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ABSTRACT

A classical technique for reconstruction of Emission
Tomography (ET) images from measured projections is based on
the maximum likelihood (ML) estimation, achieved with the
Expectation Maximization (EM) algorithm. We incorporate the
wavelet transform (WT) and total variation (TV) based penalties
into the ML framework, and compare performance of the EM
algorithm and the recently proposed conjugate barrier (CB)
algorithm. Using the WT- and TV-based penalties allows one to
embed regularization procedures into the iterative process. In the
case of the WT-based penalty, we impose a subset of wavelet
coefficients with a desired resolution on the objective function. It
appears that the CB algorithm outperforms substantially the EM
algorithm in penalized reconstruction. Properties of the
optimization algorithms along with WT- and TV-based
regularization are demonstrated on image reconstructions of a
synthetic brain phantom, and the quality of reconstruction is
compared with standard methods.

1. INTRODUCTION

ET is a medical imaging technique that enables one to quantify a
distribution of radioactivity within the body, and, as such, it is
useful in detection and identification of pathological tissue. In
this technique, radioactive tracers, injected into the body of a
patient, emit photons, which are detected in distinct detector
pairs, or bins. By counting the number of photons detected in the
various bins, one measures the projection of the tracer
distribution at different angles. A classical technique for the
reconstruction of 2D and 3D ET images from measured
projections is based on the maximum likelihood (ML)
framework [1]. Utilizing particular properties of the Poisson
process leads to the Expectation Maximization (EM) algorithm
for ET reconstruction [2]. This algorithm provides reliable
reconstruction results with high resolution. Alternatively, the ML
reconstruction can be performed by the recently proposed
conjugate barrier (CB) algorithm, which has several advantages
over the EM.

Furthermore, in practice, it is desirable to carry out
reconstruction on low statistics (i.e. noisy data). Under these
circumstances, the maximum likelihood estimate at highest
resolution contains high frequency noise even though the
original image is known to be relatively smooth. Therefore,
reconstruction of images from their projections requires some
kind of regularization that usually represents a trade-oft between
accuracy and resolution.

Ideally, a lower resolution reconstruction should be applied to
regions with no edges. On the other hand, keeping higher
resolution components preserves local features in the
reconstructed image. This provides desired regularization, so that
a trade-off between increasing resolution and noise suppression
is achieved. Such a strategy requires some prior knowledge of

edges’ location, which can be obtained from another imaging
procedure (e.g. X-Ray tomography). In [5]. the authors assumed
that this prior information is available, and used this information
to build a penalty template in the wavelet domain. In practice,
such prior knowledge is rarely available. It was shown recently
that the TV method appears to be one of the most successful
regularization approaches to ill-posed problems (see for example
[6] and [7]). The TV penalty represents kind of a weak prior
about the object structure. In particular, it assumes that the
underlying image contains edges, which is usually the case for
medical images.

We utilize the wavelet transform (WT) and the Total Variation
(TV) functional in our penalties, and show that they affect
reconstruction in similar ways. The desired regularization is
accomplished in a natural way; using either the WT- or the
TV-based penalties allows one to embed regularisation
procedures into the iterative process. This task is accomplished
by either 1) penalizing for the lack of sparsity of the gradient of
the reconstructed image, in the case of the TV-based penalty, or
2) imposing a new set of parameters on a subset of wavelet
coefficients corresponding to desired resolutions, and penalizing
for the lack of sparsity only this subset, in the case of the
WT-based penalty.

It turns out that the penalized CB algorithm achieves the best
trade-off between accuracy and resolution. In particular, it keeps
improving the contrast while lowering the noise level with
iterations. To our knowledge, such a result was not achieved
with any of the existing ET reconstruction techniques. The
WT-based penalty produces more natural reconstructed images
at the earlier iterations, than the TV-based penalty, while the last
provides the best trade-off between accuracy and resolution.

2. ML RECONSTRUCTION OF PET IMAGES

2.1. EM algorithm

L. Shepp and Y. Vardy [2] pioneered the ML image
reconstruction in PET by application of the EM algorithm.

Let the total number of photons detected in each bin be y(b),
b=1,..., B. Let the body be divided into voxels (or pixels), and
the number of photons generated independently within each
voxel be n(v), v=1,..., V. Generation of photons in each voxel

is described by the Poisson process, characterized by the
expected value of photons A(v).

