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Abstract. A framework that naturally uni�es smoothing and enhance-

ment processes is presented. We generalize the linear and nonlinear scale

spaces in the complex domain, by combining the di�usion equation with

the simpli�ed schr�odinger equation. A fundamental solution for the lin-

ear case is developed. Preliminary analysis of the complex di�usion shows

that the generalized di�usion has properties of both forward and inverse

di�usion. An important observation, supported theoretically and numer-

ically, is that the imaginary part can be regarded as an edge detector

(smoothed second derivative), after rescaling by time, when the complex

di�usion coeÆcient approaches the real axis. Based on this observation,

a nonlinear complex process for ramp preserving denoising is developed.

Keywords: scale-space, image �ltering, image denoising , image enhancement,

nonlinear di�usion, complex di�usion.

1 Introduction

The scale-space approach is by now a well established multi-resolution technique
for image structure analysis (see [6],[2],[5]). Originally, the Gaussian represen-
tation introduced a scale dimension by convolving the original image with a
Gaussian of a standard deviation � =

p
2t. This is analogous to solving the

linear di�usion equation

It = cr2
I; I jt=0 = I0; 0 < c 2 R; (1)

with a constant di�usion coeÆcient c = 1.
Perona and Malik (P-M) [4] proposed a nonlinear adaptive di�usion process,

where di�usion takes place with a variable di�usion coeÆcient in order to reduce
the smoothing e�ect near edges. The P-M nonlinear di�usion equation is of the
form: It = r � (c(jrI j)rI); c(�) > 0, where c is a decreasing function of the
gradient. Our aim is to see if the linear and nonlinear scale-spaces can be viewed
as special cases of a more general theory of complex di�usion-type processes.

Complex di�usion-type processes are encountered i.e. in quantum physics and
in electro-optics. The time dependent Schr�odinger equation is the fundamental
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equation of quantum mechanics. In the simplest case for a particle without spin
in an external �eld it has the form

i~
@ 

@t
= �

~
2

2m
� + V (x) ; (2)

where  =  (t; x) is the wave function of a quantum particle, m is the mass
of the particle, ~ is Planck's constant, V (x) is the external �eld potential, � is
the Laplacian and i

:
=
p
�1. With an initial condition  jt=0 =  0(x), requiring

that  (t; �) 2 L2 for each �xed t, the solution is  (t; �) = e
� i
~
tH
 0, where the

exponent is a shorthand for the corresponding power series, and the higher order
terms are de�ned recursively by Hn

	 = H(Hn�1
	). The operator

H = �
~
2

2m
�+ V (x); (3)

called the Schr�odinger operator, is interpreted as the energy operator of the par-
ticle under consideration. The �rst term is the kinetic energy and the second is
the potential energy. The duality relations that exist between the Schr�odinger
equation and di�usion theory have been studied in [3]. Another important com-
plex PDE in the �eld of phase transitions of traveling wave systems is the complex

Ginzburg-Landau equation (CGL): ut = (1 + i�)uxx + Ru� (1 + i�)juj2u. Note
that although these ows have a di�usion structure, because of the complex
coeÆcient, they retain wave propagation properties.

In both cases a non-linearity is introduced by adding a potential term while
the kinetic energy stays linear. In this study we employ the equation with zero
potential (no external �eld) but with non-linear \kinetic energy". To better un-
derstand the complex ow, we study in Section 2 the linear case and derive the
fundamental solution. We show that for small imaginary part the ow is approx-
imately a linear real di�usion for the real part while the imaginary part behaves
like a second derivative of the real part. Indeed as expected, the imaginary part
is directly related to the localized phase and zero crossings of the image, and
this is one of the important properties obtained by generalizing the di�usion
approach to the complex case. The non-linear case is studied in Section 3 and
the intuition gained from the linear case is used in order to construct a special
non-linear complex di�usion scheme which preserves ramps. The advantage over
higher order PDE's and over the P-M algorithm is demonstrated in one- and
two-dimensional examples.

2 Linear Complex Di�usion

2.1 Problem De�nition

We consider the following initial value problem:

It = cIxx; t > 0; x 2 R (4)

I(x; 0) = I0 2 R; c; I 2C :
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This equation is a generalization of two equations: the linear di�usion equation
(1) for c 2 R and the simpli�ed Schr�odinger equation, i.e. c 2 I and V (x) � 0.
When c 2 R there are two cases: for c > 0 the process is a well posed forward
di�usion, whereas for c < 0 an ill posed inverse di�usion process is obtained.

