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Abstract—For compressed sensing of Poissonian measurements, there
is a need for nonnegative measurement matrices. We seek an optimal
measurement matrix that conserves energy. Moreover, the signals pass
a known but uncontrolled mixing matrix, before being multiplexed and
measured. This situation is relevant to various optical applications. We
optimize the measurement matrix by mutual coherence minimization,
under nonnegativity and energy conservation constraints. Nonnegativity
excludes the known approach of seeking an equiangular tight frame as
the optimal matrix. We thus seek a quasi-equiangular frame, which is
approximated by a tight frame. Simulation results demonstrate superior
reconstruction using our optimized matrices, compared to random
nonnegative matrices.

Index Terms—Compressed sensing, Poisson noise, Optimization, Op-
tical imaging

I. INTRODUCTION

Analysis of compressed sensing (CS) has focused on noise-
less signals or Gaussian noise [1], [2], [3], [4], [5]. For these
cases, measurement matrix optimization algorithms were devel-
oped [6], [7], [8], [9], [10], [11]. Some CS works considered Poisson
noise, but not matrix optimization [12], [13], [14], [15], while [16]
considered impulsive noise. We consider measurement matrix opti-
mization problem for Poisson CS. This problem is relevant to various
optical applications such as hyperspectral imaging [17], [18], [19]
and fluorescence microscopy [20], [21], as well as medical imaging
applications such as emission tomography [12], [22], [23]. While
some of these works model the noise in the measurements as
Gaussian, this approximation holds only for high photon counts,
otherwise the Poissonian model is more suitable [12], [19], [20].

Let x ∈ <m be an original signal, representing light intensities. We
assume that x is sparse, i.e., the number of its non-zero elements s′

satisfies s′ � m. Let there be two nonnegative matrices: Ψ ∈ <n×m
and Φ ∈ <p×n, where p ≤ n ≤ m and p � m. The acquired
photon counts at the detector are y ∼ Poisson(ΦΨx) ∈ <p. Here Ψ
represents uncontrolled optical mixing, such as blur, occurring before
measurements are taken, while Φ is a controlled measurement matrix.
A penalized maximum likelihood (ML) formulation reconstructs x.
We seek an optimal Φ such that the reconstruction x̂ ∈ <m
based on y estimates x well. The measurement matrix Φ represents
a physically feasible optical system. Hence, in addition to being
nonnegative, it does not amplify energy: the total radiant energy at
the output of the system Φ cannot exceed the total input energy, i.e.

p∑
i=1

[ΦΨx](i) ≤
n∑
j=1

[Ψx](j) . (1)

This constraint can be met by satisfying:
p∑
i=1

Φ(i, j) ≤ 1 , ∀j . (2)

For non-CS (p = m), [24], [25], [26] optimized Φ under a
nonnegativity constraint. To the best of our knowledge, there has
been no attempt yet to optimize Φ for CS under both nonnegativity

and energy constraints. Ref. [14] suggests using random nonnegative
matrices for Poisson CS, which are not optimal. When Ψ is the
identity matrix, adjacency matrices of expander graphs were also
suggested as Poisson CS matrices [15]. However, expander graphs are
difficult to obtain, and suitable only when Ψ is the identity matrix.
Our goal is to deal with these issues.

II. MEASUREMENT MATRIX DESIGN

Considering that the measurements are noisy, it is important to
avoid energy loss, since measurements with low energy have low
signal-to-noise ratio (SNR). Hence, we require energy conservation,
such that (2) is satisfied with equality ∀j. We define the set:

C ≡ {Φ ∈ <p×n|Φ(i, j) ≥ 0 ,∀i, j and
p∑
i=1

Φ(i, j) = 1 ,∀j} .

(3)
Energy conservation applies to optical measurements taken by a
photon sharing architecture as in [27].

The mutual coherence of A ≡ ΦΨ, is [5], [28], [29]:

µ(A) = max
1≤i,j≤m,i6=j

|aTi aj |
‖ai‖2‖aj‖2

, (4)

where ai is column i of matrix A and T denotes transposition. We
aim to solve the following optimization problem:

Φ̂ = arg min
Φ

µ(ΦΨ) , s.t. Φ ∈ C . (5)

Minimization of µ is motivated by the importance of the restricted
isometry property (RIP) [4], [5], [29], [30] in Poisson CS [12], [14],
and by the known relation between the RIP and µ [5], [29].

