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ABSTRACT 

 
We consider detection of high-energy photons in PET 
using thick scintillation crystals. Parallax effect and 
multiple Compton interactions in this type of crystals 
significantly reduce the accuracy of conventional 
detection methods. In order to estimate the scintillation 
point coordinates based on photomultiplier responses, we 
use asymptotically optimal nonlinear techniques, 
implemented by feed-forward neural networks, radial 
basis functions (RBF) networks, and neuro-fuzzy systems. 
Incorporation of information about angles of incidence of 
photons, significantly improves accuracy of estimation. 
The proposed estimators are fast enough to perform 
detection, using conventional computers. 
 
 

1. INTRODUCTION 
 
Detection of high-energy photons emitted as the result of 
positron decay is one of the most important low-level 
stages in PET imaging. In this paper we consider a 
detector based on the Anger scintillation camera [1]. 
Incident high-energy gamma quanta, generated due to 
positron decay produce scintillation effect in the crystal. 
As the result, a shower of low energy photons in the 
visible and UV spectra is emitted. These photons are 
collected by an array of photo-multipliers (PMTs), 
optically coupled to the scintillation crystal, and invoke 
electric impulses in them. The PMT responses are 
utilized in estimation of the scintillation point 
coordinates.   

A non-collimated Anger camera, based on thick 
crystals with high photon penetration depth such as 
NaI(Tl), is considered in this work. Application of such 
thinck crystals in PET scanners is desirable, due to their 
low cost and very high light output; they were previously 
used primarily in gamma ray astronomy [5].  

The majority of existing detection algorithms are based 
on centroid arithmetic, usually combined with correction 
maps [2]. Their application appears, however to be 
problematic in the case of thick crystals due to significant 
parallax observed at large radiation incidence angles. 

Tomitani et al [11] proposed an iterative maximum 
likelihood algorithm for position estimation and depth 
encoding in thick scintillation crystals, in order to 
compensate for the parallax effect. However, an iterative 
approach necessitate extensive computations that prohibit 
real-time implementation. 

Delorme et al [6] and Clément et al [4] have 
implemented artificial neural networks in a depth-
encoding scintillation detection. The approach is flexible 
and offers advantages over iterative algorithms. 

The depth-encoding approach leaves several problems 
open. First, the optimal tradeoff between planar and 
depth resolution. Second, multiple Compton interactions 
make the conception of "depth of interaction" ambiguous. 

This work presents a solution for these problems, 
incorporating side information on the photon incidence  
angle into the process of position estimation. We use 
localized, asymptotically optimal, nonlinear estimators, 
implemented by feed-forward neural networks, radial 
basis functions (RBF) networks, and neuro-fuzzy systems. 
As a byproduct, we get accurate position estimation over 
the entire area of detector including the edges (similar 
phenomenon was observed by Mester and Zibulevsky [9] 
in SPECT). This is difficult to obtain with centroid 
arithmetics algorithms. We present a comparison of 
algorithms on a Monte Carlo simulation and discuss the 
prospects for practical implementation. 
 
2. PARAMETRIC ESTIMATION USING NEURAL 

NETWORKS 
 
Scintillation detector can be considered to be a 
complicated non-linear stochastic system that maps the 
photon line of flight (LOF) into a vector x of PMT 
responses. The stochastic aspects of this mapping are 
related to the random nature of the following factors: 

• position of the fist interaction within the crystal  
• possible multiple Compton interactions 
• number of visible/UV photons in each 

interaction, registered by PMTs  
Statistical effects of these factors depends heavily on 

the incidence angle, which can be estimated with 



reasonable accuracy using approximate LOF coordinates, 
measured by a pair of opposite detectors (obtained, for 
example, from the Anger algorithm). 

Given the incidence angle, LOF is defined by planar 

coordinates ( )1 2,=y y y  on the surface of the crystal. 

