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ABSTRACT

An algorithm for estimation of unknown signals corrupted
by colored noise is proposed. The local Karhunen-Loeve
(LKL) basis, derived from the local autocorrelation
function of the noisy signal, is used for optimal signal
representation (in minimum mean squared error - MMSE -
sense). The vector space of the noisy signal is decomposed
by the LKL transform into the corresponding
complementary  orthogonal  subspaces, ie. the
signal-plus-noise and the noise only. The desired signal is
estimated from the signal-plus-noise subspace by
modifying the corresponding LKL components with a
Wiener gain function.

1. INTRODUCTION

The problem of estimation of signals corrupted by colored
noise arises in processing of event related potentials (ERP)
- the signals generated by detectable events. One particular
case of ERP is the evoked potential (EP) - the brain
response to external stimuli. The main obstacles
encountered in extracting a single-trial EP from ongoing
EEG activity are a low signal-to-noise ratio (SNR) and a
high variability of single EP from trial to trial and from
subject to subject.

Methods based on template matching for estimation of a
single EP (e.g. [1]) smooth out features of a particular
single EP. Methods based on modeling of a single EP as a
sum of damped sinusoids (e.g. [2]) require detailed
specification of the linear model and the solution of a hard
parameter estimation problem, and are not necessarily
optimal in any sense. We therefore propose an alternative
method, based on the LKL transform of the measured
signal, and on modification of its components by a Wiener
gain function. This procedure preserves local features of
the signal, it is optimal in MMSE sense and is completely
driven by data.

2. ESTIMATION METHOD

2.1 Basic assumptions

We assume that the noise is: 1) additive, 2) stationary
during the pre- and post-stimulus measurements over a

period of one second (i.e. short-term stationary) and 3)
uncorrelated with the signal. The noise process can be
described by an autoregressive (AR) model of appropriate
order. A noisy signal is first preconditioned by a whitening
filter. This filter is derived from the AR model of the
prestimulus EEG signal.

2.2 Signal subspace approach

The signal subspace approach, popular in the array
processing problems, was used in [3] for speech
enhancement. We use this technique as a framework for
our estimation method and combine it with a local
transform ideas.

Let y=s+n be a distorted noisy signal, where s is a
distorted noiseless signal, and » is a white Gaussian noise.
The covariance matrix of y is given by

Ry =Rs +Rn, (D

where Rn =071, and o? is the noise variance. The
vector space of the preconditioned noisy signals is
decomposed by the KL transform into the corresponding
complementary orthogonal subspaces, i.e. the signal
subspace (that contains both the signal and the noise
components), and the noise subspace (that contains the
noise components only) [4].

Let the eigendecomposition of the covariance matrix Ry
be

Ry = VAyVT > 2

where V' is an orthonormal matrix of eigenvectors of R,,
Ay is a diagonal matrix of eigenvalues of R,
Ay = dlag[ly(l),,l}(K), ;Ly(K'l‘l),...,)yy(M)] ,and K
(K< M) is the signal subspace dimension which is
estimated in advance. The estimation of the signal
subspace dimension can be performed by the minimum
description length (MDL) approach of Rissanen [5]. For
the problem under consideration, this criterion is given by:

M M2
MDL(r) = 1og[%y1‘( > vivly ) +%rlog M, (3)

i=r+l



where v; are the columns of the matrix V. The signal
subspace dimension, K, is determined as the value of
re{l2,..., M} for which the MDL is minimized.

From (1) and (2) we conclude that
A/v(k)=)~§ (k)+0-n2, k=197K9 (4)

where As (k),k=1,...,K are the eigenvalues of the
covariance matrix R, (which is of rank K). The
eigenvalues Ay (K+1),...,Ay(M) are all equal to o7.
Thus, the signal s can be estimated from only the first K
eigenvectors of V. In particular, the desired signal is
estimated with reference to the signal subspace by
modifying the corresponding KL components with a gain
function W:

s=vwrily, (5)

where V' is a KX M matrix of K eigenvectors,
corresponding to the first K eigenvalues of Ay, and W is
a Kx K diagonal matrix of weights that represents the
Wiener gain function. These weights are given by:

we =My (k)=o) Ap(k),k=1,....K. (6)

The above filtering procedure is optimal in the MMSE
sense.

Columns of V form an orthonormal basis for signal
representation. If the Pseudo-KL (PKL) transform [6] is
used instead of the regular KL, (5) takes the form:

§=ywu'ly, (7)

where U is the matrix whose columns form a basis
biorthonormal to that of V.

