by 
use of variable-length coding. Our subband-FSSQ technique gave 
a better performance than the other subband coding techniques at 
higher bit rates. At an average rate of 1.0 b/pixel, the subband-FSSQ 
resulted in a 3% reduction in the quantization noise compared to other 
techniques. The Lena encoded at 0.65 blpixel is shown in Fig. 7. 

In general, motion-compensated coding techniques provide the 
best compression for video. However, in certain video processing 
applications such as digital video effects, motion-compensated coding 
of video may not be applicable. For such applications, intraframe 
coding, e.g., subband FSSQ, is preferred. Performances of four-class 
subband FSSQ and one-class subband FSSQ on a MIT HD video are 
compared in Fig. 8. In this plot, we see that at an average rate of 
1.0 b/pixel, the four-class subband FSSQ gives a 29.1% reduction 
in quantizer noise with respect to the one-class subband FSSQ, or, 
equivalently, a 13.6% reduction in the bit rate to achieve a PSNR 
of 37 dB. Performance of four-class subband FSSQ on a frame-by- 
frame basis on this video at an average bit rate of 0.77 b/pixel is 
shown in Fig. 9. 

From above coding results on a still image and an HD video, 
we conclude that the subband-FSSQ algorithm was successful in 
exploiting the energy correlation between the spatial subbands of 
real-life images and videos. A vector version of this algorithm using 
lattice quantizers could provide further exploitation of this correlation. 

The subband-FSSQ algorithm is simple enough to be imple- 
mentable in real time. For the 512 x 512 monochrome Lena, the 
splitting took 9.8 s on a Sun 4/75 workstation. The first pass that 
includes gathering of statistics and bit allocation took 6.6 s. This does 
not include the time needed to fit GG models. The second pass that 
performs actual quantization, arithmetic coding, arithmetic decoding, 
and the synthesis of encoded subbands took 37.1 s. Thus, encoding 
and decoding together, excluding the time to fit GG models, took 
53.5 s. While we used the CPU-intensive Kolmogorov-Smirnov test 
[14] to fit GG models, other much faster methods such as the one 
given in [15] should work just as well. 
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The Design of -0-Dimensional Gradient 
Estimators Based on One-Dimensional Operators 

M. Azaria, I. Vitsnudel, and Y. Y. Zeevi 

Abstruct- A computational procedure for the extension of one- 
dimensional (1-D) gradient estimators to two dimensions (2-D) is 
presented. The procedure is equivalent to the surface fitting method. 
It is, however, simpler in design, as the design is 1-D rather than 
2-D. Higher order derivative estimators can also be constructed by 
the same procedure. 

I. INTRODUCTION 
Two-dimensional (2-D) gradient estimators are some of the most 

useful tools in image processing. The basic approach for their 
construction is the surface fitting method, which fits a surface to the 
data of an image window. This approach was introduced by Prewitt 
[l] who, assuming quadratic surfaces, constructed 3 x 3 and 4 x 4 
masks. Haralick [2] was one of the first to stress the need to consider 
larger supports and introduced the Facet model, modeling surfaces 
of edges by cubic surfaces. Poggio et al. [3] proposed a 2-D surface 
fitting scheme based on generalized cubic splines. 
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We present an equivalent approach to the surface fitting method 
that is most suitable for construction of large support masks, which is 
based on one-dimensional (1-D) design rather than 2-D design. The 

(g. e) to be estimated 

i = 1, P (2.4) 
~ ad & j & j  

1-D design allows a simpler and yet detailed construction of these an, "ax y a y  
d, = - = n2 - + nz - 

masks. 
This correspondence is organized as follows: In Section II, we 

present our computational procedure for the construction of 2-D 
gradient masks. In Section 111, we describe the derivation of the 1-D 
estimators we use. In Section IV, we construct two 17x 7 masks: GRD7 
and RAMP7 using our procedure, and compare their performances 
with the popular gradient of Gaussian mask [4]. In Section V, we 
summarize our work and point directions for further research. 

11. THE INTERPOLATION KERNEL 
The design procedure consists of three computational stages: 

A. Data Transformation: Resampling 

At this stage, we resample the fV x Ai image data matrix o to 
obtain a form that is more convenient for our processing. 

