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ABSTRACT 
In image analysis, processing and understanding, it is 
highly desirable to process the image and feature do- 
mains by methods that are specific to these domains. 
We show how the geometrical framework for scale-space 
flows is most convenient for this purpose, and demon- 
strate, as an example, how one can switch continuously 
between different processing flows of images and color 
domains. The parameter that interpolates between the 
norms is the luminance strength, taken here as a local 
function of the image embedding space. The resulting 
spatial and/or luminance preserving flow can be used 
for conditional denoising, enhancement and segmenta- 
tion. This example demonstrates that the proposed 
framework can incorporate context or task dependent 
data, furnished by either the human user or by an ac- 
tive vision subsystem, in a coherent and convenient 
way. 

the examples treated previously, it was assumed that 
the embedding space is Euclidean, and that the system 
of coordinates that describes it, is Cartesian [2], [3]. In 
fact, the geometry of the embedding space is flexible 
and can be determined according to the high level task 
that one has in mind. We view the geometry of the em- 
bedding space as the interface between the high-level 
task and the low-level process to be implemented. 

The simplest and most intuitive example, of an adap- 
tive smoothing of a grey-level image according to dif- 
ferent illumination conditions, was recently achieved 
by having an intensity dependent embedding space ge- 
ometry [6]. In this study we generalize this technique 
to colored images and to cases where different noise 
is encountered in different color channels. A different 
PDE algorithm was tried in [l], but with no coupling 
between the different color channels. 

2. THE INDUCED METRIC 
1. INTRODUCTION 

In a variety of applications of denoising, smoothing, 
segmentation and enhancement of images, it is advan- 
tageous to have simple and automatic “buttons” that 
can control local smoothing of feature spaces accord- 
ing to some a priori knowledge of the task at hand. 
We present and implement a method that employs the 
recently proposed geometrical framework for nonlinear 
scale-space methods [2]. According to this framework, 
an image is treated as an embedding of a manifold in a 
higher dimensional manifold. A color image is accord- 
ingly considered as a two-dimensional surface embed- 
ded in the five-dimensional space whose coordinates 

It was suggested [2] that the nonlinear scale-space 
can be treated as a gradient descent with respect to a 
functional integral that depends on the geometry (i.e. 
the metric) of the image surface, as well as on the em- 
bedding and the geometry of the embedding space. In 

are (XI Y, R ,  G, B).  

It is advantageous to treat images as an embedding 
maps. In this approach a two-dimensional image is a 
Riemannian surface embedded in a higher dimensional 
Riemannian manifold which is called the feature-spatial 
manifold. Let introduce on the non-linear surface a 
local coordinate system (d , 02) .  The embedding of 
this surface in, say, a three-dimensional space is done 
by specifying, for each point of the surface, the three- 
dimensional coordinates, namely: 

( X ’ ( d ,  a2), X 2 ( d ,  d), X 3 ( d ,  a”). 

We introduce a one-parameter family of embedded im- 
ages (Xi(ol, a2; t))!==l, where t is the evolution inde- 
pendent variable which is called the scale or “time”. 
This parameter determines the degree of blurring or de- 
noising of the image. From a geometrical viewpoint this 
family of embedded images describes a flow of a two- 
dimensional surface inside a higher dimensional space. 
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For a detail study of the subject we inixoduce some 
technical tools. 

A fundamental concept related to Riemannian dif- 
ferential geometry is distance. The basic question in 
this context is how to measure distances? consider first 
the important example X : C + R3, where the map X 
is explicitly given by 
(X’ (a’ , u2) ,  X 2  (u’ , a2), X 3 ( d  , a2)), and the local co- 
ordinates on the two-dimensional manifold C are de- 
noted by (a1 , a2) .  These are analogous to arc length in 
the case of the one-dimensional manifold, i.e. a curve. 
see Fig. 1. 

ds’=grd0’d@ = d< +df +dP 

Figure 1: A diagram illustrating the local coordinate 
system. The line element of a surface curve d s ,  may 
be defined either as a function of a local metric of the 
surface (01 , a2), or as a function of the coordinates of 
the embedding space (2 ,  y ,  I ) .  