Finally, the signal § is filtered by the inverse whitening
filter to compensate for a signal distortion caused by the
whitening operation.

23 The local KL and pseudo-KL transforms

The KL transform is known to be the most efficient
coordinate system for representation of signals, under the
MMSE and the minimum entropy criteria. Nevertheless,
features of signals which are localized in the
time-frequency domain are not well represented due to the
global nature of the eigenvectors. To overcome this
problem, the local transform should be used. To perform a
local KL transform for time series representation, we
divide the initial interval into shorter intervals of equal
length which overlap in time [7]. In this case,
time-frequency structure which is similar to the short-time
Fourier transform is produced. The KL transform (or the
PKL transform) along with the filtering procedure are
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Figure 1. Estimation with the KL (upper) and the LKL
(lower) transforms applied to simulated (synthetic) EP
signal. The noise-free, noisy (with white Gaussian noise;
SNR = 0 dB) and estimated signals are denoted by dashed,
dotted and continuous lines, respectively.

applied to the signal at each interval separately. To avoid
edge effects, the signal at a given interval is multiplied by a
window function.

If the time-frequency content of the signal is not uniform,
then time intervals have to be of varying length. The best
basis selection algorithm described in [8] was used for
compression and classification purposes and applied to
ensemble of signals. This algorithm can be adapted for
time series representation and for estimation purposes.
First, the original interval is divided into subintervals of
equal length /1,...,7/x . Then, starting from the left, two
adjacent intervals are examined to see if it is worthwhile
(under a particular criterion) to merge them. For instance,
if two subintervals I;,/;+1 are deemed worthwhile to
merge into the single interval /;;+1, then the next step is
to check if it is worthwhile to merge /7, +1 with [+2.
Otherwise, the next step is to check the intervals 7;+1,/;+2,
and so on.

Let Ay =(Ay (1),..., A (M) be the set of eigenvalues
of the covariance (autocorrelation) matrix of the signal on
the interval 7,. Furthermore, let them be arranged in a
descending order. The following nonlinear functional can
be used as a measure of inefficiency of the subinterval 7, :



K
u(h, , K= X (A, (k)" (8)
k=1

where K < Mj is the number of features to be used (in our

case, the signal subspace dimension), and 0<p<l. Then,
for the intervals [I;,I;+1 and I;;+1 we check, if
U, Ky <pu({Ay , Aiyw }, K) . If this inequality holds,

then the interval 1/ j+1 is chosen and V; Uy, 1. are

Lj+1 >
calculated as global biorthogonal KL bases for /;.;+1 (i.e.
Vi, =Vi0,Ul; 14 =Ul ). If it does not, then two
intervals I, and [;+1 are chosen, Vi, 1. =Vi, @Vi.,
Ul 10 =U @Ur, and Ay o150 = {A;, 4,4} . Note that
if the regular KL transform is used instead of the PKL,

then U=V;. The above algorithm of the best basis selection
is similar to the one used in the Wavelet Packets algorithm.

After the LKL basis is constructed, the signal is
represented by the transform domain coefficients, and the
above estimation procedure is applied to this
representation. In this case, the effect of the Wiener
filtering procedure is local, since it is applied to the local
coefficients.

2.4 Estimation of the local autocorrelation
matrix

The autocorrelation (covariance) matrix can be estimated
in different ways. The simple autocorrelation estimate is
computed from samples y;, j=0,...,J-1 via:

J—m-1

A (m)=— > y(Ny(j+m),m=0]1,...,N—1. ©)
Jj=0

The total number of samples J, from which the
autocorrelation matrix is estimated, is chosen to be smaller
than the interval during which the signal is assumed to be
stationary. On the other hand, the noisy signal subspace
dimension N must be sufficiently large, since the
improvement in SNR is proportional to N/K, where K is the
noise-free signal subspace dimension.

A slightly better estimate can be achieved by taking a
similar approach to that taken by the running
autocorrelation method. Suppose that J=PL with P € Z'
and L = N . In this case, the sum in (9) can be split into P
sums, and the estimate of the autocorrelation matrix is

1 P
7 (m)=;Zakr;.,k(m),m=o,1,...,N—1, (10)
k=1

where
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Figure 2. Estimation with the LKL transform applied to
simulated (synthetic) EP signal. The noise-free, noisy
(with colored Gaussian noise; SNR = 2.5 dB) and
estimated signals are denoted by dotted, dashed and
continuous lines, respectively.