2.2 Fundamental Solution

We seek the complex fundamental solution h(x; t) that satis�es the relation:

I(x; t) = I0 � h(x; t) (5)

where � denotes convolution. We rewrite the complex di�usion coeÆcient as
c
:
= re

i� , and, since there does not exist a stable fundamental solution of the
inverse di�usion process, restrict ourselves to a positive real value of c, that is
� 2 (��

2
;
�
2
). Replacing the real time variable t by a complex time � = ct, we get

I� = Ixx, I(x; 0) = I0. This is the linear di�usion equation with the Gaussian
function being its fundamental solution. Reverting back to t, we get:

h(x; t) =
K

2
p
�tc

e
�x2=(4tc)

; (6)

where K 2 C is a constant calculated according to the initial conditions. For
c 2 R we have K = 1. Separating the real and imaginary exponents we get:

h(x; t) = Ke�i�=2

2
p
�tr

e
�x2 cos �=(4tr)

e
ix2 sin �=(4tr)

= KAg�(x; t)e
i�(x;t)

;

where A = e�i�=2p
cos �

; g�(x; t) =
1p

2��(t)
e
�x2=2�2(t)

;

and

�(x; t) =
x
2 sin �

4tr
; �(t) =

r
2tr

cos �
: (7)

Satisfying the initial condition I(x; 0) = I0 requires h(x; t ! 0) = Æ(x). Since
limt!0 g�(x; t)e

i�(x;t) = Æ(x), we should require K = 1=A (indeed K = 1 for the
case of positive real c (� = 0) ). The fundamental solution is therefore:

h(x; t) = g�(x; t)e
i�(x;t)

; (8)

with the Gaussian's standard deviation � and exponent function � as in (7).

2.3 Approximate Solution for Small Theta

We will now show that as � ! 0 the imaginary part can be regarded as a
smoothed second derivative of the initial signal, factored by � and the time
t. Generalizing the solution to any dimension with Cartesian coordinates x

:
=

(x1; x2; ::xN ) 2 R
N , I(x; t) 2 C

N and denoting that in this coordinate system

g�(x; t)
:
=
QN

i g�(xi; t), we show that:

lim
�!0

Im(I)

�
= t�g~� � I0; (9)
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where Im(�) denotes the imaginary value and ~� = lim�!0� =
p
2t. For con-

venience we use here a unit complex di�usion coeÆcient c = e
i�. We use the

following approximations for small �: cos� = 1 + O(�2) and sin� = � + O(�3).
Introducing an operator ~H, which is similar to the Schr�odinger operator, we can
write equation (4) (in any dimension) as: It = ~HI ; I jt=0 = I0, where ~H = c�.

The solution is I = e
t ~H
I0, and is the equivalent of (5), (8). Using the above

approximations we get:

I(x; t) = e
ct�

I0 = e
ei�t�

I0

� e
(1+i�)t�

I0 = e
t�
e
i�t�

I0

� e
t�(1 + i�t�)I0 = (1 + i�t�)g~� � I0:

A thorough analysis of the approximation error with respect to time and �
will be presented elsewhere. We should comment that part of the error depends
on the higher order derivatives (4th and higher) of the signal, but, as these
derivatives are decaying exponentially by the Gaussian convolution, this error
diminishes quickly with time. Numerical experiments show that for � = �=30
the peak error is � 0:1% for the real part and 3 � 5% for the imaginary part
(depending on the signal). Though the peak value error of the imaginary part
seems large, the zero crossing location remains essentially accurate.

Some further insight into the behavior of the small theta approximation can
be gained by separating real and imaginary parts of the signal and di�usion
coeÆcient in to a set of two equations. Assigning I = IR + iII , c = cR + icI , we
get �

IRt = cRIRxx � cIIIxx ; IRjt=0 = I0

II t = cIIRxx + cRIIxx ; II jt=0 = 0;
(10)

where cR = cos � , cI = sin�. The relation IRxx � �IIxx holds for small enough
�, which allows us to omit the right term of the �rst equation to get the small
theta approximation:

IRt � IRxx ; II t � IIxx + �IRxx: (11)

In (11) IR is controlled by a linear forward di�usion equation, whereas II is
a�ected by both the real and imaginary equations. We can regard the imaginary
part as II t � �IRxx + ("a smoothing process").

2.4 Examples

We present examples of 1D and 2D signal processing with complex di�usion
processes characterized by small and large values of �. In Fig. (1) a unit step is
processed with small and large � ( �

30
;
14�
30

respectively). In Figs. (2) and (3) the
cameraman image is processed with same � values. The edge detection (smoothed
second derivative) qualitative properties are clearly apparent in the imaginary
part for the small � value, whereas the real value depicts the properties of
ordinary Gaussian scale-space. For large � however, the imaginary part feeds
back into the real part signi�cantly, creating wave-like structures. In addition,
the signal exceeds the original maximum and minimum values, violating the
"Maximum-minimum" principle - a property suitable for sharpening purposes.
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Fig. 1. Complex di�usion applied to a step signal. From left to right: small � (� = �=30)

real and imaginary values, large � (� = 14�=30) real and imaginary values. Each frame

depicts from top to bottom: original step, di�used signal after times: 0.025, 0.25, 2.5,

25.

3 Nonlinear Complex Di�usion

Nonlinear complex processes can be derived from the above mentioned proper-
ties of the linear complex di�usion for purposes of signal and image denoising or
enhancement. We suggest an example of a nonlinear process for ramp edges de-
noising purposes (di�erent from the widely used step edges denoising methods).

