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ABSTRACT

The blind source separation problem is concerned with ex-
traction of the underlying source signals from a set of their
linear mixtures, where the mixing matrix is unknown. It was
discovered recently, that exploiting the sparsity of sources
in an appropriate representation according to some signal
dictionary, dramatically improves the quality of separation.
In this work we use the property of multiscale transforms,
such as wavelet or wavelet packets, to decompose signals
into sets of local features with various degrees of sparsity.
We use this intrinsic property for selecting the best (most
sparse) subsets of features for further separation. The per-
formance of the algorithm is verified on noise-free and noisy
data. Experiments with simulated signals, musical sounds
and images demonstrate significant improvement of separa-
tion quality over previously reported results.

1. INTRODUCTION

In the blind source separation problem an N-channel sensor
signal x(§) is generated by M unknown scalar source sig-
nals s,,(£), linearly mixed together by an unknown N x M
mixing, or crosstalk, matrix A, and possibly corrupted by
additive noise n(§):

x(§) = As(¢) +n(S). ey

The independent variable ¢ is either time or spatial coordi-
nates in the case of images. We wish to estimate the mixing
matrix A and the M-dimensional source signal s(&).

A classical example of blind source separation is the
so-called cocktail party problem, wherein it is desirable to
separate several speakers from their audio recorded mix-
tures. One promising application in 2D is encountered
in hyperspectral imaging, wherein images of a body sur-
face are taken at several wavelengths. If several chemi-
cal compounds are present on a surface, the image at each
wavelength represents a weighted sum of fingerprints of the
unknown concentrations of the various compounds, with
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weights determined by radiation spectra of each compound.
The problem is to recover unknown concentrations and
spectra.

The assumption of statistical independence of the source
components s,,(£), m =1, ..., M leads to the Independent
Component Analysis (ICA) [1], [2]. A stronger assump-
tion is the sparsity of decomposition coefficients, when the
sources are properly represented [3]. In particular, let each
$m (&) have a sparse representation obtained by means of its
decomposition coefficients c,,j, according to a signal dictio-
nary of functions ¢;,(£):

sm(€) =D cmk px(8). )

The functions ¢, (&) are called atoms or elements of the
dictionary. These elements do not have to be linearly in-
dependent, and instead may form an overcomplete dictio-
nary, e.g. wavelet-related dictionaries (wavelet packets, sta-
tionary wavelets, efc., see for example [10] and references
therein). Sparsity means that only a small number of coef-
ficients ¢, differ significantly from zero. Then, unmixing
of the sources is performed in the transform domain, i.e. in
the domain of these coefficients ¢,,. The property of spar-
sity often yields much better source separation than standard
ICA, and can work well even with more sources than mix-
tures. In many cases there are distinct groups of coefficients,
wherein sources have different sparsity properties. The key
idea in this study is to select only a subset of features (coef-
ficients) which is best suited for separation, with respect to
the following criteria: (1) sparsity of coefficients (2) separa-
bility of sources’ features. After this subset is formed, one
uses it in the separation process, which can be accomplished
by standard ICA algorithms or by clustering. The perfor-
mance of our algorithm is verified on noise-free and noisy
data. Our experiments with 1D signals and images demon-
strate that the proposed method further improves separation
quality, as compared with result obtained by using sparsity
of all decomposition coefficients.



2. TWO APPROACHES TO SPARSE SOURCE
SEPARATION: INFOMAX AND CLUSTERING

2.1. InfoMax

Sparse sources can be separated by each one of several tech-
niques. For example, the Bell-Sejnowski Information Max-
imization (BS InfoMax) approach [1], which, under the as-
sumption of a noiseless system and a square mixing matrix
in (1), is equivalent to the maximum likelihood (ML) for-
mulation of the problem [4], [5], can be applied.