The image data is resampled along P symmetric rays emanating 
from the center, where each ray contains Q points. The resampling 
is implemented by applying a linear interpolation transformation (for 
which we use 2-D cubic splines). The value of the interpolated sample 
point q5:J is given by 

N N  

n=l  )!?=I 
3 =1,Q 

where a denotes the ray number, and J is the number of point. 
We call the 4-D interpolation matrix Rpx Q ,v .v the interpolation 

kernel. The value R,,,p is the impulse response of a 2-D interpolation 
filter H!;) ( a ,  p )  designed to interpolate at the resampled grid point 
( 2 , ~ ' ) .  Thus 

where n: and nb are the cosines of orientation of ray i. Applying 
the least squares procedure and assuming that a symmetric choice of 
ray orientiations has been taken results in the following estimates: 

where Cp is a normalization constant given by 
1 - - 1 

P CP = p 

nf nf 
z = 1  2 = 1  

A 

Rewriting (2.5) by inserting (2.1) and (2.3), we get for 2 

B. I -D Derivative Estimation 

Having transformed our data into a convenient form to process, we 
now apply our I-D operator. For our purpose, we apply linear 1-D 
derivative estimators to each of the P rays. 

The form of the 1-D derivative estimator depends on the signal- 
to-noise ratio and on signal design considerations. In Section III, we 
sketch a simple derivation of the derivative estimators we use. 

In general, one applies different operators D' (or the same operator 
with different weighting) to each of the rays to obtain the estimated 
value d, of the orientational derivative of the ith ray. Note that for 
derivative estimators, different weightings should be used to account 
for different length scales at different orientations. Thus 

Q 

2, = 0; . I$:] i = 1,P. (2.3) 

where I.V,"s is defined by 
P Q  

A 

and similarly for % 
(2.2) 

(2.5) 

(2.6) 

(2.7) 

CY = 1, hT;p = 1, N .  (2.9) 

The masks W" and Wy of dimensions N x N are our final result 

Derivation of second-order operators can also be accomplished by 

Consider, for ex_ampIe, the derivation of estimators (masks) 

Applying 1-D estimators for the second derivative D ( 2 ) z  results in 

as the .E and y components of the estimators of the 2-D gradient. 

a similar sequence of operations. 

Tt7(2)". PT;(2)3' for and J x z  a y 2  ' 

the estimate 2!2). Using (2.4) in its operator form yields 

\ ,  

Applying the least squares procedure (where symmetric choice of 

(one can also introduce directional considerations in this way), orientations is assumed) and interchanging the order of summation 
as in (2.7) yields the following estimators: 

C. Parameter Extraction by the Least Squares Procedure P Q  

WL."p'" = (nf . c1 - nf , c2)Dj2) 'RlJap 
2 = 1  7 = 1  

In general, one introduces redundancy by processing more data 
"~ 

a = 1, hi$ = 1, N samples than needed to fix the estimated parameters. This is done 
to reduce the effects of noise and thus obtain better estimates. P Q  
Specifically, for our application, note the relation that exists between 
the orientational derivative of ray i d, = 2 and the 2-D gradient 

FV$~ = y,x (7%: ' c1 - n: . C2)Dj*)93zJao (2.11) 
z = 1  3=1 
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WZRD7=lO-* 

where the constants CI and c2 are given by 

- 49 76 55 0 -55 -76 4 9  - 
121 -243 -301 0 301 243 -121 
156 4 3 9  -685 0 685 639 -156 
81 4 9 0  -1138 0 1138 490 -81 . 

156 -639 -685 0 685 639 -156 
121 -243 -301 0 301 243 -121 

- 49 76 55 0 -55 -76 4 9  - 

111. DERIVATION OF 1-D DERIVATIVE ESTIMATORS 
We outline here the derivation of the 1-D gradient (derivative) 

estimators designed for the case of Q = 7 data samples. 
Let us assume that the signal waveforms under consideration are 

well approximated by polynomials of order 4 in a seven-sample 
support t = -3, -2, -1 ,O ,  1 ,2 ,3  (unit scale assumed). 

The signal waveforms are corrupted by additive white Gaussian 
noise n(t)  with zero mean and variance cr2. The signal waveforms 
can be decomposed into a sum of even and odd components: 

~ ( t )  = (do + dz . t2 + d4t4) + ( d l t  + d:rt3). (3.1) 

Since we wish to estimate the coefficient d l ,  the even component 
is irrelevant. Hence, we take our derivative estimator as a linear 
antisymmetric filter w ( t )  (the optimal estimator in the sense of mean 
squares error for Gaussian noise is the linear filter) 

.(U(t) = (-7, -P ,  -a, 0, a, P, 7) .  (3.2) 

Our estimate thus reads 

d*i = E:=-, w ( t )  . [s( t )  + n(t)l 
= di . (20 -I- 4P + 67) + d3 . (20 + 16P + 547) + .(t) 

(3.3) 
where k ( t )  = -74-3) - 0 4 - 2 )  - an(-1)  + cun(1) +/3n(2)  + 
yn(3) is zero mean Gaussian noise with variance 2(tu2+/3' + y 2 ) a 2 .  