We are looking for a general nonlinear di�usion equation

It =
@

@x
(c(�)Ix) (12)

that preserves smoothed ramps. Following the same logic that utilized a gra-
dient measure in order to slow the di�usion near step edges, we search for a
suitable di�erential operator D for ramp edges. Eq. (12) with a di�usion coeÆ-
cient c(jDI j) which is a decreasing function of jDI j can be regarded as a ramp
preserving process. We begin by examining the gradient, as a possible candi-
date, concluding that it is not a suitable measure for two reasons: The gradient
does not detect the ramp main features - namely its endpoints; Moreover, it
has a nearly uniform value across the whole smoothed ramp, causing a nonlinear
gradient-dependent di�usion to slow the di�usion process in that region, thus not
being able to properly reduce noise within a ramp (creating staircasing e�ects).
The second derivative (Laplacian in multiple dimensions) is a suitable choice: It
has a high magnitude near the endpoints and low magnitude everywhere else -
and thus enables the nonlinear di�usion process to reduce noise within a ramp.

We formulate c(s) as a decreasing function of s:

c(s) =
1

1 + s2
; where c(s) = c(jIxxj): (13)

Using the c of (13) in (12) we get:

It =
@

@x

�
Ix

1 + I2xx

�
=

1 + I
2
xx � 2IxIxxx

(1 + I2xx)
2

Ixx: (14)
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Fig. 2. Complex di�usion of the cameraman image for small theta (� = �=30). Top -

real values, bottom - imaginary values (factored by 20). Each frame (from left to right):

original, image after times: 0.25, 2.5, 25.

Fig. 3. Complex di�usion of the cameraman image for large theta (� = 14�=30). Top

- real values, bottom - imaginary values (factored by 20). Each frame (from left to

right): original, image after times: 0.25, 2.5, 25.
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There are two main problems in this scheme. The �rst and more important
one is the fact that noise has very large (theoretically unbounded) second deriva-
tives. Secondly, a numerical problem arises as third derivatives should be com-
puted, with large numerical support and noisier derivative estimations. These
two problems are solved by using the nonlinear complex di�usion.

Following the results of the linear complex di�usion (Eq. 9) we estimate by
the imaginary value of the signal divided by �, the smoothed second derivative
multiplied by the time t.

Whereas for small t this terms vanish, allowing stronger di�usion to reduce
the noise, with time its inuence increases preserving the ramp features of the
signal. We should comment that these second derivative estimations are more
biased than in the linear case, as we have a nonlinear process.

The equation for the multidimensional process is

It = r � (c(Im(I))rI);

c(Im(I)) =
e
i�

1 +
�
Im(I)

k�

�2 ; (15)

where k is a threshold parameter. The phase angle � should be small (� << 1).
Since the imaginary part is normalized by �, the process is not a�ected much by
changing the value of � as long as it stays small.

We implement this ow with forward Euler scheme with central di�erence
approximation for the spatial derivatives and backward time derivative. Care
should be exercised when choosing the time step. The fundamental solution in-
cludes a Gaussian with variance �2 = 2tr

cos �
. Implementing Gaussian convolution

of time � by incremental time steps where �2 = 2� requires the time step bound
to be: �� � 0:25h2 (in 2 dimensions, where h is the spatial step). Here we have
� = tr

cos �
and hence in the general case we require: �t � 0:25h2 cos �

r
, and for our

case where r = 1, h = 1: �t � 0:25 cos �.
This means that when � approaches �=2 it is very ineÆcient to implement

complex di�usion with incremental time-steps. For small � there is essentially
no di�erence than real di�usion (works also in the nonlinear case).

In Figs. 4 and 5 we show an example of a noisy ramp denoised by a P-M
process in comparison to the above process (with � = �

30
). One can notice that

the known P-M's staircasing e�ect does not happen in our nonlinear complex
scheme. In Fig. 6 the process is applied to an apple image that contains both
sharp (step) and gradual (ramp) edges. Note that using the regularized P-M

version of Catte et al. [1] produces staircasing results similar to the original P-M
process.

4 Conclusion

The fundamental solution for the linear complex di�usion indicates that there
exists a stable process for � 2 (��

2
;
�
2
). In the case of small � two observations are

relevant to the application of the complex di�usion process in image processing:
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Fig. 4. Perona-Malik nonlinear di�usion of a ramp edge (k = 0:1). Left - original (top)

and noisy ramp signal (white Gaussian, SNR=15dB) . Middle - denoised signal at times

0:25; 1; 2:5, from top to bottom, respectively. Right - respective values of c coeÆcient.
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Fig. 5. Nonlinear complex di�usion of a ramp edge (� = �=30, k = 0:07). Left - real

values of denoised signal at times 0:25; 1; 2:5, from top to bottom, respectively. Middle

- respective imaginary values, right - respective real values of c.

The real function equation is e�ectively decoupled from the imaginary one, and
behaves like a real linear di�usion process; The imaginary part is approximately
a smoothed second derivative of the real part. Therefore, we can regard the
Gaussian and Laplacian "pyramids" (scale-spaces) as results of a single complex
di�usion equation.

Although the nonlinear scheme remains to be better analyzed and under-
stood, a ramp preserving denoising process was demonstrated as an example of
possible applications of complex di�usion schemes. 1
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