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ABSTRACT 
 
We address the problem of Blind Source Separation (BSS) of 
superimposed images and, in particular, consider the recovery of 
a scene recorded through a semirefective medium (e.g. glass 
windshield) from its mixture with a virtual reflected image. We 
extend the Sparse ICA (SPICA) approach to BSS and apply it to 
the separation of the desired image from the superimposed 
images, without having any a priory knowledge about its 
structure and/or statistics. Advances in the SPICA approach are 
discussed. Simulations and experimental results illustrate the 
efficiency of the proposed approach, and of its specific 
implementation in a simple algorithm of a low computational 
cost. The approach and the algorithm are generic in that they can 
be adapted and applied to a wide range of BSS problems 
involving one-dimensional signals or images. 
 

1. INTRODUCTION 
 
The phenomenon of a virtual image, being semireflected by a 
transparent medium, situated along the optical axis somewhere 
between the imaged scene and the observing point, and 
superimposed on the imaged scene, is typical of many optical 
setups. It may arise, for example, when photographing objects 
behind a glass window or windshield [9].  

Approaches to reconstruction of the virtual and the real 
images, based on polarimetric imaging, have attracted attention 
during the last few years [4], [8]. Incorporation of a polarizer 
into the optical system is a common photographic technique 
allowing suppression of semireflected virtual images [9]. Several 
designs of such cameras, e. g. a system equipped with a liquid 
crystal polarizer [6], were recently proposed.  

However, in most cases, the polarizer is not capable of 
removing the reflected component completely [5], [9]; even 
when the polarizer is oriented to minimize the reflected 
component, the virtual image is still visible. 

Several signal post-processing approaches were proposed in 
recent studies, however, they rely mainly on motion, stereo and 
focus, and assume that the real and the virtual objects lie at 
significantly different distances from the camera [3], [10]. Other 
methods assume some knowledge about the scene, such as the 
semireflector angle and refraction index, which makes them 
hardly feasible in the general case [9]. 

Farid and Adelson [5] proposed to use an analytic version 
of independent component analysis (ICA) for blindly separating 
the reflected and the transmitted images. Such an approach does 
not require any prior knowledge regarding model parameters, 
and offers better feasibility in real-world applications. The 
proposed method is not general enough in that it is applicable in 
case having only two sources. On the other hand, iterative 

approaches such as the information maximization (Infomax) 
algorithm [2] are relatively slow, although they can handle any 
number of sources, provided a sufficient number of mixtures are 
available. 

It has been recently demonstrated by Zibulevsky et al [11], 
[7] that the assumption of sparseness is very powerful and can 
significantly improve the accuracy and the computational 
efficiency of existing ICA algorithms. In addition, sparse 
decomposition allows using simple “geometric” algorithms to 
separation of mixed data. We adopt the Sparse ICA (SPICA) 
approach and show that it affords effective separation of a 
transmitted image from superimposed reflections [1]. 
 
2. THE BLIND SOURCE SEPARATION PROBLEM 

 
In a typical BSS task, N mixtures are observed or received. 

Each of these available signals (or images), is assumed to be 
generated by a linear mixture of unknown sources, where the 
number of sources is usually assumed to be known to the 
observer, but this condition can be relaxed. Thus, an N-
dimensional vector of observed signals is generated by the 
product of an unknown N M×  mixing matrix A and an M- 
dimensional vector of unknown source signals. The task is to 
estimate the mixing matrix and then recover the source signals.  

A typical embodiment of this problem in the context of 
superimposed reflections is depicted in Figure 1. The real object 
(a) is situated on the optical axis behind a semireflecting planar 
lens (d), inclined with respect to the optical axis [9]. Another 
object (b) is partially reflected by the lens, creating a virtual 
image (c). The camera (f) records a superposition of the two 
images. Thus, the intensity of the observed mixed image is given 
by: 
 1 11 1 12 2m a s a s= +  (1) 

where 1s  and 2s  are the images of two source objects (a) and 

(b), and 11a , 12a  are constants, and their specific values depend 

on the optical geometry and properties of the reflective medium. 
It is assumed here that the problem is spatial invariant. This 
reasonably good approximation of the physical conditions can be 
relaxed. 