For the sake of simplicity of the presentation, let us con-
sider the case where the dictionary of functions used in a
source decomposition (2) is an orthonormal basis. (In this
case, the corresponding coefficients c¢,,x =< Sy, Pr >,
where < -,- > denotes the inner product). From (1) and
(2) the decomposition coefficients of the noiseless mixtures,
according to the same signal dictionary of functions ¢}, (£),
are:

)\k: AC]C7 (3)

where M -dimensional vector ¢, forms the k-th column of
the matrix C = {¢mg |-

Let Y be the features’, or (new) data, matrix of dimen-
sion M x K, where K is the number of features. Its rows
are either the samples of sensor signals (mixtures), or their
decomposition coefficients. In the last case, the coefficients
Ar’s form the columns y’s of the matrix Y. (In the follow-
ing discussion we assume this setting, if not stated other).
We are interested in the maximum likelihood estimate of A
given the data Y.

Let the corresponding coefficients c,,, be independent
random variables with a probability density function (pdf)
of an exponential type

pnz(cmk) X exp{fy(cmk)}, (4)

where the scalar function v(-) is a smooth approximation
of an absolute value function. Such kind of distribution is
widely used for modeling sparsity [6], [7]. In view of the
independence of ¢,,1, and (4), the prior pdf of C is

p(C) X H eXp{_V(ka)}' )

Taking into account the linear transformation (3), the para-
metric model for the pdf of Y with respect to parameters A
is

p(C)
pa(Y) = ———. 6
¥) | det A ©
Let W = A~! be the unmixing matrix, to be estimated.
Then, substituting C = W'Y, combining (6) with (5) and

taking the logarithm we arrive at the log-likelihood func-
tion:

M K
Lw(Y) = Klog|det W[ = > > " v((WY),i). (7)
=1

m=1k

Maximization of Lw (Y) with respect to W is equivalent
to the BS InfoMax, and can be solved efficiently by the Nat-
ural Gradient algorithm [8]. We used this algorithm as im-
plemented in the ICA/EEG Matlab toolbox [9].

2.2. Clustering

Another approach to the separation of sparse sources is clus-
tering along orientations of data concentration in the V-
dimensional space wherein each column y, of the matrix Y
represents a data point. Let us consider a two-dimensional
noiseless case, wherein two source signals, s1(¢) and sz (t),
are mixed by a 2x2 matrix A, arriving at two mixtures
z1(t) and zo(t). Further, let the data matrix Y be con-
structed from these mixtures x1(¢) and x2(¢). If only one
source, say s (t), was present, the sensor signals would be

.’L‘1(t) =
Ig(t) =

ansl(t)
aglsl(t)

and the data points at the scatter diagram of zo versus z
would belong to the straight line placed along the vec-
tor [a1a21]7. The same thing happens, when two sparse
sources are present. In this sparse case, at each particular
index where a sample of the first source is large, there is a
high probability, that the corresponding sample of the sec-
ond source is small, and the point at the scatter diagram
still lies close to the mentioned straight line. The same ar-
guments are valid for the second source. As a result, data
points are concentrated around two dominant orientations
(see for example the right scatter plot in Figure 2), which
are directly related to the columns of A.

Source signals are rarely sparse in their original domain.
In contrast, their decomposition coefficients (2) usually are
sparse. Therefore, we construct the data matrix Y from the
decomposition coefficients of mixtures (3), rather than from
the mixtures themselves, and the above discussion is valid.

In order to determine orientations of scattered data, we
project the data points onto the surface of a unit sphere by
normalizing corresponding vectors, and then apply a stan-
dard clustering algorithm. This clustering approach works
efficiently even if the number of sources is greater than the
number of sensors.

Our clustering procedure can be summarized as follows:

1. Form the feature matrix Y, by putting samples of
the sensor signals or (subset of) their decomposition coeffi-
cients into the corresponding rows of the matrix;



2. Normalize feature vectors: yi = yi/||ykl5. in or-
der to project data points onto the surface of a unit sphere,
where ||-||, denotes the I> norm;

Before normalization, it is reasonable to remove data points
with a very small norm, since these very likely are noisy.