Since the local coordinates uz are curvilinear, the 
squared distance is given by a positive definite symmet- 
ric bilinear form, called the metric, whose components 
are denoted by g p y ( a l ,  a*): 

ds2 = gpvdd‘da” G 911 (da1)2+2g12da1d~r2+g22(d02)2, 

where we used Einstein summation contention in the 
second equality. We will denote the inver3e of the met- 
ric by gp”, so that gpYgvr = d;, where 6: is the Kro- 
necker delta. We choose to work with the induced met- 
ric 

where i , j  = 1, ..., dimM are being sumnied over, and 

Take for example a grey level image which is, from 
our viewpoint, the embedding of a surface described as 
a graph in R3: 

g p y ( d ,  a2) = hz , (X)dpX”vx’ ,  (1) 

a,xz E fJX’(O’,02) 
aup . 

x: (+2) + ( x  = 0 1 , y  = 0 2 , z  = I ( 0 1 , 2 ) ) ,  

where (z, y ,  z )  are Cartesian coordinate;. Using Eq. 
(11, we get 

where we used the identification x E d and y E a2 in 
the map X. Actually, we can understand this result in- 
tuitively: Eq. (1) indicates that the distance measured 
on the surface by the local coordinates is equal to the 
distance measured in the embedding coordinates (see 
Fig. l).The chain rule, then, yields the right result 

ds2 = dx2  + d y 2  + d 1 2  
= 
= 

dx2  + dy2 + ( I r d x  + I y d y ) 2  
(1 + 12)dz2 + 2I,I,dxdy + (1 + I i ) d y 2  

3. COLOR SPACE COORDINATES 

Two questions should be addressed in the process of 
generalizing the above for color images. The first re- 
fates to the variables (or coordinates), and the second 
to the geometry of the color space. Since the basic col- 
ors red, green and blue are correlated in most images, 
we adopt the Wolf-Ginosar-Zeevi approach [5] and ap- 
ply the KLT to obtain an uncorrelated basis kl , k2 and 
k3. Denote la the three color planes where a =r,g,b. 
The autocorrelation matrix is 

- N M  

The Kis are the eigenvectors of this matrix. The auto- 
correlation matrix was in fact found for the family of 
outdoors scenes in [5] and is given explicitly by: 

0.3744 0.4452 0.8103) (i) 
0.0051 0.0012 0.0002 

-0.3249 -0.1195 0.0753 

(3) 
The coordinates we use are (after defining x = 0’ and 
y = 2) 

(Zl Y ,  kl ( X , Y ) ,  kZ(Z,Y)l  k3 (X ,Y ) )  (4) 

The kl  coordinate represents the achromatic channel 
of luminance, while k2 and k3 are chromatic channels. 

For the geometry we choose the following metric 

ds2 = dZ2 + dy2 + ,B2(kl)drC; + cldk;  + ~ 2 d k ; ,  ( 5 )  

where p2 is a local function of k1 and c1 and c2 are con- 
stants that take care of the dimensions. Equivalently 
we can say that the metric of the embedding space is 

1 0  0 0 0  
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The induced metric elements are according to Eq. 
(1): 

911 = 1 + P2(k1)% + ( k 2 ) i  + (k3)% 

g12 = g21 = P2(kl)z(k1), + (kz)z(k2), 
g22 = 1 + P2(k1)i + (k2)2y + ( k 3 ) i .  (7) 

Note also that the two-dimensional image induced met- 
ric is different from the one we had in the Euclidean 
case. 

4. THE MEASURE ON MAPS AND THE 
MODIFIED GRADIENT DESCENT 

We use the diffusion equation which is derived as a gra- 
dient descent of an action functional. The functional in 
question depends on both the image manifold and the 
embedding space. Denoting by (E, (gpy)) the image 
manifold and its metric and by ( M ,  (hij)) the space- 
feature manifold and its metric, the map X : C + M 
has the following weight [4]: 

S[Xi, gpV, hij] = d m ~ ~ g p ” d p X i d , X ’ h i j ( X ) ,  s 
where m is the dimension of C, g is the determinant of 
the image metric and gp” is the inverse of the image 
metric. The range of indices is p, v = 1 , .  . . ,dim C, 
and i, j = 1,. . . ,dim M. The metric of the embedding 
space is hi’. 

Using standard methods in calculus of variations, 
the Euler-Lagrange (EL) equations, with respect to the 
embedding, are (see [2] for derivation): 

(8) 
where r i . k  are the Levi-Civita connection coefficients 
with respect to the metric hij (defined in Eq. l l ) ,  that 
describes the geometry of the embedding space. 

We view a scale-space as the gradient descent: 

A few remarks are in order. First, note that we used 
our freedom to multiply the Euler-Lagrange equations 
by a strictly positive function and a positive definite 
matrix. 