Let p(v,b) denote the probability of the event that a photon
emitted from voxel v is detected in bin b, forming a matrix with
V’xB entries. The probability matrix values depend on various
physical factors such as scanner geometry, detector efficiency,
and the composition of the body being scanned. The issue of
computing p(v,b) will be discussed later.



The log-likelihood function for the measurements y(b) is given
by

L(4) = Zﬂ(V)P(V)—%y(b)logZﬂ(V)p(vab)» 6]
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where 2 = {A(v), v=1,..., V'} is the set of unknown parameters,
and p(v) = X p(v, b) is the probability that an emission from v
v

is detected.

To solve (1), the EM algorithm was applied to the PET
reconstruction problem leading to the following formula
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for iteratively approximating a maximizer of L(X), where k
denotes the k-th iteration.

2.2. Conjugate Barrier (CB) algorithm

The CB algorithm, recently proposed by Ben-Tal and
Nemirovski [2], belongs to the general class of the Gradient
Descent algorithms.
Let the function % be defined as:
41, AeA
h(A) =
+o, 1eA,

where |||| » denotes the /, norm, and A is the domain of valid
values of A. In our setting, wherein 4 are the values of normalized
image intensity

A={2eR"| 220, 3 a(v) = p}.

where p is the total number of detector counts.
Let 4" be the so-called conjugate function of /:
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where ¢ is called the conjugate image, so that £ 1 e R” . The

initial value gp can be initialized arbitrary (we use a matrix of

ones).

The following two iterative steps summarize the CB algorithm:
step 1: A = vt
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where VL(/ik ) is the gradient of the Log-likelihood function at
the k-th iteration, y* is a positive step size at the k-th iteration, 5’
is a small positive constant and values of 1° are initialized with
the value 1/V. (For more details see [2]).

The CB algorithm has several advantages over the EM: 1) its
ordered sets version always converges 2) the rate of convergence
is known and independent of the dimension of the problem, 3)

the error bound is of order 0(wllogV / K) , where K is the

number of iterations. In addition, its computational cost is
comparable to the EM.

3. TOTAL VARIATION AND WAVELET PENALTIES

As was mentioned before, natural PET data are usually very
noisy due to a short acquisition time and various scatter effects.
Exact minimization of the log-likelihood function of such noisy
data leads to a very noisy reconstructed image. In such cases,
various penalty functions reflecting smoothness of the noise-free
image or other prior information are used in order to improve
quality of reconstruction. In this case, penalized log-likelihood
function takes the form

L,(A)=ZAv)p() - %y(b) log 2 A(v)p(v.b) + tH(A), (4)

where H(2) is a penalty function and x is its weight parameter,
which can be chosen based on the estimated signal to noise ratio
(in this paper, we choose it experimentally).

The gradient of the penalized log-likelihood function is:

B b b
VLp(ﬂ(v)) = p(v) - ZM

AP0 b)

+ uVH(A) (5)

In the case of the CB algorithm, the update of the conjugate
image in the second step in (3) is performed according to the
gradient of the penalized log-likelihood function (above).

The corresponding iterative formula for the penalized EM
algorithm is

y(b)p(v, b)

k
y B
SN - :
p(v) + uVH(A) b= zﬂk(v. (v, b)
v'=]

lkﬂ(v) _

Yy (6)

Several penalty functions were proposed in the literature (see for
example [3], [4]). These are usually applied in the original image
domain. In this work we propose a new method that utilizes
penalty function, defined in the wavelet domain. Our penalty
function is intimately related to the Total Variation method.

3.1 Total variation penalty

In our study, we use the following formula for the TV penalty
T =%, |V/1(v)|. Since the expression for the TV penalty

(above) is non-differentiable in locations where |V/1(v)| =0, we

replace it with the approximation of the norm of gradient for a
2D image A(v):

Hyp (A) = A2 0) + 2,0 + 71,

where 1,(v) and A/(v) are derivatives in directions x and y,
wherein the index v in a discrete 2D case is a pair (iy), i.e.
pixel’s coordinates, and # is the parameter which controls the
smoothness of the penalty. The above approximation is crucial
for smooth optimization methods. The CB algorithm is designed
for non-smooth optimization, and it can work even for #=0.

