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Abstract. The Beltrami di�usion-type process, reformulated for the pur-
pose of image processing, is generalized to an adaptive forward-and-backward
process and applied in localized image features' enhancement and de-
noising. Images are considered as manifolds, embedded in higher dimen-
sional feature-spaces that incorporate image attributes and features such
as edges, color, texture, orientation and convexity. To control and sta-
bilize the process, a nonlinear structure tensor is incorporated. The struc-
ture tensor is locally adjusted according to a gradient-type measure. Whereas
for smooth areas it assumes positive values, and thus the di�usion is
forward, for edges (large gradients) it becomes negative and the di�u-
sion switches to a backward (inverse) process. The resultant combined
forward-and-backward process accomplishes both local denoising and fea-
ture enhancement.
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1 Introduction

Image denoising, enhancement and sharpening are important operations in the
general �elds of image processing and computer vision. The success of many
applications, such as robotics, medical imaging and quality control depends in
many cases on the results of these operations. Since images cannot be described
as stationary processes, it is useful to consider local adaptive �lters. These �lters
are best described as solutions of partial di�erential equations (PDE).

The application of PDE's in image processing and analysis starts with the
linear scale-space approach [23, 8] which applies the heat equation by consider-
ing the noisy image as an initial condition. The associated �lter is a Gaussian
with a time varying scale. Perona and Malik [10] in their seminal contribution,
generalized the heat equation to a non-linear di�usion equation where the dif-
fusion coeÆcient depends upon image features i.e. edges. This work paved the
way for a variety of PDE based methods that were applied to various problems
in low-level vision (see [17] for an excellent introduction and overview).
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The Beltrami framework was recently proposed by Sochen et al [13] as a
viewpoint that uni�es many di�erent algorithms and o�er new possibilities of
de�nitions and solutions of various tasks. Images and other vision objects of
interest such as derivatives, orientations, texture, sequence of images, disparity
in stereo vision, optical ow and more, are described as embedded manifolds.
The embedded manifold is equipped with a Riemannian structure i.e. a metric.
The metric encodes the geometry of the manifold. Non-linear operations on
these objects are done according to the local geometry of the speci�c object of
interest. The iterative process is understood as an evolution of the manifold. The
evolution is a consequence of a non-linear PDE. No global (timewise) kernels can
be associated with these non-linear PDE's. Short time kernels for these processes
were derived recently in [15].

We generalize the works of Perona and Malik [10], Sochen et al [13] and
Weickert [18] and show how one can design a structure tensor that controls the
non-linear di�usion process starting from the induced metric that is given in the
Beltrami framework. The proposed structure tensor is non-de�nite positive or
negative and switches between them according to image features. This results in
a forward-and-backward di�usion ow. Di�erent regions of the image are forward
or backwards di�used according to the local geometry within a neighborhood.
The adaptive property of the process, that expresses itself in the local decision
on the direction of the di�usion and on its strength, is the main novelty of this
paper.

2 A Geometric Measure on Embedded Maps

2.1 Images as Riemannian Manifolds

According to the geometric approach to image representation, images are consid-
ered to be two-dimensional Riemannian surfaces embedded in higher dimensional
spatial-feature Riemannian manifolds [13, 5, 6, 5, 7, 16, 14]. Let ��; � = 1; 2, be
the local coordinates on the image surface and let X i; i = 1; 2; : : : ;m, be the
coordinates of the embedding space than the embedding map is given by

(X1(�1; �2); X2(�1; �2); : : : ; Xm(�1; �2)): (1)

Riemannian manifolds are manifolds endowed with a bi-linear positive-de�nite
symmetric tensor which constitutes a metric. Denote by (�; (g��)) the image
manifold and its metric and by (M; (hij)) the spatial-feature manifold and its cor-
responding metric. The induced metric can be calculated by g�� = hij@�X

i@�X
j .

The map X : � !M has the following weight [11]

E[X i; g�� ; hij ] =

Z
d2�

p
gg��(@�X

i)(@�X
j)hij(X); (2)

where the range of indices is �; � = 1; 2, and i; j = 1; : : : ;m = dimM , and we
use the Einstein summation convention: identical indices that appear one up and
one down are summed over. We denote by g the determinant of (g��) and by
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(g��) the inverse of (g��). In the above expression d2�
p
g is an area element of

the image manifold. The rest, i.e. g��(@�X
i)(@�X

j)hij(X), is a generalization
of L2. It is important to note that this expression (as well as the area element)
does not depend on the choice of local coordinates.

The feature evolves in a geometric way via the gradient descent equations

X i
t �

@X i

@t
= � 1

2
p
g
hil

ÆE

ÆX l
: (3)

Note that we used our freedom to multiply the Euler-Lagrange equations by
a strictly positive function and a positive de�nite matrix. This factor is the
simplest one that does not change the minimization solution while giving a
reparameterization invariant expression. This choice guarantees that the ow is
geometric and does not depend on the parameterization.

