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• Two - dimensional flat representation of 3− dimensional

scanned data is a fundamental task in various applications

(i.e. medical - imaging)

• Flattening process should maintain geometric features

such as length, angles, area as possible, so that

image analysis ( medical diagnosis ) will be accurate.

• Flattening algorithm is performed on a

triangulated reconstruction of assumed well sampled

surface.
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• In most cases distorting the mentioned geometric mea-

sures is inevitable because of presence of curvature.

• It is wished to have an estimate for the measurement error

or length distortion.

Mathematically, this is provided by the following definition:
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Definition 1 Let D ⊂ R3 be a domain. A homeomorphism

f : D → R3 is called a quasi-isometry (or a bi-lipschitz

mapping), if there exists 1 ≤ C < ∞, such that

1

C
|p1 − p2| ≤ |f(p1) − f(p2)| < C|p1 − p2| , for all p1, p2 ∈ D ;

where | · | denotes distance.

C(f) = min{C | f is a quasi − isometry} is called the minimal

distortion of f (in D).

• In fact, one can define quasi-isometries between any two

metric spaces (X, d) and (Y, ρ).

• For the case of a surface in R3, distances are the induced

intrinsic distances on the surface.
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Definition 2 A homeomorphism f : D → R3 is called quasi-

conformal, if it almost preserve angles. Formally, it is the

same as a quasi-isometry while distances are replaced by

angles (i.e. scalar products of tangent vectors)

The minimal distortion, C(f), is replaced by the dilatation

of angles, K(f).

Lemma 3 If f is a quasi - isometry then,

K(f) ≤ (C(f))2 .
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Remark 4 f quasi-isometry ⇒ f quasi-conformal;

but

f quasi-conformal ; f quasi-isometry.

• One would wish to have a conformal map yet, for many

application it suffices to have quasi-conformality.
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Since we are interested in images of 3-dim objects on 2-

dim “screens”, i.e. projections, we are conducted to ask

the following questions:

Question 1 When is orthogonal projection a quasi-isomorphism

(quasi-conformal mapping)?

Question 2 And if it is, what are its distortion and dilata-

tion?

The answer to these questions is to be found in the classical

work of F. Gehring and Y. Väisälä (1965).

6



The Geometric (Gehring) Condition: We say S ⊂ R3

satisfies the Gehring Condition if for any p ∈ S there exists

~np such that for any ε > 0, there exists Up ≃ D2, such that

for any q1, q2 ∈ Up the acute angle ∡(q1q2, ~np) ≥ α, where:

0 < inf
p∈S

αp <
π

2
− ε .
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Example 5 Any surface in S ⊂ R3 that admits a well-

defined continuous turning tangent plane at any point p ∈ S

satisfies the geometric condition.
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Then for any x ∈ Up there is a unique representation of the

following form:

x = qx + u~n ;

where qx lies on the plane through p which is orthogonal to

~n and u ∈ R. Define:

Pr(x) = qx .

S

p

n

x

T (S)p

q

_

x

pU

p

Remark 6 ~n need not be the normal vector to S at p.
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Moreover, we can compute bounds for C(f) and K(f), for

f ≡ Pr. We get ([GV]):

C(f) ≤ cotα + 1 ; (1)

K(f) ≤

(

(1

2
(cotα)2 + 4

)
1
2 +

1

2
cotα

)
3
2
≤ (cotα + 1)

3
2 . (2)

• The proposed algorithm based on the above (presentation

will follow) is the first known, to have such error estimates

and control for the distortion and dilatation.
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• Naturally, the existence of faithful quasi-conformal/quasi-

isometric representations for sampled surface strongly de-

pends on the quality of the sampling.
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Theorem 7 [asz] Given a C2 surface Σ, with

absolute principal curvatures bounded by some bound KΣ,

there exists a sampling scheme of the surface Σ, with a

proper density D, corresponding to the maximum absolute

curvature KΣ, i.e. D = D(KΣ).

Theorem 8 [asz] If Σ is not a C2 surface, then there exists

a smoothing reproducing kernel HΣ, for which HΣ ∗ Σ is

of class C∞. The smooth surface can be represented by a

sampling scheme of density D, according to Theorem 7.

