
PDE-BASED DENOISING OF COMPLEX SCENES USING A SPATIALLY-VARYING
FIDELITY TERM

Guy Gilboa, Yehoshua Y. Zeevi

Department of Electrical Engineering,
Technion - Israel Institute of Technology

Technion city, Haifa 32000, Israel
e-mail: gilboa@tx.technion.ac.il, zeevi@ee.technion.ac.il

Nir Sochen

Department of Applied Mathematics,
University of Tel-Aviv

Ramat-Aviv, Tel-Aviv 69978, Israel
e-mail: sochen@math.tau.ac.il

ABSTRACT

The widely used denoising algorithms based on nonlinear
diffusion, such as Perona-Malik and total variation denois-
ing, modify images toward piecewise constant functions.
Though edge sharpness and location is well preserved, im-
portant information, encoded in image features like textures
or small details, is often lost in the process. We suggest
a simple way to better preserve textures, small details, or
global information. This is done by adding a spatially vary-
ing fidelity term that controls the amount of denoising in
any region of the image. This form is very simple, can be
used for a variety of tasks in PDE-based image processing
and computer vision, and is stable and meaningful from a
mathematical point of view.

1. INTRODUCTION

Nonlinear diffusion processes have been widely used over
the past decade for image denoising with edge preservation.
Perona and Malik [6] proposed a nonlinear diffusion equa-
tion in the form of:

It = r � (c(jrI j)rI); I jt=0 = I0; c > 0 (1)

with Neumann boundary-conditions, c being a decreasing
function of the gradient.

The total variation (TV) model of Rudin-Osher-Fatemi
[5] was derived from the energy functional

ETV =

Z



(jrI j+
1

2
�(I0 � I))dxdy; (2)

where minimizing this energy by a steepest descent method
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results in

It = r �

�
rI

jrI j

�
+ �(I0 � I) (3)

where � 2 IR. This is a special case of Eq. (1) with c(s) =
1=s and an additional data fidelity term.

Though the performance of these, and other PDE-based
methods, have shown impressive results, recently the limi-
tations of such processes began to raise attention [1, 2]. The
implicit assumption that underlies the formulation of these
flows/equations is the approximation of images by piece-
wise constant functions (in the BV space). In some sense
they produce an approximation of the input image as the
so-called ”cartoon model”, thus, naturally disposing of the
oscillatory noise and preserving edges (in some cases even
enhancing them, see [6]).

A good cartoon model captures much of the image im-
portant information. Yet, it has several obvious drawbacks:
textures are excluded, significant small details may be left
out, and even large-scale features, that are thin or are not
characterized by strong edges, are often being disregarded.

We show below that by a relatively simple modification
of the algorithm/equation we can get a denoising algorithm
that better preserves the information of the image.

2. THE CARTOON PYRAMID MODEL

The cartoon has been defined and investigated in the early
80’s and was further elaborated by Mumford and is being
used since as the basic underlying model for many image
denoising methods (see [4] and the references therein). In
the continuous model, the cartoon has a curve � of discon-
tinuities, but everywhere else it is assumed to have a small
or a null gradient jrI j [4].

The TV and other nonlinear diffusion processes are es-
pecially good in extracting the cartoon part of the image.
We use them, therefore, as a simple pyramid (scale-space)
of cartoon sketches at different scales. Since the TV is a



simple, single parameter (�) process, we choose it, in this
paper, as a representative of nonlinear diffusion processes.
Let us define a Cartoon of scale s, using the TV process, as
follows:

Cs
:
= ITV j�= 1

s

(4)

where ITV is the steady state of (3). Let us define the
residue between two scales as:

Rn;m
:
= Cn � Cm (n < m): (5)

We shall refer to the Non-Cartoon part of scale s as the
residue from level zero:

NCs
:
= R0;s = C0 � Cs: (6)

A few basic properties of the Cartoon and Residue parts,
thus defined, are listed below:

1: C0 = I0
(The cartoon of scale 0 is the input image):

2: C1 =
R


I0(x; y)dxdy

(The cartoon of scale 1 is the mean of the input image):
3:

R


Rn;mdxdy = 0

(The mean of any residue is zero):
4: Cs =

R
1

s
Rn;n+dndn+ C1

= �1n=sRn;n+1 + C1
(A cartoon image can be built from residues
of larger scales):

The TV process dissipates energy. We remark that the
term

R


(I0�I)

2dxdy is, actually, the power of the residue.
In order to model a natural image in a simple way, yet

capture its significant characteristics, we model the image
as a cartoon of a single scale with its matching residue. We
term the scale so chosen, to represent the cartoon part of
the image, the representative cartoon scale sr. There can be
several approaches to finding a representative scale, and, in
general, an image can have several such scales. We suggest
to find the representative scale by examining the stability of
the gradients along scales. As a cartoon consists of mainly
smooth parts, divided by edges, a stable scale range [s1; s2]
is one in which the total edge length (number and size of
objects) changes very slowly. As the definition of an edge
is not always clear, we resort to finding the smooth regions
defined as having a gradient of less then 1% of the dynamic
range of the input image. The total area (length in 1D) of
smooth regions is jNsj =

R


�(Ns)dxdy where �(A) is

the indicator function of the set A, and we define the set
of smooth points as Ns

:
= f(x; y) : jrI(x; y)j < Tsg.