Given that the embedding space is Euclidean, the variational derivative of E
with respect to the coordinate functions is given by

� 1

2
p
g
hil

ÆE

ÆX l
= �gX

i =
1p
g
@�(

p
gg��@�X

i); (4)

where the operator that is acting onX i in the �rst term is the natural generaliza-
tion of the Laplacian from at surfaces to manifolds. In terms of the formalism
implemented in our study, this is called the second order di�erential parameter
of Beltrami [9], or in short Beltrami operator.

2.2 The Metric as a Structure Tensor

There has been a few works using anisotropic di�usion processes. Cottet and
Germain [2] used a smoothed version of the image to direct the di�usion, while
Weickert [20, 19] smoothed also the structure tensor rIrIT and then manipu-
lated its eigenvalues to steer the smoothing direction. Eliminating one eigenvalue
from a structure tensor, �rst proposed as a color tensor in [3], was used in [12],
in which the tensors are not necessarily positive de�nite. While in [21, 22], the
eigenvalues are manipulated to result in a positive de�nite tensor. See also [1],
where the di�usion is in the direction perpendicular to the maximal gradient of
the three color channels (this direction is di�erent than that of [12]).

Let us �rst show that the di�usion directions can be deduced from the
smoothed metric coeÆcients g�� and may thus be included within the Beltrami
framework under the right choice of directional di�usion coeÆcients.

The induced metric (g��) is a symmetric uniformly positive de�nite matrix
that captures the geometry of the image surface. Let �1 and �2 be the largest and
the smallest eigenvalues of (g��), respectively. Since (g��) is a symmetric positive
matrix its corresponding eigenvectors u1 and u2 can be chosen orthonormal. Let

U � (u1ju2), and � �
�
�1 0
0 �2

�
, then we readily have the equality

(g��) = U�UT : (5)
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Note also that

(g��) � (g��)
�1 = U��1UT = U

�
1=�1 0
0 1=�2

�
UT ; (6)

and that

g � det(g��) = �1�2: (7)

Our proposed enhancement procedure will control those eigenvalues adap-
tively so that only meaningful edges will be enhanced, where smooth areas will
be denoised.

3 New Adaptive Structure Tensor

3.1 Changing the Eigenvalues

From the above derivation of the metric g�� , it follows that the larger eigenvalue
�1 corresponds to the eigenvector in the gradient direction (in the 3D Euclidean
case: (Ix; Iy)). The smaller eigenvalue �2 corresponds to the eigenvector per-
pendicular to the gradient direction (in the 3D Euclidean case: (�Iy; Ix)). The
eigenvectors are equal for both g�� and its inverse g�� , whereas the eigenvalues
have reciprocal values. We can use the eigenvalues as a means to control the Bel-
trami ow process. For convenience let us de�ne �1 � 1

�1
. As the �rst eigenvalue

of g�� (that is �1) increases, so does the di�usion force in the gradient direction.
Thus, by changing this eigenvalue we can reduce, eliminate or even reverse the
di�usion process across the gradient.

What would be the best strategy to control the di�usion process via adjust-
ment of the relevant parameters ? There are a few requirements that might be
considered as guidelines :

{ The enhancement should essentially be with relevance to the important fea-
tures, while originally smooth segments should not be enhanced.

{ The contradictory processes of enhancement and noise reduction by smooth-
ing (�ltering) should coexist.

{ The process should be as stable as possible, though restoration and enhance-
ment processes are inherently unstable.

Let us de�ne �̂1(s) as a new adaptive eigenvalue to be put instead of the
original �1. We propose that this new eigenvalue will be proportional to the
combined gradient magnitude of the three channels (colors) jrI� j (that is �̂1 =
�̂1(jrI� j) in the following way:

�̂1(s) =

8<
:
1� (s=kf )

n ; 0 � s � kf
�
�
((s� kb)=w)

2m � 1
�
; kb � w � s � kb + w

0 ; otherwise
(8)

and its smoothed version:
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�̂1�(s) = �̂1(s) ? G�(s) (9)

where jrI� j �
�
�ijrIij2

�1=2
,

? denotes convolution, and kf < kb � w. We chose the exponent parameters
n and m to be 4 and 1, respectively.

The new structure tensor has to be continuous and di�erentiable. In the
discrete domain, (8) could suÆce (although it is only piecewise di�erentiable),
whereas (9) can �t the general continuous case. Other types of eigenvalue ma-
nipulation with similar nature may be considered.

The parameter kf is essentially the limit of gradients to be smoothed out,
whereas kb and w de�ne the range of the backward di�usion, and should assume
values of gradients that we want to emphasize. In our formula the range is
symmetric , and we restrain the width from overlapping the forward di�usion
area. One way of choosing these parameters in the discrete case, is by calculating
the mean absolute gradient (MAG).

The parameter � determines the ratio between the backward and forward
di�usion . Under the condition of � that renders the backward di�usion process
to become too dominant, the stabilizing forward process can no longer avoid
oscillations. One can avoid the evolution of new singularities in smooth areas by
bounding the maximum ux resulting from the backward di�usion to be smaller
than the maximum a�ected by the forward one. Formally, we say:

max
s<kf

fs�(s)g > max
kb�w<s<kb+w

fs�(s)g (10)

In the case of our proposed eigenvalue, we get a simple formula for �, which just
obeys this inequality by:

� = kf=2kb ,for any 0 < w < kb � kf (11)

In practical applications, this bound can be doubled in value without expe-
riencing major instabilities.