It is clear from (3.3) that the optimal unbiased estimator should 
satisfy three constraints: 

The coefficient of d l  should be taken as 1, i.e., 
2 0  + 4P + 67 = 1. (3.4) 

The coefficient of d3 should be taken as 0, i.e., 
2a + 16p + 547 = 0 (3.5) 

and the variance of k ( t )  should be minimized, i.e. 

minimize 2u2 . (a' + p2 + y2). (3.6) 

Solving (3.4)-(3.6) renders the 1-D derivative estimator GRD7 
with coefficients cv = E /? = 

When better noise suppression performance is required, biased 
estimators should be used. For example, when one ignores the cubic 
term, the resultant filter is RAMP7: a = &, /3' = &, y = &. 

For the case of five-sample support, the estimator [-p, -cy, 0, cy, p] 
is a two-parameter filter. Hence, it is impossible to design an unbiased 
estimator, which will satisfy all three constraints (3.4)-(3.6). 

When one ignores the noise, the filter parameters are cy = i, 
When one ignores the cubic term, the filter parameters are cv = 

and /3 = 5 .  This RAMP5 filter is also known from numerical analysis 
%I. 

and y = ~ 2 2  252' 252 ' 2 5 2 .  

P = -1 1 2 .  Th' is filter is well known from numerical analysis. 

IV. AN EXAMPLE 
We construct two 7 x 7 masks: RAMP7 and GRD7. These masks 

use 16 orientations. RAMP7 is a planar mask based on the 1-D 
derivative estimator &(-3, -2, -1,0, 1 ,2 ,3) .  GRD7 uses the I-D 
filter A(22, -67, -58,0,58,67, -22) and constitutes an unbiased 
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kyz, = -0.789, kz3 = 0.456, ky3 .= 0.678. 

The azimuth of the gradient 4 is randomly selected in the range 

The results of simulations clearly exhibit the superiority of the 
GRD7 mask over RAMP7 and the Gaussian masks at the high SNR 
region. As the SNR drops below 20 dB, the performance of GRD7 
degrades significantly due to its lower noise reduction gain. Note that 
the failure of the planar mask RAMP7 and the Gaussian masks at 
cubic surfaces is inherent in their structure. These masks will always 

(-90", +90"). 
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(C) (d) 

Fig. 2. 
(d) gradient map estimated by GRD7. 

Comparison of gradient maps produced by three masks: (a) Image; (b) gradient map estimated by Ramp7; (c) gradient map estimated by Gaussl; 

TABLE I 
AZIMUTH MSE (IN DEGREES) FOR GRADIENT ESTIMATORS 
vs SNR (IN DECIBELS): (a) Cubic surface k~ = 8; (b) 
cubic surface kL  = 20; (c) cubic surface k~ = 120 

fail (no matter what size of support is considered) whenever there 
are significant cubic terms. On the other hand, when one considers 
larger supports (9 x 9 or 11 x ll), it is possible to design by means 
of our procedure masks that will exhibit good performance in two 
respects: accuracy and immunity to noise. (Immunity to noise is also 
needed in order to suppress “model noise” caused by deviations of 
the surface from the assumed model). 

TABLE I1 
AMPLITUDE MSE (IN PERCENT) FOR GRADIENT ESTIMATORS 

vs SNR (IN DECIBELS): (a) Cubic surface I C L  = 8; (b) 
cubic surface k~ = 20; (c) cubic surface k~ = 120 

Fig. 2(b)-(d) displays the raw gradient maps (i.e., gradient magni- 
tude without thresholding) produced by the masks RAMP7, Gaussl, 
and GRD7 operating on the noiseless image of Fig. 2(a). It is shown 
that the edges produced by GRD7 are relatively thinner, which 
implies that this type of a mask should be used in an edge detection 
scheme at the high SNR region. We emphasize, however, that our 
goal in this correspondence is the design of gradient estimators and 
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not of edge detectors. Gradient estimators are only one component 
used by an edge detection scheme [ 5 ] .  