Here Ts = (max
(I0) �min
(I0))=100. The set of non-
smooth points is Nns = 
�Ns. The smoothness area jNsj

is generally increasing in scale (jNnsj decreasing), though
monotonicity of the area, and embedding of the sets, is not
guaranteed. For monotone Lyapunov functionals that can

indicate stability of scales see [11]. We choose the scale sr
as one of the meta-stable states of jNsj (Figs. 1,2 ).

Our model consists of three components: I0 = IC +

INC + In where Iorig = IC + INC is the original im-
age, IC is the Cartoon approximation, INC is the remainder
Non-Cartoon part, and In is an additive noise. Note that we
left the definition of ”non-cartoon” part vague. It, typically,
consists of texture, small-scale details, thin lines etc. The
only assumption we make is that it has zero mean. Under
this decomposition the residue of the noisy image is

IR � I0 � I = ~INC + ~In : (7)

Note that we distinguish between the ”true” non-oscillatory
part and its approximation by the TV process by the tilde
upperscript.
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Fig. 1. Top row: Original signal Iorig (left), non-smoothness
jNnsj as a function of evolution time (right), middle row: Signal
(left) and residue (right) of first stable scale, bottom row: Signal
(left) and residue (right) of second stable scale.
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Fig. 2. Top: Noisy signal I0 (left), non-smoothness jNnsj as a
function of evolution time (right), bottom: signal (left) and residue
(right) of stable scale.

2.1. General power-based denoising

In the general case, we do not have any significant prior
knowledge on the image that can help in the denoising pro-
cess. Our only assumption is that the noise is of constant



power with no correlation to the signal (like additive white
Gaussian or uniform noise).

Let us first define a few objects needed in the sequel:
The power P (�) of the signal is considered here without its
DC component (mean value) and is simply the signal’s vari-
ance: P (I) � var(I). We denote PR � P (IR), Pn �

P (In), Porig � P (Iorig), P0 � P (I0). The local power is
defined as:

Pz(x0; y0) �
1

j
j

Z



(Iz(x; y)�E[Iz ])
2wx0;y0(x; y)dxdy;

where wx0;y0(x; y) = w(jx � x0j; jy � y0j) is normalized
(
R


wx0;y0(x; y)dxdy = 1) and radially symmetric smooth-

ing window. From the definition of the local spectrum it
follows that

R


Pz(x; y)dxdy = Pz .

We begin our algorithm by finding a scale s0 and fixing
�0 = 1=s0 subject to the noise constraint PR = Pn. We
take the respective cartoon scale Cs0 , and residueR0;s0 of
the noisy input image I0. If the original image is a cartoon
(INC = 0) then Cs0 � IC (as noise does not contribute, in
principle, to the cartoon part). The residue R0;s0 is mainly
noise, except near edges, where denoising is weaker. The
local power of the residue, therefore, should be similar ev-
erywhere (nearly spatially constant, like the noise power).

In the general case of natural images, however, an image
has also a non-cartoon part. In such a case Cs0 resembles
mainly the cartoon part (with some noise), where small de-
tails and texture of finer scales are severely degraded. Our
aim is to preserve as much of the lost non-cartoon part as
possible. This would ultimately mean a compromise be-
tween preserving some of the oscillatory part of the signal
at the expanse of keeping some of the noise. We rely on a
typical characteristics of natural images - textures and small
details are local features. The power, therefore, of INC usu-
ally changes considerably in different areas of the image.
We can model the residue of the noisy image as consisting
mostly of the sum INC + In. In that case we have a new
(much harder) denoising problem: Trying to separate INC

from In. We suggest to do it according to the local power
of the residue. As the noise is uncorrelated with the sig-
nal, we can approximate the total power of the residue as
PNC + Pn, the sum of powers of the non-cartoon part and
the noise, respectively. Therefore a basic detector of INC is

g(x; y) =
PR(x; y)

Pn
: (8)

The detector gets the value 1 in places of mainly noise and
a larger value were the power is higher. Using a spatially
varying fidelity term, we can impose different degrees of
fidelity to the original data, at different locations. Since we
would like to denoise less in places of texture and small
details, and allow more denoising in cartoon-type regions,

we suggest the following fidelity term

�(x; y) = �0g(x; y) = �0
PR(x; y)

Pn
: (9)

Recalling the Wiener filter formulationG(!) = Ps(!)