3. Move data points to a half-sphere, e.g. by forcing the
sign of the first coordinate y;. to be positive: 1F yi < 0
THEN Y = —Y&;

Without this operation each set of linearly (i.e., along a line)
clustered data points would yield two clusters on opposite sides of
the sphere.

4. Estimate cluster centers by using some clustering
algorithm. The coordinates of these centers will form the
columns of the estimated mixing matrix A ;

We used Fuzzy C-means (FCM) clustering algorithm as im-
plemented in Matlab Fuzzy Logic Toolbox.

5. Estimate the sources: §(t) = A~'x(t).

Note that the estimated unmixing matrix A~ obtained by
using the new feature set, is applied to the original sensor signals
in order to recover sources in their original domain.

The above clustering operation is applied to various fea-
ture sets. We should stress here that our method is nof re-
stricted to estimation of square mixing matrices, although
the estimation of sources (step 5 in the above algorithm) is
more complicated in the rectangular cases.

3. MULTINODE SOURCE SEPARATION

3.1. Motivating example: sparsity of random blocks in
the Haar basis

To provide intuitive insight into the practical implications
of our main idea, we first use 1D block functions, that are
piecewise constant, with random amplitude and duration of
each constant piece (Figure 1). Since images are 2D piece-
wise smooth functions, the implications are similar in the
2D case.

It is known, that the Haar wavelet basis provides com-
pact representation of such functions. Let us take a close
look at the Haar wavelet coefficients at different resolution
levels j=0,1,...,J. Wavelet basis functions at the finest res-
olution level j=J are obtained by translation of the Haar
mother wavelet:

1 iftel0,1)
o(t) = -1 iftell,2)
0 otherwise .

Taking the scalar product of a function s(t) with the
wavelet ¢ ;(t — 7), we produce a finite differentiation of
the function s(t) at the point ¢ = 7. This means that the
number of non-zero coefficients at the finest resolution for
a block function will correspond roughly to the number of
jumps of this function. Proceeding to the next, coarser res-
olution level, we have ¢;_,(t) = {1,ift € [0,2); —1,if
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Fig. 1. Random block signals (two upper) and their mix-
tures (two lower)

t € [2,4); 0 otherwise}. At this level, the number of non-
zero coeflicients still corresponds to the number of jumps,
but the total number of coefficients at this level is halved,
and so is the sparsity. If we further proceed to coarser res-
olutions, we will encounter levels where the support of a
wavelet p; () is comparable to the typical distance between
jumps in the function s(¢). In this case, most of the coef-
ficients are expected to be nonzero, and, therefore, sparsity
will fade away.

To demonstrate how this influences accuracy of a blind
source separation, we randomly generated two block-signal
sources (Figure 1, two upper plots.), and mixed them by the
cross talk matrix

A 08321 06247
~\ —05547 0.7809 )

Resulting sensor signals, or mixtures, x(t) and z2(¢) are
shown in the two lower plots of Figure 1. The scatter plot of
x1(t) versus zo(t) does not exhibit any visible distinct ori-
entations (Figure 2, left). Similarly, in the scatter plot of the
wavelet coefficients at the lowest resolution distinct orien-
tations are hardly detectable (Figure 2, middle). In contrast,
the scatter plot of the wavelet coefficients at the highest res-
olution (Figure 2, right) depicts two distinct orientations,
which correspond to the columns of the mixing matrix.

In order to measure the separation accuracy, we normal-
ize the original sources s,,(t) and the estimated sources
5m(t). The normalized squared error is then computed as
[|5m — Smll2/|$m||2. Resulting separation errors for block
sources are presented in the lower part of Figure 2. The
largest error (13%) are obtained on the raw data, and the
smallest (0.69%) — on the wavelet coefficients at the highest
resolution, which have the best sparsity. Using all wavelet
coefficients yields intermediate sparsity and performance.



Raw signals  All wavelet High resolution

coefficients WT coefficients

<

InfoMax 13.9 4.2 0.69
FCM 13.3 2.4 0.41

Fig. 2. Separation of block signals: scatter plots of sen-
sor signals (left), and of their wavelet coefficients (middle
and right). Lower columns present the normalized mean-
squared separation error (%) corresponding to the Bell-
Sejnowski InfoMax, and to the Fuzzy C-Means clustering,
respectively.