V. CONCLUSIONS 
We have presented a new approach for the construction of 2-D 

gradient estimators. The procedure is equivalent to the surface fitting 
method. It is, however, simpler in design as the design i s  based on a 
I -D operator rather than on a 2-D one. Further work lies in a detailed 
analysis as well as experimentation with the masks produced by the 
procedure. Higher order derivative estimators can be also constructed 
using the same procedure. 
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Identification of Image and Blue Parameters in 
Frequency Domain Using the EM Algorithm 

Emin Anarim, Hakan Uqar, and Yorgo Istefanopulos 

Abstract-In this correspondence, we extend the method presented in a 
recent paper, which considers the problem of the semicausal autoregres- 
sive (AR) parameter identification for images degraded by observation 
noise only. We propose a new approach to identify both the causal 
and semicausal AR parameters and blur parameters without a priori 
knowledge of the observation noise power and the PSF of the degradation. 
We decompose the image into 1-D independent complex scalar subsys- 
tems resulting from the vector state-space model by using the unitary 
discrete Fourier transform (DFT). Then, by applying the expectation- 
maximization (EM) algorithm to each subsystem, we identify the AR 
model and blur parameters of the transformed image. The AR parameters 
of the original image are then identified by using the least squares (LS) 
method. The restored image is obtained as a byproduct of the EM 
algorithm. 
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I. INTRODUCTION 
Restoration of images distorted by a system with a blur function 

has been studied by several researchers in recent years [1]-[22]. 
Usually, due to the imperfections in the electronic, photographic, 
or transmission medium, the image model identification has to 
be performed in the presence of observation noise and blur. The 
classical approaches in the literature assume that the power of 
the observation noise and some knowledge about the point spread 
function (PSF) of blur are known a priori and only with this 
assumption does identification become possible. Otherwise, image 
identification techniques generally requires the optimization of a 
highly complicated function. In order to avoid complexity of the 
identification problem, recently, the EM algorithm was proposed for 
simultaneous restoration and identification of noisy blurred images 
without knowing the degradation parameters and image statistics a 
priori [I]-[4]. 

This paper is an extension of [he work carried by Lagendijk in 1990 
[2], [3] and later by Katayama and Hirai in 1990 [I], and Yemez et 
al. in 1993 [4]. In [3], Lagendijk applied the EM algorithm to the 
maximum likelihood (ML) image identification problem for images 
degraded by both blur and noise. In this respect, the identification 
of the 2-D causal AR model parameters is required. By making 
use of the EM algorithm, the method can identify the causal AR 
models without a priori knowledge of the observation noise; however, 
the computational load is excessive due to {he 2-D structure of 
images. Then, in [I], Katayama and Hirai proposed reduction of 
dimensionality of the 2-D system equations into 1-D case for images 
degreaded by noise only by the use of the discrete sine transform 
(DST), as proposed originally by Jain [23]. Next, Yemez et al. 
investigated the same problem but they have used the discrete fourier 
transform (DFT) instead of the DST. In this study, decomposition 
of 2-D system equations representing the image into 1-D scalar 
subsystems using the DFT suggested in [4] has been applied to the 
general system equations which include both observation noise and 
blur. 

11. IMAGE REPRESENTATION AND AR MODELING 
Here, we consider a monochromatic image of size N x N pixels 

and denote the gray levels of the original image and the observed 
image by z(n,  m)  and y(n,  nz), respectively, where m is the vertical 
and n is the horizontal position variable. To model the image, we use 
the following 2-D AR model, driven by a zero mean random model 
noise w ( n ,  m):  

(1) 

where { a k j }  denote the image model coefficients that are determined 
by minimizing the variance of the noise cri, = E[w’(n, m)].  In (l), 
S stands for the image model support. Different selection of support 
regions results in different models. Since use of the nonsymmetric 
half-plane (NSHP) model elimiantes the necessity of delaying the 
observations for a 2-D recursion and assures stability [24], the NSHP 
causal model support is selected for image representation. However, 
the proposed technique can also be applied to the both quarter-plane 
(QP) and semicausal models as well. 

Based on the linear and spatially invariant (LSI) assumption, the 
model for the blurred image can be given as 

x(n ,  m )  = a k i r ( n  - k ,  m - I )  + w ( n ,  m )  
k , l E S  

y(n ,  m) = C d ( h ,  l ) x ( n  - k ,  m - I )  (2) 
k , l E S i  
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