A prior attempt to minimize µ(A) under a nonnegativity con-
straint [31] solves a sequence of convex optimization problems
using CVX [32]. This method is very slow, limiting its applicability
to imaging and other applications which require high dimensional
matrices. Our algorithm is much faster, as we detail in Sec. V.

For any A ∈ <p×m, the lower bound on µ(A) is [33], [34], [35]:

µE =

√
m− p
p(m− 1)

. (6)

This bound can be reached [33] if and only if A is an equiangular
tight frame (ETF). Frame F ∈ <p×m is an equiangular frame
(EF) [33], [34], if each pair of distinct columns satisfies:

|〈fi, fj〉|
‖fi‖2‖fj‖2

= c , 1 ≤ i, j ≤ m , i 6= j , (7)

where c ∈ [0, 1] is a constant. Frame F ∈ <p×m is a tight frame
(TF) [33], [34], if its columns satisfy:

f =
1

α

m∑
i=1

〈f , fi〉fi , ∀f ∈ <p , (8)

where α is a positive constant.
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To minimize µ down to its theoretical lower bound (6), suppose
we first seek an EF with c = µE . Had it worked, then we may
afterwards calculate the TF nearest to that EF, which is given [34]
by a multiplication of UWT , where UΣWT is the singular value
decomposition (SVD) of that EF. This would have given us an
approximated ETF.

The problem is that ETF’s exist only for a few frame dimen-
sions [33], [34]. Hence, the minimal µ(A) achievable is generally
higher than µE . Furthermore, it can be shown that an EF with all
nonnegative values exists only if p = m or if all the columns are
collinear vectors (c = 1). In CS, p� m. Hence, it is not possible to
design Φ such that ΦΨ is an ETF. We thus use quasi-equiangular
frames (QEF). Following [36], let frame F ∈ <p×m be a QEF, if
each pair of distinct columns satisfies:

µE − ε ≤
|〈fi, fj〉|
‖fi‖2‖fj‖2

≤ µE + ε , 1 ≤ i, j ≤ m , i 6= j , (9)

where ε ≥ 0 is an ideally small constant. The smaller the ε parameter,
the better a QEF approximates an EF with c = µE . Therefore, instead
of seeking an EF with c = µE , which we know we cannot find, we
seek a QEF with ε as small as possible, as we explain in Sec. III.

III. ALGORITHM

Inspired by [6], we use an iterative optimization algorithm. While
we base our algorithm on [6], we add the constraint Φ ∈ C, and
modify the Gram matrix differently in order to achieve a QEF. We
also approximate the squared root by a TF as in [11]. The following
steps are executed in each iteration k of the algorithm:

1) Normalize the columns of the matrix A(k) = Φ(k)Ψ to yield
Ã(k) [6], [9], [10], [11], whose ith column satisfies

ã(k),i =
a(k),i

‖a(k),i‖2
,∀i = 1...m . (10)

2) Calculate the Gram matrix of Ã(k) [6], [9], [10], [11], defined
as

G(k) = ÃT
(k)Ã(k) , (11)

i.e., G(k)(i, j) = 〈ã(k),i, ã(k),j〉. Note that

µ(Ã(k)) = max
1≤i,j≤m,i6=j

G(k)(i, j) . (12)

3) A parameter ε(k) was set in iteration k − 1. Define
µt

(k) = µE + ε(k) and µb
(k) = µE − ε(k), where µE is given

by (6). Then, modify G(k) to be the Gram matrix of a QEF
with parameter ε = ε(k), i.e.

G̃(k)(i, j) =


1 i = j
µt

(k) i 6= j and G(k)(i, j) > µt
(k)

µb
(k) i 6= j and G(k)(i, j) < µb

(k)

G(k)(i, j) otherwise

.

(13)
4) Set ε(k+1), such that ε(k+1) ≤ ε(k).
5) Find, by eigenvalue decomposition, a matrix S(k) ∈ <p×m

such that [6], [11]

G̃(k) ≈ ST(k)S(k) . (14)

For that, G̃(k) should be approximated [37] by a positive semi-
definite matrix with rank ≤ p. Hence, S(k) is an approximated
QEF with parameter ε = ε(k).