This factor is the simplest one that does not change 
the minimization solution, while giving a reparameter- 
ization invariant expression. This choice guarantees 
that the flow is geometric and does not depend on the 
parameterization. The operator that is acting on Xi in 

Figure 2: Original image. The sailboats image was 
constructed from a CCD camera by a de-mosaicing al- 
gorit hm. 

the first term of Eq. (8) is the natural generalization 
of the Laplacian from flat spaces to manifolds. It is 
called the Laplace-Beltrami operator, or in short Bel- 
trami operator, denoted by A,. In our case we get 

+ 9:’ + gi2 + S g 2 2 )  ki,. (9) 
9 

When the embedding is in a Euclidean space with 
Cartesian coordinate system, the connection elements 
are zero. If the embedding space is not Euclidean, we 
have to include the Levi-Civita coefficients, since they 
are not identically zero any more. 

such that for high luminance regions ,G’ is large and the 
flow is less diffusive, while for low luminous regions p 
is small and the flow is diffusive. There are many rea- 
sonable choices for the function p. We will use for the 
sake of illustration only 

We choose a luminance normalization function P ( k l ) ,  

P(k1) = A(tanh(a(k1 - b)) + l ) ,  (10) 

with A ,  a and b constants to be defined. 
The Levi-Civita coefficients are defined as follows: 
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Figure 3: The sailboats image smoothed b i  a Gaussian 
filtering kernel. 

Figure 4: The sailboats image differentially smoothed 
by the Beltrami flow. 

where there is an implicit sum over 1 .  In our case hij 
is given in Eq. ( 6 )  and, using the above definition, we 
get 

(12) 
2a r:1 = P-laklP = $ 4 k 1 4 )  + 17 

where all the other coefficients vanish. The second term 
of Eq. (8) now reads 

rl.8 xi8,xjgpv = rl 11 (9%: + 2g12k1 & L Y  + 922k1;). 
$3 

Collecting all the terms we get the flow 

kit  = Ag(p)ki + r i1(d1ki i  + 2g12ki,k1y + g22kii) 
k2t  = Ag(p)k2 
k3t = Ag(0)kS. (13) 

We may choose also to work directly with the R,G,B 
planes and get the equivalent, but more cumbersome, 
equations. 

5.  EXPERIMENTAL RESULTS 

Our algorithm is demonstrated by using the sailboats 
image (Fig. 2). This is a color image that was con- 
structed from a CCD camera by a de-rriosaicing al- 
gorithm. Artifacts were created in the process of de- 
mosaicing and we wish to filter them out. The colored 
images could not be included in these proceedings for 

technical reasons. They can be viewed on the web site: 
http://www-ee.technion.ac.il/users/zeevi/zeevi.html. 

Using a low pass filter i.e. convolution with a Gaus- 
sian (or equivalently solving the heat equation for each 
channel separately) is demonstrated in Fig. 3. This 
filter does not preserve sharp edges and blur the image 
severely. We thus need an edge preserving flow i.e. the 
Beltrami flow (see Fig. 4). While this is a much better 
result than the linear one, it still suffers from a draw- 
back. When we look closely on the poles, we see that 
instead of linear objects we get a piecewise linear ob- 
jects with very large and noticeable dislocations. These 
are artifacts of the compression that the Beltrami flow 
detects as a “true” edges and does not smooth out. 

We therefore need is an algorithm that will smooth 
the structure along the poles in a manner that a linear 
filter does, but will smooth everything else according 
to the Beltrami flow. Our solution consists of using a 
non Euclidean space-feature whose metric is described 
through the Beta function which is very small for dark 
regions (i.e. k l  x 0 or R + G + B x 0) and close to 1 
in other places. Specifically we choose 

P(k1) = A(tanh(a(k1 - b ) )  + l) ,  (14) 

with A = 0.5, a = 0.05 and b = 10. We extract from 
a linearly smoothed image in order to have a smooth 
transition between regions with high and low values of 
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Figure 5: The sailboats image adaptively smoothed by 
our algorithm. 

p. The image was smoothed by 5 iterations for the 
linear heat equation with time step of d t  = 0.1. The 
result after one iteration of our highly non-linear flow 
with d t  = 0.05 is presented in Fig. 5. A closer com- 
parison of the poles between the Beltrami flow and our 
algorithm is depicted in Fig. 6. 

6. FURTHER EXTENSIONS OF THE 
PROPOSED APPROACH 

The research concerned with image processing and anal- 
ysis by changing the geometry of the embedding space 
is only in its infancy. We presented in this paper only 
preliminary results which demonstrate the principles in 
the context of a simple setting. More realistic applica- 
tions require further work in order to understand, by 
a combination of analytical and experimental methods, 
the right geometry of the embedding space which is ap- 
propriate for a given task. Other potential extensions 
may incorporates texture, depth and various invariance 
properties. These questions as well as application to  
medical images are under current investigation. 
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