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ABSTRACT

Signal and image enhancement in the presence of noise is
considered in the context of the scale-space approach. A
modified dynamic process, based on the action of a nonlinear
diffusion equation, is presented. The diffusion coefficient is
adjusted according to the local gradient, intensity and other
image properties, and as such also reverses its sign, i.e. switches
from a forward to a backward (inverse) diffusion process
according to a given criterion. This results in enhancement of
transients and singularities in the one-dimensional case, and of
edges in images, while locally denoising smoother segments of
the signal or image. Regularization of ill-posed inverse diffusion
problem is discussed. Examples of both one-dimensional signals
and images are presented.

1. INTRODUCTION

The scale-space approach and partial differential equations
(PDE) techniques have been extensively applied to signal and
image processing over the last decade. As Witkin [1] had pointed
out, the diffusion process (or heat equation) is equivalent to a
smoothing process with a Gaussian kernel. However, a major
drawback of the linear scale space framework is its uniform
filtering of local signal features and noise. This was addressed by
Perona and Malik (P-M) [2], who proposed a process known as
nonlinear anisotropic diffusion, where diffusion can take place
with a variable conductance in order to control the smoothing
effect. A close inspection [13] reveals that the Perona-Malik
diffusion process is isotropic but non homogenous. Genuine
anisotropic processes were suggested recently by Sochen,
Kimmel, Malladi [10].

The conductance coefficient in the Perona-Malik process was
chosen to be a decreasing function of the gradient of the signal.
This operation selectively lowpass filters regions that do not
contain large gradients (singularities as a step jump or an edge in
the case of an image). The P-M results stimulated a wide range of
application of their approach (for a review of further results see
[3]). Some drawbacks and limitations of the original model have
been mentioned in the literature [4-6]. Catte et al. [4] have
proved the ill-posedness of the diffusion equation when using the

P-M conductance coefficient and proposed a regularized version,
where the coefficient is a function of a smoothed gradient.
Weickert et al. [7] showed how the stability of the P-M equation
could be explained by spatial discretization, and proposed [8] a
generalized regularization formula in the continuous domain.

The aim of this work is to extend the nonlinear PDE-based
filtering methods, and to apply them to signal and image
enhancement and restoration. We focus on enhancing blurry
signals, while still allowing a considerable amount of additive
noise to interfere in the process. We try to avoid amplification of
noise, which is inherently a byproduct of signal enhancement, by
combining backward and forward diffusion processes.

In section 2 we discuss the possibility of enhancing through
diffusion and describe the rationale that led to a new type of
diffusion process. In section 3 we present the new conductance
coefficient. Examples are presented in section 4 demonstrating
that the process although not yet fully stabilized, yields
promising results, even in very noisy cases.

2. ENHANCEMENT BY DIFFUSION

Most of the PDE-based studies have been devoted so far to
denoising, attempting trying to preserve the edges. Both forward
linear and nonlinear diffusion processes converge (¢ — o) to a
trivial constant solution (i.e. the average value of signal, asuming
constant boundary conditions). To preserve singularities,
previous studies relied primarily on slower diffusion in the
vicinity of singularities. The P-M nonlinear diffusion equation is
of the form:

(1) u, =div(c(|Vu|)Vu)  ,c>0

where C is a decreasing function of the gradient.

According to the "Minimum-Maximum" principle no new local
minima or maxima should be created at any time in the 1D case,
in order not to produce new artifacts in the diffused signal.
Moreover, the values of the global minimum and maximum
along the evolution of the signal in time are bounded by that of



the initial state U(at t=0) in any dimension. These conditions
were obeyed by the P-M and most other aniosotropic diffusion
processes that were subsequently introduced in image processing.
This guarantied the stability of the PDE and an explosion of the
nonlinear diffusion process was avoided.

In signal enhancement/restoration, we do not want to restrict
ourselves to the global minimum and maximum of the initial
signal. On the contrary, we would like the points of extrema to be
emphasized and "stretched" (if they indeed represent singularities
and do not come as a result of noise). Therefore, a different
approach should be taken.