Note that in the setup described so far we have a 1 2×  
mixing matrix. Since the reflected light is polarized, by 
introducing a linear polarizer (e), the relative weights of the two 
mixed images can be altered, thus yielding mixtures of the form 
 1 1 2 2    :   1,...,n n nm a s a s n N= + =  (2) 

or in matrix notation: 
 AM S= ⋅  (3) 



where 1,..., nm m  are the N mixed images and 1s  and 2s  are the 

source images represented as row vectors and A is the mixing 
(crosstalk) matrix.  

The mixing matrix is usually unknown, unless side 
information regarding the physics of the mixing medium is 
available. In the context of the mixed reflections problem, this 
would require the availability of an exact optical model of the 
imaging system, visual scene and the medium. We, of course, do 
not assume any prior knowledge regarding the mixing matrix. 
Our goal is to determine the two source images S from the set of 
equations (3) with an unknown mixing matrix. This is the 
essence of the BSS problem.  

Under the assumption that the sources are statistically 
independent (which is reasonable in the presented case), it is 
possible to recover sources 1s  and 2s  up to a permutation and 

multiplicative constant, by estimating the mixing matrix A A≈ , 
and estimating the sources by its inversion: 

 1AS M−= ⋅  (4) 
This problem is solved using the Sparse ICA method, discussed 
in the following section. 
 

 
Figure 1 – A typical optical setup including a semireflector: (a) – object 
1, (b) – object 2, (c) – virtual object, (d) – glass, (e) – polarizer, (f) – 
camera. 
 

3. SPARSE ICA (SPICA) 
 
Zibulevsky et al [11] have noticed that in case of sparse sources, 
their linear mixtures can be easily separated using very simple 
“geometric” algorithms. Given linear mixtures resulting from 
source images with the majority of pixels having a near-zero 
magnitude and under the assumption of statistical independence 
of the locations of the non-zero pixels in the sources, there is a 
high probability that only a single source will contribute to a 
given pixel in each mixture. Consequently, the majority of the 
pixels in each mixture will be influenced by one source only and 
have a magnitude equal to that of the source multiplied by the 
corresponding coefficient of the mixing matrix. In the scatter 
plot of one mixture versus the other these pixels will therefore lie 
along a line (each corresponding to a source) at a distance from 
the center depending on source magnitude. Hence, it is possible 
to reveal the ratios of each source’s contribution to the mixtures 
by measuring the angles of each of the lines [1]. 

Geometric separation approaches are based on the detection 
of co-linearities in the distribution of the coefficients over the 
scatter plot. The straightforward way to recover the proper 
orientations from the scatter plot is by using the angular 
histogram. Applications of this approach are limited to low 
dimensions (practically, to 2D) due to the difficulty to construct 
the angular histogram in higher dimensions.  The M points in the 

scatter plot (M equals the number of pixels in the image) are 
represented as points in N-dimensional space (in our case, 

2N = ). Since the mixtures are assumed to have a zero mean, 
the oriented co-linear distributions are centered at the origin. For 
each point 2

k ∈Rc , the angle   

 ( )1 2 1tank k kc cα −=  (5) 

is computed. Building the histogram of α , it is possible to 
detect the directions using a peak-detection algorithm.  

An alternative approach is clustering along orientations of 
data concentration in the scatter plot. Each point kc  is projected 

on a unit hemisphere, by normalizing the data vectors:  
 k k k=c c c  (6) 

and multiplying them by the sign of the first vector coordinate 
1
kc  [7]. As the result, a number of clusters corresponding to the 

number of the sources is formed on the hemisphere. Applying 
some clustering algorithm, e.g. Fuzzy C-Means (FCM), it is 
possible to determine the cluster centers. The coordinates of the 
centers define the columns of the estimated mixing matrix, 
equivalent to the orientations found in the previous approach.  
 