3.2. Multinode representation

Our choice of a particular wavelet basis and of the sparsest
subset of coefficients was obvious in the above example: it
was based on knowledge of the structure of piecewise con-
stant signals. For sources having oscillatory components
(like sounds or images with textures), other systems of ba-
sis functions, such as wavelet packets and trigonometric
functions libraries, might be more appropriate. The wavelet
packet library consists of the triple-indexed family of func-
tions:

Ciiat) =220 (2t —i), jiicZ,qeN. (8)

where 7,7 are the scale and shift parameters, respectively,
and ¢ is the frequency parameter. [Roughly speaking, ¢
is proportional to the number of oscillations of a mother
wavelet ¢, (t)]. These functions form a binary tree whose
nodes are indexed by two indices: the depth of the level j
and the number of node ¢ = 0, 1,2, 3, ..., 271 at the speci-
fied level j.

3.3. Adaptive selection of sparse subsets

When signals have a complex nature, it is difficult to decide
in advance which nodes contain the sparsest sets of coef-
ficients. That is why we use the following simple adap-
tive approach. First, for every node of the tree, we apply
our clustering algorithm, and compute a measure of clus-
ters’ distortion. In our experiments we used a standard
global distortion, the mean squared distance of data points
to the centers of their own (closest) clusters (here again, the
weights of the data points can be incorporated):

K
d=y min | uy — x|, ©
k=1

where K is the number of data points, w,, is the m-th cen-
troid coordinates, x, is the k-th data point coordinates, and

Fig. 3. Two source images (upper pair), their mixtures (mid-
dle pair) and estimated images (lower pair)

|||l is the sum-of-squares distance.

Second, we choose a few best nodes with the mini-
mal distortion, combine their coefficients into one data set,
and apply a separation algorithm (clustering or Infomax) to
these data.

4. EXPERIMENTAL RESULTS

The proposed blind separation method based on the
wavelet-packet representation, was evaluated by using sev-
eral types of signals. We have already discussed the rela-
tively simple example of a random block signal. The sec-
ond type of signal is a frequency modulated (FM) sinusoidal
signal. The carrier frequency is modulated by either a sinu-
soidal function (FM signal) or by random blocks (BFM sig-
nal). The third type is a musical recording of flute sounds.
Finally, we apply our algorithm to images. An example of
such images is presented in Figure 3. Source images and
their mixtures are shown at the upper two sets of plots, and
the estimated images are shown in the lower two plots.

In order to compare accuracy of our method with that
attainable by other methods, we form the following feature
sets: (1) raw data, (2) Short Time Fourier Transform (STFT)
coefficients for 1D signals, and Discrete Cosine Transform
(DCT) coefficients for images, (3) Wavelet packet coeffi-
cients at the ’best’ nodes, using various mother wavelets.



Fig. 4. Scatter plots of the wavelet packet (WP) coefficients
of mixtures of two images; subsets are indexed on the WP
tree.
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Fig. 5. Distributions of angles (orientations) characterizing
the scatter diagrams of the WP coefficients of mixtures of
two images

Figure 4 shows an example of scatter plots of the
wavelet packet coefficients obtained at various nodes of the
wavelet packet tree. The upper left scatter plot, marked with
’C’, corresponds to the complete set of coefficients at all
nodes. The rest are the scatter plots of sets of coefficients
indexed on a wavelet packet tree. Generally speaking, the
more distinct the two dominant orientations appear on these
plots, the more precise is the estimation of the mixing ma-
trix, and, therefore, the better is the quality of separation.
Note, that only two nodes, ceo and co3, show clear orienta-
tions. These nodes will most likely be selected by the algo-
rithm for further estimation process.

Figure 5 shows distributions of angles (orientations)
formed by points on the corresponding scatter plots of the
wavelet packet coefficients at various nodes. Here, again,
the sharper are the picks of a distribution, the better is the
separation.