As we want to emphasize large gradients, we would like to move
“mass” from the lower part of a “slope” upwards. This process
can be viewed as moving back in time along the scale space, or
reversing the diffusion process [11]. Mathematically we can
simply change the sign of the conductance coefficient to
negative:

2) u, =div(-c()Vu)  ,c>0

Note that this is different than what was defined as "inverse
diffusion” in previous studies (e.g. [4].[9]). There, in places
where the derivative of the flux c*grad(u) was negative, it was
defined as inverse diffusion, because one can write the diffusion
equation near that point as:

3)u,=-du, ,d>0

Although it has the form of an inverse diffusion process, it is
weaker since it does not have the important inverse diffusion
property of moving signal or image “particles” upward along the
slope of the gradient. With positive conductance coefficient C,
this could never happen, and therefore the minimum-maximum
principal could be kept, for instance. Thus, signal enhancement
requires further modification of the diffusion process.
Specifically, to deblur and enhance singularities, negative
conductance coefficient must be incorporated into the process.

The question is, can we simply use a linear inverse diffusion?
The problem is that linear inverse diffusion is a highly unstable
process. As mentioned earlier, the linear forward diffusion is
analogous to convolution with a Gaussian kernel. Hence, the
linear backward (inverse) diffusion is analogous to a Gaussian
deconvolution, where the noise amplification explodes with
frequency. Application of such a deconvolution process results in
oscillations that grow with time until they reach minimum and
maximum saturation values and the original signal is completely
lost.

Three major problems associated with the linear backward
diffusion process must be addressed: The explosive instability,
noise amplification and oscillations.

One way to avoid explosion is by deminishing the value of the
inverse diffusion coefficient at high gradients. In this way, after
the singularity exceeds a certain gradient threshold it does not
continue to affect the process any longer. We can also terminate
the diffusion process after a limited time, before reaching
saturation.

In order not to amplify noise, which after some pre-smoothing,
can be regarded as having mainly medium to low gradients., we
should also eliminate the inverse diffusion force at low gradients.

To reduce oscillations, we should try to suppress them the minute
they are introduced. For this we can combine a forward diffusion
force, that smoothes low gradients. This force also smoothes
some of the original noise that is in the signal from the
beginning. Unfortunately, low gradients which are not due to
noise, like those that are characteristic of certain textures in
images, are also affected and smoothed out by this force.

The result of this intuitive analysis is that we basically need two
forces of diffusion working simultaneously on the signal - one is
a backward force (at medium gradients, where singularities are
expected), and the other is a forward one, used for stabilizing
oscillations and reducing noise. Actually, we can combine those
two forces to one complex backward-and-forward diffusion force
with a conductance coefficient (which is a function of the
gradient) that has both positive and negative values.

3. NEW CONDUCTANCE COEFFICIENT

We suggest a general formula for the conductance coefficient in
the form of:

1-(s/k;)" ,0<s<k;
@) c(s)=1a{((s-k,)w)™ -1} ,k,—w<s<k,+w
0 , otherwise

and its smoothed version:
(5) ¢, (8)=c(s)®G,(s)

where ® denotes convolution. [exponent parameters n,m , were
chosen to be 4 and 1 respectively, and Kt is smaller than Kb.]

The P-M conductance coefficient, in comparison is:

(6) cpp(s)=1/(1+(s/k)*)

C has to be continuous and differentiable. In the discrete domain,
(4) could suffice (although it is only piece-wise differentiable).
(5) can fit the general continuous case, but raises the problem of
non-zero values at high gradients (that diminish fast). Other
formulas with similar nature may also be proposed.

As compared with the P-M equation (6), where an "edge
threshold" K is the sole parameter, we now have a parameter for
the forward force Kf, two parameters for the backward force (we
defined them by the center Kb and width W), and the relations
between the strength of the backward and forward forces (ratio
we termed alpha). We therefore discuss some rules for
determining these parameters.

Essentially Kf - is the limit of gradients to be smoothed out, and
is similar in nature to the role of the K parameter of the P-M
conductance equation.



Kb and W define the backward diffusion range, and should take
values of gradients that we want to emphasize. In our formula the
range is symmetric, and we usually restrain the width from
overlapping the forward diffusion area.