4. SPARSE DECOMPOSITION OF IMAGES 
 
In Section 3 we showed simple geometric algorithms capable of 
separating mixtures of sparse images. It is obvious, however, that 
the sources in most applications, including the semireflective 
layer separation problem are natural images and have rather non-
sparse nature. However, such images can be sparsely 
represented, i.e. there exists a linear transformation T  such that 
 Ti id s=  (7) 

is sparse. (Note that there is not necessary to be able to restore 

is  from id , that is T  does not necessarily have to be 

invertible). Application of the transformation to the mixtures in 
(3), due to the linearity of T , yields 
 ( )1 1 2 2 1 1 2 2T Ti i i i im a s a s a d a d= + = +  (8) 

Thus, the problem at hand is equivalent to separation of linearly-
mixed sparse sources.  This can be solved using the techniques 
described in Section 3. 

Different classes of signals have their “natural” sparse 
transformations. In natural images (Figure 2a-b), for example, it 
is known that the edges usually have a sparse structure, hence 
even such a simple operation like a numeric derivative will yield 
a sparse image (Figure 2e-f). Figure 3 shows the scatter plot of 
two mixtures before (a) and after (b) applying the numeric 
derivative. 

 
4.1. Multinode decomposition 
 
Since there is no common sparse representation to different 
images, such a simple transformation as the derivative is usually 
data-dependent. Having this problem in mind, richer 
representations, that over a wide range of natural images lend 
themselves to relatively good sparse representations, such as the 
wavelet packet transform (WPT), were proposed [7], [16].  

The task is to select only the nodes of the WPT, in which 
the decomposition is sparse. Kisilev et al [7] proposed an 
algorithm, in which the clustering procedure is first applied to 
each one of the nodes, but only nodes with minimal global 



distortion (i.e. the mean-squared distance of data points to the 
centers of the closest clusters) are then selected for further 
processing. A more general approach is to assign some quality 
factor to each node, which determines its sparseness and then 
select a certain percentage of the “best” nodes in the sense of the 
assigned quality criterion. The choice of such a criterion will be 
discussed later in Section 4.2. 

As an alternative to the WP decomposition, we propose to 
divide the image into blocks (possibly overlapping), compute 
some simple sparse transformation such as the first or the second 
order derivative (possibly concatenated) and only then to select 
the “best” blocks according to some sparseness criterion. Our 
observation is that most natural images have certain regions, in 
which edges and texture make such an approach efficient. Figure 
4 depicts how the use of blocks can refine the sparseness and 
consequently the quality of the scatter plot in the previous 
example shown in Figure 2. The mixtures were partitioned into 
16 blocks of equal size, and the same sparse transformation was 
applied to each block independently.  
 

   
 

   
 

Figure 2 – (a)–(b) Non-sparse sources, (c) – (d) Synthetic mixtures, (e)–
(f) The transformed mixtures obtained by the action of derivative in x-
direction.  

 
4.2. Quantitative sparseness criteria 

 
Finding an adequate sparseness criterion is a crucial task for 

selecting the best nodes or blocks. The general problem of 
quantitative node sparseness estimation is to find such a function 

( )q x , which given a vector R n∈x  returns a large value if it is 

sparse or a small value if it is not sparse. One of the possibilities 
is to use the so-called 0L  (threshold) norm, i.e. measure the 

number of vector coordinates, which are higher than some 
threshold τ : 

 ( ) ( )1 1

1

n

kn
k

q x τ−

=

= ≥∑Ix  (9) 

where I  is the indicator function. A natural choice of the 
threshold would be 

2
τ = −x x , where x  is the mean value of 

x . Another possible sparseness criterion is the pL  norm: 

 ( )
1 1
21

2
   :   0 1p

p
q n p

−− = ⋅ < ≤x x x  (10) 

Recent studies indicate that the 1L  norm is a more natural choice 

for dealing with various aspects of image quality criteria. This, 

normalized by the 2L  norm, as in (10), may turn out to be the 

best sparseness criterion. This, however, has yet to be further 
investigated. 
 