L—m-1
1 Y v+ (k=) LYy(i + (k= 1)L +m)
i=0
, (11)

and {a;} are the weights (all being equal to 1 in the
simplest case). To perform the weighting operation we use
the following formula for calculating a;:

Fyi(m) =

b(1-b6) "0 p<lpr2]
Jk=[P/2] (12)
b(1-b) "D kST pr2],

Clk:]

where b is a “forgetting factor” and P is an odd number.
Note, that the value £ = rP/ 2_| corresponds to the

current frame of the signal, for which the LKLT is
calculated.

2.5 Estimation algorithm summary

The estimation procedure (using the orthonormal KLT)
can be summarized as follows.

Preconditioning: whiten the noisy signal.

STAGE I: build LKL basis

Step 1: Decompose the global interval [/ of a
preconditioned noisy signal y into subintervals of equal
length which overlap in time: [,....Iy (bottom level
branches of the binary tree representation)

Step 2: For every /; above the bottom level and for its two
children /, /; , calculate the standard KL bases V), V3, V),
respectively.

Step 3: Calculate according to (8) the inefficiency measure
u for the subintervals 1, /i, ;.

Step 4: Select the best /ocal basis B, for /;:



If p(4), p) < p({Ak, i3, p),
Then choose the global over /; PKL basis: B, = V}, {4}

Else Bj =V, @Vl A= A Ay
Step 5: Repeat Step 2 - Step 4 for higher level branches of
the binary tree

STAGE II: Apply the signal subspace approach, along
with the Wiener filtering, to the signal in the LKL domain.

Postconditioning: Apply an inverse whitening filter
3. RESULTS

The algorithm was tested and its performance validated
using natural and simulated signals. The real data was
sampled from visual EP. The simulated EEG was
generated as an AR process of order 6, derived from the
AR model of the measured prestimulus EEG signal. The
noiseless EP signal was simulated as a stationary
deterministic process by a sinusoidal model of order 17,
derived from the averaged EP signal. A single-trial EP was
simulated as a sum of simulated EP and EEG signals with
the desired SNR. 100 such statistically independent
single-trials were generated. Figure 1 presents the results
of the estimation procedure for a simulated signal, masked
by a white Gaussian noise with SNR=0 dB, using the KL
and the LKL transforms. The advantage of the LKL over
the KL transform for processing signals with time-varying
spectrum is evident: the KL transform smoothes out local
features, while the LKL does not. Figure 2 presents a
typical result of the estimation procedure, applied to a
simulated signal masked by a colored Gaussian noise with
SNR=2.5 dB, using the LKL transform. A comparison of
two estimation procedures is presented in Table 1. The
first is based on the wavelet denoising with ‘db9’ and
‘db1’ Daubechies wavelet families. The second utilizes the
LKL transform along with the Wiener filter. The denoising
procedure based on the ‘db9’ basis gave the best results.
The LKL transform along with the Wiener filter gave
slightly poorer results than ‘db9’, but considerably better
than the Haar basis. When the Wavelet Packet algorithm
was used, the best suited family of wavelets was chosen
using a priori knowledge about the noiseless signal. In
contrast, no a priori  knowledge was used in the
LKL-transform-based algorithm.

4. DISCUSSION

The proposed method improves the signal-to-noise ratio of
a noisy signal without resorting to averaging or requiring
any reference signals. The LKL basis provides an
additional degree of freedom in representation of signals,
as compared to the KL basis. Further relaxation of

Basis SNR gain, dB Note
Haar (‘db1”) 32 ‘worst’ basis
Daubechies (‘db9”) 5.96 best suited basis
LKL (+Wiener) 5.9 no a priori
knowledge

Table 1. Comparison of LKL vs. Wavelet Packet

efficiency.

constraints can be achieved by using the PKL basis of
non-orthogonal functions [6]. The natural extension of the
proposed method to the multivariate case should be useful
in the analysis of multichannel signals. In this case, spatial
distributions of a signal and of noise can impose additional
constraints on the derivation of an appropriate
spatio-temporal filter. This subject is currently under
further investigation.

Although we developed the proposed method primerily for
detection of single-trial evoked potentials, the general
framework is most suitable for processing a wide variety of
signals embedded in colored noise with low SNR and for
signals corrupted by white noise with as low as 0 dB SNR.
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