Table 1 summarizes results of experiments in which we
applied our algorithm along with the FCM separation to
each noise-free feature set. In these experiments we com-
pared the quality of separation of random block and BFM
signals by performing 100 Monte-Carlo simulations and
calculating the normalized mean-squared errors (NMSE)
for the above feature sets. (In the case of deterministic sig-
nals, we calculated a normalized squared error, NSE). In
the case of image separation, we used the Discrete Cosine
Transform (DCT) instead of the STFT, and the Symmlet-8
mother wavelet when using wavelet transform and wavelet
packets.

From Table 1 it is clear that using our adaptive ’best’
nodes method outperforms all other feature sets for each
type of signal. Similar improvement was achieved by using
our algorithm along with the BS InfoMax separation, which
provided even better results for images. In the case of the
random block signals, using the Haar wavelet function for
the wavelet packet representation yields a better separation
than using some smooth wavelet, e.g. Db-8. The reason is
that these block signals, that are not natural signals, have a
sparser representation in the case of the Haar wavelets. In
contrast, as expected, natural signals such as the Flute’s sig-
nals are better represented by smooth wavelets, that in turn
provide a better separation. This is another advantage of
using sets of features at multiple nodes along with various
families of *mother’ functions: one can choose best nodes
from several decomposition trees simultaneously.

In order to verify the performance of our method in
presence of noise, we added various noise (white gaussian
and salt&pepper) to mixtures of images at various signal-to-
noise ratios (SNR). Table 2 summarizes these experiments
in which we applied our algorithm along with the BS Info-
Max separation. Our algorithm provides reasonable sepa-
ration quality for SNR’s of about 10 dB and higher in the
case of salt&pepper noise, and for SNR’s of about 11 dB



and higher in the case of white gaussian noise. More exper-
imental results, as well as parameters of simulations, can be
found in [13].

Signals raw  STFT WT WT WP WP
data db8 haar db8 haar
Blocks 31.89 1631 4.18 1.94 2.70  0.43
BFM sine | 49.81 8.17 8.16 1530 448 6.65
FMsine | 50.57 5.66 10.16 2471 413 533
Flutes 12.18 5.36 5.96 9.23 393 8.05

raw DCT WT WT WP WP
Images data sym8  haar sym8 haar
2211 19.11 10.79 1057 6.04 8.29

Table 1. Experimental results: normalized mean-squared
separation error (%) for noise-free signals and images, ap-
plying the FCM separation to raw data and decomposition
coefficients in various domains. In the case of wavelet pack-
ets (WP) the best nodes selected by our algorithm were
used.

| SNR [dB] | o [ 12 [ 11 ] 10 [ 8 |
Mixtures of images
with white 2.05 | 438 | 7.12 | 12.76 | 41.70

gaussian noise
Mixtures of images
with salt&pepper | 2.05 [ 2.17 | 293 | 490 | 14.61
noise

Table 2. Performance of the algorithm in presence of vari-
ous sources of noise in mixtures: normalized mean-squared
separation error (%) for images, applying our adaptive ap-
proach along with the BS InfoMax separation.

5. CONCLUSIONS

Experiments with both one- and two-dimensional simulated
and natural signals demonstrate that sparse representations
improve the efficiency of blind source separation. The pro-
posed method improves the separation quality by utiliz-
ing the structure of signals, wherein several subsets of the
wavelet packet coefficients have significantly better sparsity
and separability than others. In this case, scatter plots of
these coefficients show distinct orientations each of which
specifies a column of the mixing matrix. Further, project-
ing points appearing on the scatter plot onto the surface of
a unit sphere, facilitates the separation into distinct data
clusters. We choose the ’good subsets’ according to the
global distortion adopted as a measure of cluster quality. Fi-
nally, we combine together coefficients from the best cho-
sen subsets and restore the mixing matrix using only this
new subset of coefficients by the Infomax algorithm or clus-
tering. This yields significantly better experimental results

than those obtained by using standard Infomax and cluster-
ing approaches.
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