  
 

Figure 3 – Scatter plot of the mixtures m2 vs m1 before (a) and after (b) 
the sparse transformation. 
 

 

 

Figure 4 - Sparseness refinement by image partitioning into 16 blocks. 
Scatter plots of the coefficients in each block using x derivative as the 
sparse transformation (a) and a scatter plot resulting from merging the 
coefficients of blocks (1,1), (1,3) and (1,4) (b). 
 

5. RESULTS 
 
In this section, we apply the SPICA approach to polarization 
images obtained by simulation and photographed in real-world 
conditions. For comparison, we repeated the results of Farid and 
Adelson [5]. 

In the first experiment, the mixtures were obtained by 
artificially mixing two source images (Figure 5a-b). We used two 
SPICA methods: WP decomposition and block partitioning with 
second-order Sobel numeric derivative applied as sparse 
representation. The reconstruction was performed geometrically, 
using an angular histogram. The SNR values represented in 
Table 1 and Figure 5 reveal a considerable improvement by 
sparse representations, compared to the closed-form ICA [5].  

To further test the performance of the SPICA algorithms 
and compare them to the Farid-Adelson closed-form ICA, we 
used the images of a painting (“Renoir”), framed behind glass, 
with a superimposed reflection of a mannequin (“Sheila”), 
photographed through a linear polarizer at orthogonal 
orientations1.  

The block partitioning approach is a natural way to handle 
the case of spatially-varying mixing coefficients, which often 
occur in reality. The acquired images were divided into four 
equally sized super-blocks and the separation problem was 
solved in each super-block separately. The coefficients of the 

                                                 
1 Available from http://www.cs.dartmouth.edu/~farid/research/ 
separation.html (courtesy of Hany Farid, Dartmouth College).  
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estimated unmixing matrix were then linearly interpolated over 
the entire image to produce a more accurate unmixing. Figure 6 
shows the reconstruction results. The desired photographed 
image of Renoir's painting is recovered with high precision, 
without notable artifacts. The non-separated details in the 
reconstructed image of the mannequin, resulted from distortions 
due to imperfections of the optical system.  

The estimated mixing matrix coefficients can be used to 
identify which image belongs to the real object and which to the 
virtual one (see [1] for details). 

 
Table I – SNR (in dB) of the reconstructed sources A and B 

 

 Farid & Adelson SPICA (WP) SPICA (blocks) 
A 12.18 38.58 35.83 
B 26.07 45.96 64.96 

 

    
 

    
 

Figure 5 – Separation of synthetic mixtures. (a)-(b) Sources, (c)-(d) 
mixtures, (e)-(f) Reconstruction by the Farid-Adelson approach, (g)-(h) 
Reconstruction by SPICA with block partitioning. 
 

    
 

    
 

Figure 6 – Separation of synthetic mixtures. (a)-(b) Mixtures, (c)-(d) 
Reconstruction by the Farid-Adelson approach, (e)-(f) Reconstruction 
by SPICA with WP, (g)-(h) Reconstruction by SPICA with block 
partitioning. 
 

6. CONCLUSIONS 
 
The Sparse ICA approach can be effectively used in wide range 
of scenarios wherein various mixtures of source images are 
available for separation of the sources. In this study we were 
primarily concerned with separation of an image from virtual 
images superimposed on it by reflections from a semireflecting 
medium. The proposed novel sparse decomposition method 
incorporates block partitioning, suitable for nonstationary 
natural images, as well as for imaging systems such as polarized 

semireflecting media, that cannot be considered as spatial 
invariant systems, but can to a good approximation be dealt with 
as locally spatial invariant systems. Experiments conducted with 
simulated and photographed data show the efficiency of this 
approach and its advantages over previously-proposed methods. 

We have assumed that only two images, acquired at 
perpendicular polarization angles, are available. One may extend 
the application to acquisition of more than two images by using 
principal component analysis (PCA) prior to the application of 
ICA. 
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