It can be shown [11] that the gradient of Hyy is
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3.2 Wavelet-based penalty

Let @ be a matrix constructed from orthonormal wavelet
basis vectors, and let the discrete image 4 be represented by
this basis as follows:

A= Qa,

a=a" i
(For detailed discussion of the wavelet transform, see [10]).
Suppose that the wavelet coefficients ¢ of the image are known
apriori to be sparse, i.e. only a small (unknown) part of them
significantly differs from zero. Under this assumption, the sum
of the absolute values of the coefficients (i.e. the /, norm)
represents a natural penalty, which forces the coefficients of the
reconstructed image to become sparse. Such a penalty is very
popular in denoising and compression problems (see for example
[8]). Suppose further that only a subset of the coefficients is
known to be sparse. For example, for 2D images, the detail
coefficients usually are sparse, while approximation ones are
quite ‘dense’. In this case, it is reasonable to penalize only detail
coefficients, or even only a subset of the detail coefficients at
high resolutions.
Since edges ‘live’ at high resolutions, in our experiments we
penalize the detail coefficients of the WT at the highest
resolutions by constructing the penalty:

Hyy = 2 e]. ®)
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where S is the subset of the coefficients at the desired

resolutions. Let ¢ = {cs}veq, and its norm is approximated, as

before, by |c|=1/c2 + ¢ with regularization parameter {

Taking into account that ¢ = @Sﬂ,, where matrix @y is

constructed from the wavelet basis vectors indexed on S, the
gradient of the wavelet-based penalty can be written as
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where @; is the adjoint of @ (which coincides with @; in the
case of orthonormal wavelets).

In the case of the Haar wavelet basis, calculation of scalar
products of the image with basis functions at the highest
resolution is essentially equivalent to the calculation of gradients
of the image. Therefore, the TV-based penalty can be considered
as kind a WT penalty, in a particular case wherein the Haar
coefficients at the highest resolution are penalized. Both, the sum
of absolute values of corresponding subset of wavelet
coefficients and the sum of absolute values of gradients,
represent a measure of sparseness.

4. EXPERIMENTAL RESULTS

We carried out tests with the Shepp-Logan phantom; a model
used in tomography for evaluating properties of reconstruction
algorithms. The phantom was discretized into a 128x128 image.
We slightly moditied it by adding a hot spot (Figure 1), which
we used for calculation of the contrast and noise suppression
properties of reconstruction algorithms. Projection data were
simulated as follows: we applied the radon transform to the

phantom, using 60 angular and 185 radial samples of
projections. These projection data were used as a mean rate of a
Poisson process. Random samples of projection data were
generated according to the above Poisson process, arriving at
overall 1.2¢” detector counts.

We use the following parameters in order to determine which
algorithm provides the best trade-off between contrast and noise
control. The coefficient of variation (CV) is defined as the ratio
of the standard deviation to the mean-value of the image over
some region of interest (ROI). The contrast recovery (CR) for
hot lesions in a cold background is defined as

H/C-1
-1
where C and H are means taken over cold and hot ROI,
respectively, and H,,. / C,.. is the real ratio of hot lesion to the
background in the phantom.
To illustrate the contrast improvement and noise suppression
properties of plain, TV- and WT-based penalized versions of EM
and CB algorithms (we will refer to them as EMTV, EMWT,
CBTV, CBWT, respectively), we compare their plots of CV
versus CR with those characteristics of plain EM and CB
algorithms (Figure 2). Each algorithm was iterated 50 times, with
the penalty parameter 4 = 0.005. Generally speaking, when
comparing two such curves, the lower curve achieves a better
contrast-to-noise-intensity trade-off. It is clear that, when
comparing plain versions of the algorithms, the CB has no
advantages over the EM. Moreover, the EM algorithm achieves
the same contrast as the CB at the earlier iteration. In contrast,
when penalties are applied, the CB outperforms the EM by
achieving a much better contrast-to-noise-intensity trade-off,
although the CB versions achieve the same contrast as the
corresponding EM versions slightly later. TV-based penalized
versions of EM and CB algorithms outperform slightly the
WT-based ones. The remarkable result is that, in the case of the
CBTV algorithm, the curve is monotonically decreasing. This
means that both, noise suppression and contrast, are improved
with iterations.
In Figure 3, we show examples of images reconstructed by CB,
CBWT and CBTV. The TV-based penalty provides a better
contrast to noise trade-off than the WT-based one, but the
reconstructed image looks more natural and artefacts-free when
the WT-based penalty is applied. More experimental results can
be found in [11].
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5. CONLUSIONS

