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ABSTRACT

We present two nonlinear di�usion processes with time-

dependent di�usion coeÆcients. Both processes con-

verge to nontrivial solutions, eliminating the need to

impose an arbitrary di�usion stopping time, otherwise

required in the implementation of most nonlinear dif-

fusion processes.

The two schemes employ nonlinear cooling mech-

anisms that preserve edges. One scheme is intended

for general denoising, whereas the other is targeted for

enhancement or segmentation of images.

key words: nonlinear di�usion, time-dependent di�usion,

anisotropic di�usion, image denoising, image enhancement.

1. INTRODUCTION

The Nonlinear di�usion processes have been widely used

over the past decade in edge preserving denoising. Per-

ona and Malik [6] proposed a nonlinear di�usion equa-

tion in the form of:

It = r � (c(jrI j)rI); c > 0 (1)

with c being a decreasing function of the gradient, such

as

c(s) =
1

1 +
�
s
k

�2 ; (2)

where k is a gradient threshold parameter. Some draw-

backs and limitations of the original model have been

mentioned in the literature [2], [12], [4]. Catte et al.

[2] have proved the ill-posedness of the Perona-Malik

(P-M) di�usion scheme and proposed a regularized ver-

sion, where the coeÆcient is a function of a smoothed
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gradient:

c�(s) =
1

1 +
�
G��s

k

�2 ; (3)

where G� is a Gaussian of standard deviation �, and �

denotes convolution.

Weickert et al. [11] showed how the stability of the

P-M equation could be explained by spatial discretiza-

tion, and proposed a generalized regularization formula

in the continuous domain [7].

Various modi�cations of the original scheme were

presented [9], attempting to overcome issues of stabil-

ity [2],[7], adding directionality [3] or removing high

gradient (impulsive) noise [8]. Yet, most schemes still

converge to a trivial solution (i.e. the average value of

the image) and therefore require the implementation of

an appropriate stopping mechanism in practical image

processing. As there still does not exist a widely ac-

cepted analytical method or even a heuristic one, it is

in many cases done manually, by inspection. This is

certainly unacceptable for most image processing ap-

plications. An approach that will converge to a desired

solution or, at least, change very slowly in the vicinity

of such a solution, will therefore considerably enhance

the applicability of di�usion-type processes.

Two additional parameters have to be typically spec-

i�ed in a nonlinear di�usion denoising process: a thresh-

old k for gradient preserving, and a regularizing param-

eter �, of pre-convolving the image or the local gradi-

ent, needed in order to compute the local di�usion co-

eÆcient. These parameters are usually computed ac-

cording to some a priori knowledge or estimation of

the important gradients to be preserved (for k) and

the characteristics of the noise involved (for �).

We present two methods that implement two dif-

ferent nonlinear cooling mechanisms. The PDE cools

down fast to a frozen state, where di�usion slows down

considerably. These processes create a natural way of

combining the parameters in an implied way, and cre-



ate new processes with time dependent di�usion coef-

�cients that perform well on various types of images.

2. COOLING DOWN THE SYSTEM

In most noise models, such as white (Gaussian or uni-

form) noise, as well as impulsive noise, the noise has

theoretically unbounded gradient. Discretization bounds

the measured gradients, yet the gradient criterion by it-

self is not enough for a good distinction between signal

and noise. A common way to add some more robust-

ness to this criterion is to pre-smooth (lowpass �lter)

the image beforehand and reduce most of the large gra-

dients originating from noise. If the �lter is relatively

weak, edge localization is not a�ected considerably. Af-

ter the initial linear �ltering, we would like to preserve

the strong edges left. Therefore, in terms of di�usion,

we would like to have an initial short interval of ba-

sically linear di�usion, followed by a nonlinear edge-

preserving di�usion. Moreover, strong edges should be

less a�ected with time and the processing should con-

verge to a steady state.

Going back from image-processing to physical pro-

cesses, we know that the di�usion coeÆcient c is a

monotonic function of the temperature [1], where, as

temperature increases, molecules move more rapidly

and the di�usion coeÆcient increases.

For the purpose of denoising, we would like some

nonlinear cooling, that depends on the gradient, where

large gradients cool faster and are preserved. We pro-

pose two time-dependent di�usion coeÆcients:

c1(s; t) =
1

1 +
�

s

k(t)

�2 ; where k(t) =
1

�+ �1t
(4)

and

c2(s; t) =
1

1 +
�
s
k

��2t : (5)

2.1. Threshold Freezing

In equation (4) the gradient threshold k(t) decreases

with time, allowing lower and lower gradients to take

part in the smoothing process. At time t! 0 we have

e�ectively a linear di�usion, where for jrI j << 1=�

we have c(jrI j; t ! 0) ! 1. As time advances, k(t)

decreases and nonlinear di�usion takes place. Only

smoother and smoother regions are smoothed further,

where gradients above k(t) can get somewhat enhanced

due to local inverse di�usion. The scheme converges to

a steady state where for t!1 we get c(jrI j > 0; t!

1) = 0, meaning - no di�usion is taking place. In

real applications, where one has 256 gray levels, for in-

stance, whenever k(t) << 1 the scheme converges, and

no signi�cant changes occur even before that.

The scheme depends only on a single parameter:

the cooling rate which is determined by �1. As �1

increases, the cooling is faster, less noise is being �l-

tered but edges are better preserved. Here all three

independent parameters of threshold k, �lter width �

and stopping time are combined in one parameter in a

natural way, creating a new denoising process that can

perform well on many natural images.