6) In this step we would have calculated the TF nearest to S(k),
as explained in Sec. II and done in [11]. However, we notice
that if S(k) satisfies (14), then the matrix

S
′

(k)
.
= ΩS(k) , (15)

also satisfies (14), where Ω is any real valued p × p unitary
matrix. Hence, in order to succeed better in the constrained
optimization next step, we include Ω in this optimization. Thus,
in the current step we calculate F(k), the TF nearest to S

′

(k).
We get that F(k) is a multiplication of ΩṼT

(k), where Ṽ(k) is
a matrix whose columns are the p eigenvectors of G̃(k), which
correspond to the highest eigenvalues.

7) Optimize the measurement matrix Φ(k+1) by solving the
following optimization problem:

{Φ(k+1),Ω(k+1), w(k+1)} = arg min
Φ,Ω,w

‖ΦΨ− wΩṼT
(k)‖2F

s.t. Φ ∈ C ,Ω ∈ U(p) , w ≥ η , (16)

where U(p) is the set of real p×p unitary matrices, η → 0 is a
positive constant. The variable w enables optimization which is
not limited to TF of specific column norms. It is needed since
for any Ω ∈ U(p), the TF ΩṼT

(k) has the same `2 column
norms as ṼT

(k).
Iterations yield an estimate Φ̂ ∈ C, such that Φ̂Ψ approximates a

TF, which is also a QEF with minimal ε.
In the case where Ψ is the identity matrix, we may impose the

energy conservation constraint in a simpler and more efficient way.
Instead of imposing it in (16), we can multiply each column of Φ̂
by a different positive constant, without changing µ, and thus meet
the energy conservation constraint in (3).

IV. SOLVING THE OPTIMIZATION PROBLEM (16)
The optimization problem in (16) can be approximately solved

iteratively. Each iteration l solves the following subproblems:

{Φ(k,l+1), w(k,l+1)} = arg min
Φ,w
‖ΦΨ− wΩ(k,l)Ṽ

T
(k)‖2F (17)

s.t. Φ ∈ C ,w ≥ η .

Ω(k,l+1) = arg min
Ω
‖Φ(k,l+1)Ψ− w(k,l+1)ΩṼT

(k)‖2F (18)

s.t. Ω ∈ U(p) .

The subproblem in (17) is convex. To solve it, we use fast iterative
shrinkage-thresholding algorithm (FISTA) [38], [39]. In order to
solve (17) using FISTA, the orthogonal projections of matrices,
computed during iterations of FISTA, on the closed convex set C
should be computed. We define the column-wise closed convex set:

Ccol ≡ {ϕ ∈ <p|ϕ(i) ≥ 0 , ∀i and
p∑
i=1

ϕ(i) = 1} . (19)

According to (3,19), the orthogonal projection of a matrix on C can
be found by projecting each column separately on Ccol. This column-
wise orthogonal projection can be calculated using the algorithm
in [40].

The subproblem in (18) resembles the orthogonal Procrustes prob-
lem [41]. According to a proof in [29], as the orthogonal Procrustes
problem, (18) has a closed-form solution, and this solution is as fol-
lows. Given that the SVD of the matrix w(k,l+1)Ṽ

T
(k)(Φ(k,l+1)Ψ)T

is X(k,l+1)Y(k,l+1)Z
T
(k,l+1), we have that:

Ω(k,l+1) = Z(k,l+1)X
T
(k,l+1) . (20)

V. SIMULATION RESULTS - NO MIXING MATRIX

In all of the tests in this section m = 1024, except for the
comparison with [31]. Moreover, in this section we set Ψ to be the
identity matrix I, i.e. there is no mixing of variables. This requires
m = n. A case where Ψ 6= I is treated in Sec. VI.