Numerical results and comparisons, concerning convergence
properties and the quality of reconstruction of the proposed WT-
and TV-based penalized algorithms versus plain algorithms
indicate that using either WT or TV penalty significantly
improves the contrast-to-noise trade-off. Penalties are in
particular useful when they are applied to the CB algorithm,
which outperforms the EM for all kinds of penalties and
parameters. The combination of the CB algorithm with the TV
penalty achieves the best contrast to noise trade-off, and, most
importantly, the CBTV algorithm improves the contrast and
suppresses noise at the same time, monotonically with increasing
number of iterations. Our current research is concentrated on
improving the performance of the WT-based algorithm, which,
we feel, has more flexibility than the TV-based one.



6. REFERENCES

[1] L. Shepp, Y. Vardi, (1982). Maximum likelihood
reconstruction for emission tomography. /IEEE Med. Imaging, 1,
113-122.

[2] Ben-Tal, A. and Nemirovski, A. (1999). “The conjugate
barrier method for non-smooth convex optimization”, TR #5/99,
Oct. 1999, Minerva Optimization Center, Technion.

[3] J. A. Fessler, N. H. Clinthorne, W. L. Rogers. “Regularized
emission image reconstruction using imperfect side
information”. Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., vol.
3, pp. 1991-1995, 1991.

[4] D. F. Yu, J. A. Fessler. “Three-dimensional non-local
edge-preserving  regularization for PET  transmission
reconstruction”. Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf.,
2000. To appear. (oral)

[5] P. Kisilev, M. Jacobson, Y.Y. Zeevi. Utilizing Wavelet
Transform for ML Reconstruction in Positron Emission
Tomography. CCIT Report #522, Jan. 2001.

[6] T. F. Chan, C.K. Wong. Total Variation Blind
Deconvolution, /EEE Transactions on Image Processing, to
appear.

[7] E. Jonsson, S. Huang and T. Chan, Total Variation
Regularization in Positron Emission Tomography, TR 9848,
November 1998.

[8] S. Chen, D. Donoho, and M. Saunders. Atomic
decomposition by basis pursuit. 1996.
http:/www-stat.stanford.edu/~donoho/Reports/.

[9] P.Kisilev, M. Zibulevsky, and Y.Y. Zeevi, B. Pearlmutter.
Multiresolution Framework for Blind Source Separation. CCIT
Report #317, June 2000.

[10] S. Mallat, 4 Wavelet Tour of Signal Processing, Academic
Press,1998.

[11] P. Kisilev, M. Zibulevsky, Y.Y. Zeevi. Total Variation and
Wavelet Regularization in Emission Tomography. CCIT Report
#531, Jan. 2001.

Acknowledgement. Research supported in part by the
Ollendorff Minerva Center, by the Fund for Promotion of
Research at the Technion and by the Israeli Ministry of Science.

Figure 1. Modified Shepp-Logan phantom.
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Figure 2. Coefficient of Variation versus Contrast Recovery; 50
iterations.

CBaly.; Ang.res. 3 deg; Peralycode =0

CBalg.: Ang.res. 3 deg: Penalty code =0

2 4 60 80 10 120 20 40 60 80 100 120
Heration50: MSE = 0.083783, CR =0.50921, CVar =0.13421 Heration 50: MSE =0.083783, CR =0.50921, CVar=0.13421

CBealg.; Ang.res. 3deg; Penaltycode =3, mu=0.005 CB-alg.; Ang. res. 3deg; Penaltycode =3, mu=0.005

20 40 60 8 0120 2 4 60 80 100 120
teration 50: NISE =0.10435, CR=0.36536, CVar =0.026219 lteration 50: MSE =0.10435, CR =0.36536, CVar=0026219

CBaalg.; Ang.res.3deg; Penalycode=1,mu=0.005 CBalg.; Ang.res. 3 deg; Penalycode =1, mu= 0005

) L
0120 0 a 60 & 100 120
Keration 50: WISE =0.087536, CR =035374, CVar =0.0092528 Heration 50; WISE =0.097536, CR=0.35374, CVar = 0.0092528

Figure 3. Image and its two slices reconstructed by the CB
(upper raw), CBWT (middle raw), and CBTV (lower raw).