See [4] for elaboration on the forward and backward di�usion for signal en-
hancement.

3.2 The Algorithm

The algorithm to implement the ow It = �ĝI for color image enhancement is
as follows:

1. Compute the metric coeÆcients g�� . For theN channel case (for colorN = 3)
we have

g�� = Æ�� +

NX
k=1

Ik�I
k
� : (12)
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2. Di�use the g�� coeÆcients by convolving with a Gaussian of variance �,
thereby

~g�� = G� � g�� : (13)

For 2D images G� = e�(x
2+y2)=�2 .

3. Compute the inverse smoothed metric ~g�� . Change the eigenvalues of the
inverse metric �1; �2, (�1 < �2), of (~g��) so that �1 = �̂1(s) and �2 = a, (
a � 1). This yields a new inverse structure tensor ĝ�� that is given by:

(ĝ��) = ~U

�
�̂1(s) 0
0 a

�
~UT = ~U�̂ ~UT : (14)

4. Calculate the determinant of the new structure tensor. Note that ĝ can now
have negative values. In cases where the inverse eigenvalue �̂1 is zero, the
structure tensor determinant should assume a large value M >> 1.
ĝ � det(ĝ��) = �̂1�̂2 =

1

�̂1�̂2
;

ĝ =

�
1=a ^�1(s) ; �̂1(s) 6= 0
M ; otherwise

(15)

5. Evolve the k-th channel via the Beltrami ow

Ikt = �ĝI
k � 1p

ĝ
@�

�p
ĝĝ��@�I

k
�

(16)

Remark: In this ow, we will not get imaginary values, though we have the
term

p
ĝ because in cases of negative ĝ the constant imaginary term i � p�1

will be canceled.

3.3 Variations to the Scheme

As the process involves inverse di�usion for enhancement - it is by de�nition
not stable. To obtain a more stable process, which will denoise the image and
preserve its edges, setting � = 0 will remove the inverse di�usion part, and leave
us with a coherent denoising scheme.

There are a few ways to increase regularity in this PDE-based approach. One
can replace the proposed conductance coeÆcient Eq. (8) by the smoothed one,
Eq. (9). As presented in the algorithm, convolving the metric with a smooth-
ing kernel, before manipulating it, increases the stability of the process. It is
possible also to smooth smaller scales in a noisy signal by preprocessing. As we
enhance the signal afterwards, this smoothing process does not a�ect the end
result that much and enables us to operate in an originally much noisier envi-
ronment. Finally, operating in extremely noisy areas, when we know of the type
of singularity, we can apply more pre-smoothing, and consider only the largest
gradient within the backward di�usion range.

We can substitute the dependency of �̂1 instead of on the gradient, on similar
"edge detectors":
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�̂1 = �̂1(g) (17)

or the smoothed version:
�̂1 = �̂1(G� ? g) (18)

or on the original eigenvalue itself :

�̂1 = �̂1(�1) (19)

A local approach, that adjusts the parameters kf ; kb; w to be of di�erent
values in di�erent segments of the image, is currently investigated.

4 Results and Conclusion

The image feature enhancement procedure developed in the framework of ge-
ometry, incorporates a nonlinear adaptive structure tensor that controls the
enhancement process along gradients. In other words, the structure tensor is
locally adjusted according to a gradient-type measure. Whereas for smooth ar-
eas it assumes positive values, and thus the di�usion is forward, for edges it
becomes negative and the di�usion switches to a backward (inverse) process.
In this way we accomplish both of the conicting tasks of local denoising and
feature enhancement.

In Figure 1 the left eye of the Mandrill image is shown, before and after the
application of the adaptive Beltrami process. It depicts eÆcient denoising of the
retina, with sharp edges somewhat enhanced. In Figure 2 a blurred and noisy
Tulip photo is processed, enhancing the center of the ower while denoising its
background. In a detail enlargement of the same image (the ower's pattern
in Fig. 3) one can see more clearly that the bright curly outline of the leaf is
enhanced (brighter in its center), whereas smooth areas are denoised.
[ For a closer look at the color images, please follow the web link: http://www-
visl.technion.ac.il/belt-fab ] .

Lastly, note that the general scheme can be easily degenerated into a coherent
stable denoising scheme that preserves edges.
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Scientist of the Israeli Ministry of Industrial and Commerce.
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Original Beltrami−tensor−adaptive−local  beta=40  ro=1  iter=70

Fig. 1. Left - original eye image, right - enhanced and denoised eye image. 70 iterations,
[kf ; kb; w] = [0:5; 4; 2] �MAG, � = 1

Fig. 2. Left - original tulip, right - enhanced and denoised tulip. 40 iterations,
[kf ; kb; w] = [0:7; 5; 3] �MAG, � = 1
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Fig. 3. Enlargement of Fig. 2 - a pattern on the tulip: top - original, bottom - enhanced
and denoised image. Note the white ridge at the center of the leaf's outline.
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