2.2. Slope Freezing

The di�usion coeÆcient of equation (5) describes a se-

lective freezing process, where the threshold k stays

constant, but the slope is getting steeper with time (as

seen in Fig. (1)). This scheme is intended for segmenta-

tion, where piecewise constant solutions are preferred.

At time t ! 0 the di�usion is like a linear one with

c = 0:5. With time, the di�usion coeÆcient, for gradi-

ents below k, is getting closer to 1. For gradients above

k the di�usion coeÆcient is getting closer to 0.

To gain further insight into the properties of the

di�usion process with time-dependent di�usion, it is

instructive to consider the one-dimensional case where

the process creates "walls" whenever di�usion almost

stops at gradients above k. Between these walls the

di�usion is strong (approaching linear di�usion) and

noisy regions, but textured also, are quickly smoothed

out, resulting in a local constant average value. This

type of processing is somewhat similar to the shock

�lters proposed by Osher and Rudin in [5], though here

the edge detector is a simple gradient threshold and not

a second-derivative zero crossing.

The two-dimensional case is considerably more com-

plicated: gradients above k form walls that guard re-

gions from being di�used. But in this case the walls

are not as stable. If the base of the wall forms a closed

curve, it will stay closed from then onwards. If it is not

a closed curve, there will be a connection between the

inside and outside (with gradients below k that di�use

fast) - and the walls will ultimately dissolve. For this

phenomenon we join the term "bleeding".

Regarding stability, both schemes are ill-posed in

the sense of local inverse di�usion that can take place

during the image evolution. Though, no signi�cant

instabilities are observed beside staircasing e�ects, as

in the P-M process. The initial time duration, where

close to linear di�usion takes place (in both proposed

schemes), regularizes these processes. Therefore it per-

forms well also in noisy environments (Fig. 4).
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Figure 1: Plots of the di�usion coeÆcients at times:

0.1,1,10. Left: c1 , �1 = 0:05, right: c2 , �2 = 0:5; k = 10.
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Figure 2: Denoising of a step signal by the slope-freeze

process. From top down: original step signal; signal con-

taminated by white Gaussian noise (4 dB); sharpened and

denoised by the slope-freeze process (�2 = 0:5; k =
1

3
) at

times: 1, 2.5, 25.

3. EXAMPLES

Figures 2 and 3 depict typical results of the slope and

threshold freeze processes (in 1D and 2D), respectively.

To further illustrate the application of our time depen-

dent di�usion processes, we compare the denoising of

an MRI image (Fig. 4) by four nonlinear processes: P-

M (eq. 2), regularized P-M (eq. 3), the threshold-freeze

(eq. 4) and the slope-freeze (eq. 5).

In order to make a fair comparison, the stopping

time had to be carefully chosen for the P-M schemes.

This was done by calculating the mean-squared-error

(MSE) at each iteration, and choosing the time of min-

imum MSE. The MSE (normalized by the original im-

Figure 3: Peppers image contaminated by white Gaussian

noise (5 dB), denoised by the threshold-freeze process, from

left: Original; Noisy image; Denoised image (�1 = 0:04).

age variance) is de�ned by:

MSE(t) =

R R


jIorig(x; y)� I(x; y; t)j2R R



jIorig(x; y)�E[Iorig ]j2

; (6)

where Iorig is the original image (without the noise).

Note that this way of �nding the optimal time is prac-

tical only for simulations, where one has the original

noisy-free image. It cannot be used in real applications

where a noisy image is the input. Also, the MSE crite-

rion for judging images is not the best, but it is general

and straitforward.

The MSE of the four denoising schemes are pre-

sented in Fig. 5. One can clearly see that the two pro-

posed schemes, with time dependent coeÆcients, are

much more stable, and remain so for a very long time

(the converging solution is not much worse than the

one at time of minimum MSE). The P-M processes, on

the other hand, are much more sensitive to the choice

of the stopping time.

In our implementation of the di�usion schemes A

slight change in the time dependent coeÆcient pro-

cesses was made in we used incremental time steps in

order to improve the accuracy and computational ef-

�ciency. Since at the beginning of the processing, the

di�usion coeÆcient is very sensitive to time, small time

steps were taken initially and then grew with time. [4

di�erent time steps were used: 0.025,0.050,0.125,0.250].

Each of the �rst 3 step sizes was used for 10 iterations,

and the rest of the process was executed using the max-

imum step (0.25). For example, to reach time t = 10

we needed 62 iterations.

4. CONCLUSION

The nonlinear di�usion processes with time-dependent

di�usion coeÆcients proposed in this study provide new

stable and eÆcient tool for image processing. The

threshold-freeze method is most suitable for applica-

tions as a general denoising scheme, whereas the slope-

freeze method is intended for sharpening and segmen-

tation.



Figure 4: Head MRI image contaminated by white Gaus-

sian noise (0 dB SNR), denoise by four nonlinear schemes.

From Top left: Original; Noisy image; P-M process; Regu-

larized P-M process; Threshold freeze with c1, �1 = 0:06;

Slope freeze with c2, �2 = 0:5. Stopping times: 51.5, 14,

50, 50, respectively; k = 5.
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Figure 5: Normalized MSE of the four denoising processes

plotted as a function of time. (1) PM, (2) Regularized PM,

(3) Threshold freeze with c1, (4) Slope freeze with c2.

Main advantages inherent in these processes are the

nontrivial converging solutions, and the reduction in

the number of required parameters, especially the stop-

ping time is no longer an issue. The implementation is

fairly simple, yielding a fast convergence. The meth-

ods are robust and perform well even in the case of

low SNR. The idea of cooling can be extended to other

kinds of nonlinear di�usion processes.
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