∗ Similar ideas but without precise density function and rigorous pre-
sentation appear in [AB]
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• Reproducing of the sampled surface is given by the Secant

Approximation of a manifold [Mun].

• Both sampling theorems apply for higher dimensional

manifolds as well. Principal curvatures are replaced by

appropriate combinations of the scalar, sectional and Ricci

curvatures of Riemannian manifolds.
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An algorithm for triangulated surfaces is readily produced

from the results above:

• Let Np stand for the normal vector to the surface at a

point p on the surface.

• Choose a triangle ∆, of the triangulation. There are two

possibilities to chose ∆: one is in a random manner and the

other is based on curvature considerations. Trivially project

∆ onto itself. ∗

• Suppose ∆′ is a neighbor of ∆ having edges e1, e2, e3,

where e1 is the edge common to both ∆ and ∆′. We

will call ∆′ Gehring compatible w.r.t ∆, if the maximal

angle between e2 or e3 and N∆ (the normal vector to ∆),

is greater then a predefined measure suited to the desired

predefined maximal allowed distortion, i.e. max {ϕ1, ϕ2} ≥

α, where ϕ1 = ∡(e2, N∆), ϕ2 = ∡(e3, N∆).

∗A variant of this algorithm will be discussed.
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• Project ∆′ orthogonally onto the plane included in ∆ and

insert it to the patch of ∆, iff it is Gehring compatible w.r.t

∆.

e

e
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• If by this time all triangles where added to the patch

we have completed constructing the mapping. Otherwise,

chose a new triangle that has not been projected yet, to be

the starting triangle of a new patch.
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†Variant of the Basic Algorithm:

• Project the faces adjacent to the vertex v on the plane

TPv through v, orthogonal to the mean normal:

Nv =
1

k

k
∑

1

N i ;

where N i is the normal to the face Fi adjacent to v.

v

Nv

_

N
N N

N
N N

_
_

_
_

_

_

1

2 3

i

j
k

F

F
F

F
F

1

2
3

i
k F

j

TPv

15



• Choose starting vertex using Gauss Curvature K:

For triangulated (PL) surfaces we define∗ K at every vertex

as the defect of the sum of angles surrounding it:

K(v) = δ(v) = 2π −
∑

i

αi .

Remark 9 The curvature based method is better fitted for:

• Low curvature (“almost flat”) surfaces;

• High α.

∗following Descartes and, in more recent times, Hilbert–Cohn-
Vossen, Pólya, Banchoff,...
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We present some experimental results, both on synthetic

surfaces and on data obtained from actual CT scans (of

the Human Brain Cortex and Colon):
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A lower curvature produces a larger patch (with more tri-

angles)...

In The Skull Model the resolution is of 60,339 triangles. Here α = 10◦

and the dilatation is 1.1763.
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...than when flattening regions of higher curvature:

Here α = 6◦ and the dilatation is 1.1051.
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It is also evident in the development of the Human Brain

Cortex:
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Remark 10 Note that non-simply connected patches may

be obtained.
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Gluing Different Patches to obtain a Global Flattening:

The need for gluing patches together into a global picture

is well known in Radiography as “pantomograph”

This is done very approximatively and with no control of

the dilatation.
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We have applied a “naive” (but with dilatation control)

gluing process to the triangulated surface obtained from 3

slices of human colon scan:

(a) (b)
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The reason for these “cuts” and “holes” resides in the fact

that (evidently) one can have two neighbouring patches,

with markedly different dilatations/distorsions, which re-

sults in different lengths for the common boundary edges.

Therefore, “cuts” and “holes” appear when applying a “naive”

gluing – as the colon flattening example shows.

The discontinuities appear at the common boundary of two

patches obtained from regions with very different curvature.

Indeed, the “back part” seems close enough to be half of

a cylinder (and thus developable)...
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...but in fact it is highly folded:
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Concluding Remarks

• The proposed algorithm is local but it gives a measure

of globality.

• Our algorithm is best suited for flattening of highly folded

surfaces.

• The theory and algorithm guarantee minimal (and com-

putable!) metric, angular and area distortion.

• Relatively simple – yet correct(!), robust and computa-

tionally efficient, since it does not require computations of

derivatives.

• Holds in any dimension.
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