Ps(!)+Pn(!)
,

in the frequency domain, we see that Eq. (9) has simi-
lar properties. Filtering is reduced as the signal’s power is
stronger than the noise power (in our case it is done spa-
tially and the preserved signal is INC , where PR(x; y) �
PNC(x; y) + Pn).

Our algorithm, now, is the solution of the flow equation

It = r �

�
rI

jrI j

�
+ �(x; y)(I0 � I) (10)

2.2. Denoising with prior information

When some more knowledge on the original signal is avail-
able, the performance of denoising with a spatially varying
fidelity term can be substantially ameliorated. The methods
here are application-dependent and more heuristic in nature.
For lack of space, we will just mention a few possible ideas.
To preserve specific features in the denoising process, such
as long line, known type of textures etc. one can pre-process
with the corresponding feature detector (Hough transform,
texture detector). The value of �(x; y) depends locally then
on the feature detector response. Cases of spatially vary-
ing noise also fit the model. For example, in low-quality
JPEG images, the boundaries between 8x8 pixel-blocks are
often more noisy, therefore fidelity to the original data there
should be decreased.

3. EXAMPLES

In Fig. 3 we show denoising in 1D of a small scale sinewave
on top of one side of a step. The sinewave is better kept
when the fidelity is spatially varying.

In Fig. 4 (2D case) we show denoising of a part of
the Boats image (with strong noise), in comparison to two
recently suggested global methods. In nonlinear diffusion
evolutions, a dual problem of finding the right � is finding
the right stopping time t = T when the signal is evolved
without a fidelity term (� = 0). we therefore compare our
method to two advanced stopping criteria of Weickert [10]
and Mrazek [3]. 1 Table 1 show the performance of the three
methods on various images. Our method gives clearly bet-
ter results. For all image experiments we used a Gaussian
window wx0;y0(x; y) with � = 3.

1One can also see our process as evolving the signal without a fidelity
term and stopping the process at different times in each location.
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Fig. 3. From left: Original signal, noisy signal (SNR=15.1),
denoised signal using scalar � = 0:02 (SNR=20.2) and spatially
varying �(x; y) = 0:02g(x; y) (SNR=23.4). More information on
the sinewave is preserved by our method.

Image SNR0 Opt Wk Mr Ours
Cameraman 15.8 19.2 18.9 15.7 20.4
Lena 13.5 18.0 17.7 17.9 18.6
Boats 15.6 20.0 19.6 19.8 20.5
Barbara 14.7 16.6 15.9 11.5 18.1

Table 1. Denoising results of a few classical images. From left,
SNR of the noisy image (SNR0), optimal scalar (Opt), Weickert
(Wk), Mrazek (Mr) and our method. All experiments were done
on images degraded by additive white Gaussian noise (�n = 10).

0 5 10 15 20 25 30 35 40 45
7

8

9

10

11

12

13

O

W

M

t

SN
R

Fig. 4. From top (left to right): noisy image, processed images
by Weickert, Mrazek, Our scheme. Bottom left: SNR graph as
a function of the number of iterations (� = 0). Also depicted are
several important values: Dashed bottom - value of noisy input im-
age SNR=7.2 dB. Dashed top - value of our scheme’s SNR=12.1
dB. The circles on the graph mark the stopping time and conse-
quent SNR of the various algorithms: ’O’ - Optimal (SNR=11.7
dB), ’W’ - Weickert (SNR=11.4 dB), ’M’ - Mrazek (SNR=11.1
dB). Bottom right: �(x; y).

4. CONCLUSION

A simple model for images containing cartoon and non-
cartoon part was presented. Regular TV is used to extract

the cartoon approximation. In order to preserve texture and
small scale details, that appear locally in the image, a spa-
tially varying fidelity term is introduced. We presented a
simple mechanism based on the local power (variance) of
the residue to determine the value of the fidelity term in each
region. A-priory knowledge on the details to be preserved
can enhance this method. Spatially varying fidelity term
can be used in almost any other nonlinear diffusion method,
other than TV.

We have shown that this scheme can filter noise better
than modern stopping-time based mechanisms. Its perfor-
mance is many times above the optimal possible scalar pa-
rameter (t or �) filtering, in the SNR sense (and also visu-
ally). Further improvement may be gained in distinguish-
ing between texture and noise by using more elaborated
schemes other than the power criterion (such as transform-
ing the residue to the Gabor/wavelet space). Work accord-
ing to these ideas will be published elsewhere.
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