Therefore, for every incidence angle, one can implement 
an optimal nonlinear estimator of y  of the form 

( )ˆ ; WΦ=y x , where ( ); WΦ x  is a family of functions, 

parameterized by the vector of parameters W . 
A reasonable criterion for estimator optimality is the 

expectation of some error function ( )( ){ }; Wε Φ −x yE , 

for example, the expected squared error 

( ){ }2

2
; WΦ −x yE . 

We are interested in forms of ( ); WΦ x , that possess 

the property of a universal approximator; namely, when 
the number of parameters W  is large enough, any 

bounded function ( )xf  can be approximated with given 

accuracy over a bounded domain by an appropriate choice 
of W .   

Given the PMT responses to a set of known LOFs 
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set), we find such W , that minimizes the mean- squared 
error (MSE) on the training set, i.e: 
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This process is referred to as training.  When the 
training set is sufficiently large, the MSE approximates 
the expected squared error with any desired accuracy. 
Under such conditions, a universal approximator 

( ); WΦ x  with sufficient parameters is capable of 

producing the optimal non-linear estimation. 
In this work we used three type of universal 

approximators implemented as artificial neural networks 
(ANNs): 

1. Multi-layer perceptron (MLP) [7]: 
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where L  is the number of layers; lN  is the number of 

neurons in each layer; n
ky  and { }, ,,xk n k nb  are the output 

and the parameter vector of k-th neuron in n-th layer, 
respectively; x  and Φ  are the network input and output, 

respectively; ϕ  is some non-linear function, usually of a 

sigmoidal type. 
2. Radial basis function (RBF) network [7]: 

( )( );Φ β σ +∑ x,c
N

k k k
k=1

= w d b , 

where N  is the number of neurons in the non-linear 

layer; { }σ, xk kw ,b,  are the network parameters; β is a 

Gaussian with controllable variance, σ k , and mean, kc .  

3. Neuro-fuzzy system (NEFPROX) [10]. This method 
appears to be more efficient in both training and the 
complexity of the network itself. NEFPROX is used in 
this work along with MLP and RBF networks. 

 
3. TWO-LEVEL SCHEME USING LOCALIZED 

ESTIMATORS 
 

In this paper, we propose a more practical scheme 
based on a combination of coarse and fine estimators. The 
core of the detection algorithms is a set of fine estimators, 
implemented as neural networks. Fine estimators are 
trained on scintillation events in different (possibly 
overlapping) regions and at different incidence angles. 
Such a combination of estimators allows reduction in the 
size of each network and accelerates the training.  

The sets of neural networks are trained independently 
on simulated (or on measured) PMT responses resulting 
from scintillation events in appropriate regions and 
angles. Incidence angle is estimated using additional 
information on the coincident event in the opposite 
detector.  

 
Fig. 1.  Block diagram of a practical ANN-based photon 
detection algorithm: estimation of scintillation coordinates in 
detector 1 using side information from detector 2. 

 
The use of ANNs also makes possible the calibration of 

the detection algorithm. The distortions of an Anger 
camera can be considered to be comprised of 
characteristic and specific distortions. Characteristic 
distortions are typical of a camera of a certain design, 
resulting from the detector geometry, scintillation crystal 



material and other factors related to the detector design. 
Specific distortions, on the contrary, are typical for a 
particular camera and may vary from camera to camera of 
the given design, resulting from manufacturing 
inaccuracies, the age of PMTs, etc. 

Training the ANNs on a “characteristic” detector takes 
into consideration only the characteristic distortions and 
will probably provide mediocre results if applied “as is”, 
due to uncompensated specific distortions. Compensation 
for such imperfections is performed by tuning up the 
networks. 
 

4. SIMULATIONS 
 
In order to test the proposed approach and compare it 
with other algorithms, we performed a Monte Carlo 
simulation of ray tracing and gamma quanta interaction 
in a scintillation detector.  The simulation was performed 
using a slightly modified version of TRIUMF detector 
modeling platform introduced by Tsang et al [8] in 1995.  