One way of choosing those parameters in the discrete case,
without having any previous knowledge about the signal, is by
calculating the mean absolute gradient (“mag™), similar to Total
Variation analysis. For instance, [Kf,Kb,W] = [2.4,1]*mag.

Local adjustment of the parametrs, can be done by calculating the
"mag" value in a window. The parameters change gradually
along the signal, and enhancement is accomplished by different
thresholds in different locations. This is indeed required in the
cases of natural signals or images, due to their nonstationary
structure. Usually a minimum value of forward diffusion should
be kept, so smooth large areas would not get noisy. A good
example where we used the local parameter adjustment is
depicted by the parrot image (Fig. 4).

The last parameter, alpha, controls the ratio between the
backward and forward diffusion. If the backward diffusion force
is too dominant, the stabilizing forward force is not strong
enough to avoid oscillations. One can avoid the developing of
new singularities in very smooth areas by bounding the
maximum flux permissible in the backward diffusion to be less
than the maximum of the forward one [for a proof see [14]].
Formally we say:

(7) max{s-c(s)}> max
s<kf kb-w<s<kb+w

{s-c(s)}

In the case of our proposed C, we get a simple formula for alpha,
which just obeys this inequality by:

8) a :kf/2kb , for any 0<w<kb -k,

In practical applications, this bound can usually be increased up
to a double value without experiencing large instabilities.

There are a few ways to increase regularity in this PDE based
approach. We can replace the proposed conductance coefficient
Eq. (4) by the regularized one, Eq. (5), similar in a way to Catte
et al. Given an a priory information on the smallest scale of
interest, one can smooth smaller scales in a noisy signal by
preprocessing. As we enhance the signal afterwards, this
smoothing process does not affect the end result that much and
enables us to operate in an originaly much noisier environment.
Finally, operating in extremely noisy areas, when we know of the
type of singularity, we can apply more pre-smoothing, and
consider only the largest gradient within the backward diffusion
range, (see Fig. 3).

4. EXAMPLES

We used the explicit Euler scheme with forward difference
scheme for the time derivative and the central difference scheme
with 3x3 stencil for the spatial derivatives.

A few examples of blurry and noisy signal restoration using the
selective inverse diffusion are shown below. In the 1-d cases the
process was stopped after the process observed only very slight

changes between iterations. In the image case the process was
stoped by visual inspection.
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Figure 1. (a) Orginal step, (b) Blurred signal
contaminated by white gaussian noise (SNR=5dB), (c-¢)
Diffusion process after iterations: 20, 40, 160,
respectively.
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Figure 2. (a) Orginal signal (with both positive and
negative discontinuities, (b) Blurred signal contaminated
by white uniform noise (SNR=8dB), (c-e¢) Diffusion
process after iterations: 40, 80, 320, respectively.

Figure 3. An example of processing an extremely noisy
signal: (a) Orginal step, (b) Blurred signal contaminated
by white gaussian noise (SNR=-4dB), (c) After pre-
smoothing (d-e) Diffusion process after iterations: 40,
240, respectively.
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Figure 4. (a) Orginal parrot image, (b) Blurred image, (c-d)
Diffusion process after iterations: 16, 128, respectively.

5. CONCLUSIONS

In this study we address the outstanding issue of how can the
conflicting requirements of signal and image lowpass filtering,
thereby smoothing the signal, and sharpening and enhancement
of such signals, even beyond what their original spectrum
permits, be incorporated into a diffusion-type PDE approach.
Our approach is a generalization of the diffusion process into a
forward-and-backward process. This is demonstrated by the
specific example of generalization of the Peron-Malik equation.
Thus, to reiterate, the novely in our approach lies in the fact that
the enhancement process includes both smoothing and
sharpening. This is accomplished by assigning positive and
negative values to a conductance coefficient in the diffusion
equation that ranges from a certain negative to a positive value.
Various parameters control the exact shape of this local
conductance function and an analysis of their meaning, relations
and suitable ranges were presented. The proposed algorithm was
tested on one- and two-dimensional signals with promising
results.

Similar generalizations of the diffusion-type processes, such as
the one associated with the Beltrami equation, and a rigorous
treatment of the issues of stability and regularization, that address
the problem of oscilations and the creation of singularities will
be published elsewhere [14].
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