GlobalSIP 2014: Advances in Signal Processing for Mixed-Signal and Optical Sensing: Hardware to Algorithms

685



A. Measurement Matrix Optimization

We tested our algorithm for different values of p. As explained in
Sec. III, we impose energy conservation by suitable normalization of
the columns of Φ̂, rather than by (16). Each time, Φ was initialized
by a random binary matrix [14], where 0.8 is the probability for a
matrix element to be null. The algorithm ran for 300 iterations, i.e.
1 ≤ k ≤ 300 (convergence was achieved much sooner). Eqs. (17,18)
used 50 iterations, i.e. 1 ≤ l ≤ 50. We applied FISTA with constant
step size, which was chosen to be β

2‖ΨΨT ‖2
, where β ∈ (0, 1] is a

constant. We let FISTA run for 6 iterations. We set η = 10−30.
We initialize ε(1) = εinit > 0, and determine the value of ε(k+1)

as follows:

ε(k+1) =

{
εparε(k) e(k) < epar

ε(k) otherwise
, (21)

where e(k) is the `2 norm of a vector composed of the eigenvalues
of G̃(k), which will be set to zero when finding S(k), and εpar ∈
(0, 1) and epar > 0 are constants. We chose epar = ẽpare(1), where
ẽpar ∈ (0, 1) is a constant. The rest of the parameters were chosen
experimentally per p, to minimize µ. The results are shown in Table I.
We also show the average mutual coherence [10], defined as:

µavg(A) =
1

m(m− 1)

∑
1≤i,j≤m,i6=j

|aTi aj |
‖ai‖2‖aj‖2

, (22)

since the value of an average version of µ is also important for matrix
reconstruction abilities [6], [7], [10]. For all our tests, also in Sec. VI,
the final value of ε satisfied ε(300) > µE , meaning we would have
gotten the same results without imposing G̃(k)(i, j) ≥ µb

(k) in step
3 of the algorithm.

TABLE I: µE , µ and µavg shown for different values of p, for random
and optimized matrices. The parameters used are shown as well.

p/m µE µrand µopt µrand
avg µopt

avg

0.125 0.08 0.58 0.35 0.2 0.035
0.25 0.055 0.44 0.225 0.2 0.04
0.5 0.03 0.37 0.155 0.2 0.05

p/m β εinit ẽpar εpar

0.125 0.3 0.32 0.2 0.85
0.25 0.07 0.295 0.5 0.9
0.5 0.35 0.22 0.4 0.8

We also compared optimization results using our algorithm, to
those achieved using iterative decorrelation by convex optimization
(IDCO), the algorithm of [31]. IDCO should run for a long time in
order to achieve reconstruction results comparable to our algorithm.
For example, when m = 128, p = 64, IDCO runs for 134 min and
yields µ = 0.25 and µavg = 0.13, while our algorithm runs for 43
s and yields µ = 0.43 and µavg = 0.07. Reconstruction results are
similar for both matrices. For large matrices, IDCO is impractical.
For dimensions as in Table I, it would run for weeks, while our
algorithm runs for less than an hour.

B. Reconstruction Results

1) Reconstruction Setting:

The reconstruction algorithm we used is the one suggested in [13],
which solves a penalized ML reconstruction problem by minimizing
the objective function:
p∑
i=1

([Ax](i)− y(i) log{[Ax](i)})+τ

m∑
j=1

log

[
x(j)

δ
+ 1

]
, (23)

subject to the nonnegativity requirement x ≥ 0, where τ, δ > 0
are constants. Ref. [13] shows that for Poissonian nonnegative
signals, the penalty

∑m
j=1 log

[
x(j)
δ

+ 1
]

is more successful than
the commonly used `1 norm. Eq. (23) is optimized iteratively,
initialized as suggested in [14]. We set the regularization parameter
to be τ = 0.1‖ATy‖∞, as suggested in [42], [43]. We initialize
δ = 10, and gradually increase its value during the iterations of the
reconstruction algorithm. We found that this assignment of δ gives
good results in a relatively short computation time.

Each matrix was normalized before the reconstruction to satisfy
the energy conservation constraint in (3), as explained in Sec. III.
We examined the reconstruction abilities of each matrix for three
sets of random nonnegative signals x. Let Λ denote such a signal
set. The number of elements in the set Λ is |Λ| = 100. Each of the
three signal sets has a different average sparsity percentage:

s =
1

|Λ|
∑
t∈Λ

‖xt‖0 ·
100

m
. (24)

The location of the non-zero entries in each signal is random. The
value of each non-zero entry was chosen independently to be the
absolute value of Gaussian random variables with zero mean and
standard deviation σ = 500. Each signal was then normalized
to have constant total optical energy ‖x‖1 = 0.1σm. Each test
compared results based either on a random matrix or the optimized
matrix.