A model of a NaI(Tl) scintillation crystal of size 
210×210×45 mm, separated with a 20 mm glass light 
guide was simulated. The detector consisted of seven 
circular PMTs, each of radius 30 mm, with inter-tube 
gaps of 10 mm. The inter-tube area was assumed to 
consist of an ideal light-absorbing material. 

Three tests were performed in order to analyze the 
effectiveness of different photon detection algorithms in 
so far as the effective detection region and the parallax 
effect. The effect of parallax was tested in a central region 
of the detector, for a large incidence angle (30°). A 
comparative test, with normal photons in a central region, 
was performed.  
 

TABLE I 

Test I: Root mean-squared error (mm), incidence angle: 0º. 
 

TABLE II 

 
Test II: Root mean-squared error (mm), incidence angle: 30º. 

 
 

TABLE III 

 
Parameters of error distribution at a single point, incidence 
angle: 0º. All values are given in mm. 

 
TABLE IV 

 
Parameters of error distribution at a single point, incidence 
angle: 30º. All values are given in mm. 
 

 
Fig. 2.  Error histogram of ideally unbiased Anger algorithm 
(dashed) and MLP (solid) at a single point. Incidence angle: 0º. 
X-axis represents RMS error in mm. 

 
Fig. 3.  Error histogram of ideally unbiased Anger algorithm 
(dashed) and MLP (solid) at a single point. Incidence angle: 
30º. X-axis represents RMS error in mm. 

 
In addition, utilization of the detector area and the 

influence of edge effects were tested in a distant region 
with normal photons [3]. 



The following algorithms were compared: the standard 
Anger algorithm with ideal unbiasing, local linear 
regression, MLP (with 15 neurons), RBF (with 50 
kernels) and NEFPROX. 

Tests were performed on sets of simulated data, using a 
5×5 uniform grid and 1000 photons at each point. 
Training sets were constructed from simulated data on a 
30×30 uniform grid in the appropriate region, where 100 
photon incidences were simulated at each point of the 
grid in order to obtain reliable statistics. Energy 
discrimination, by removing about 25% of events below 
the photopeak from both training and test sets, was 
performed.  

Tables I and II show the simulation results. X-axis 
resolution was used as the comparison criterion. Even an 
ideal, unbiased Anger’s algorithm (unachievable in 
practice) appears the worst method in all tests. Local 
linear regression, which does not appear to be the best 
among the compared adaptive estimation algorithms, 
yields in all tests better results than Anger’s algorithm. 
Non-linear estimation, using MLP and RBF networks, 
shows the best results in all tests. NEFPROX appeared 
less accurate, but resulted in significantly faster training 
and more computationally efficient network. 

Tables III, IV and Figs. 2, 3 depict error distributions 
of Anger algorithm and MLP, compared at a single point 
on the detector. The MLP has significantly smaller bias 
and standard deviation, compared to the classical Anger 
algorithm. Our studies show that error distributions 
produced by ANN estimators tend to have smaller 
FWHM:standard deviation ratio compared to that of the 
Anger algorithm; this could result in additional image 
resolution improvement [3]. 
 

5. CONCLUSIONS 
 
The proposed method of photon detection in PET, based 
on artificial neural networks, incorporates information 
about the incidence angle in the detection algorithm. This 
approach is capable of estimating directly the photon line 
of flight, given PMT responses from a pair of detectors. 
The proposed algorithm allows compensation for the 
parallax effect, it reduces the resolution degradation due 
to multiple Compton scattering and increased effective 
detection area. Our approach outperforms conventional 
detection algorithms in simulation studies.   

In practice, a different version of the algorithm can be 
implemented. In particular, the neural networks can be 
trained over small regions of the detector on a range of 
angles with given angular resolution, and be fed with the 
angle as additional network input.  
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