2) The Obtained Results:

To evaluate the results, we calculate the relative error between the
original and reconstructed signals by:

r(x, x̂) = ‖x̂− x‖2/‖x‖2 . (25)

We also define the average relative reconstruction error as:

ravg(x, x̂) ≡ 1

|Λ|
∑
t∈Λ

r(xt, x̂t) , (26)

and the reconstruction gain as:

grec ≡ ravg(x, x̂rand)/ravg(x, x̂opt) . (27)

Fig. 1 plots ravg(x, x̂rand), ravg(x, x̂opt) and grec, at different val-
ues of p and s. Increasing s reduces the reconstruction quality, since
the assumption of sparse signals is less valid. When p

m
= 0.25, 0.5,

recovery quality considerably improves by use of optimized matrices.
For less measurements, p

m
= 0.125, and high s, the improvement is

negligible or non-existent, and the reconstruction error is high. We
conclude that even if we lower µ and µavg, there are limitations on
p and s that can benefit from this optimization.

In order to assess the noise intensity in the acquired samples, we
also calculate the relative measurement errors, given by r(Ax,y).
For p

m
= 0.25 and p

m
= 0.5, ravg(Ax,y) is in the range

0.03 − 0.095. In all cases, ravg(Ax,y) for the optimized matrix
is smaller than ravg(Ax,y) for the random matrix, even though
the optimized matrices were not directly designed to fulfill such a
requirement. This is an indicator that an optimized matrix reduces
ravg(Ax,y), probably because of two reasons. First, the optimized
matrix is sparser than the random one. Second, the position of non-
zero elements in an optimized matrix is not random. Both reasons
appear to concentrate the signal energy in fewer elements of Ax for
the optimized matrix, with higher values.
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Fig. 1: The average relative reconstruction errors and the reconstruc-
tion gain. For low p, p = 128 ( p

m
= 0.125), ravg(x, x̂) is very high,

for both the random and optimized matrices. However, when there are
enough measurements, optimized measurement matrices considerably
improve recovery quality.

VI. SIMULATION RESULTS - AVERAGING BLUR MIXING

We tested our algorithm when Ψ is a square matrix whose
operation on x is1

[Ψx](i) = [x(i− 1) + x(i) + x(i+ 1)]/3 ,∀i , (28)

i.e. Ψ is an averaging blur. We keep the number of measurements
constant p = 256, and test our algorithm for different m = n values.
We use the same simulation setting as in Sec. V, except that energy
conservation is imposed in (16), and Φ is initialized by a random
normalized matrix. The measurement matrix optimization results are
shown in Table II. The values of grec are shown in Table III. In all
cases shown in Table III, the use of optimized matrices improves
the reconstruction quality. Also here ravg(Ax,y) is lower for the
optimized matrices, since an optimized Φ yields a sparser A with less
random arrangement of non-zero elements. Fig. 2 shows an example
of the reconstruction results for m = 1024 ( p

m
= 0.25) and s′ = 22,

when using random and optimized matrices.

TABLE II: µE , µ and µavg shown for different values of m, for
random and optimized matrices, and refer to A = ΦΨ. Here Ψ
represents averaging blur. The parameters used are shown as well, in
all the tests ẽpar = 0.7 and εpar = 0.9.

p/m µE µrand µopt µrand
avg µopt

avg β εinit

0.2 0.056 0.90 0.78 0.425 0.06 0.27 0.44
0.25 0.055 0.88 0.82 0.425 0.07 0.78 0.445
1/3 0.05 0.885 0.79 0.42 0.09 0.31 0.55
0.5 0.045 0.92 0.85 0.43 0.1 0.23 0.555

1For i = 1 we used x(i− 1) = 0, and for i = m we used x(i+ 1) = 0.

TABLE III: The reconstruction gain when there is averaging blur
before the measurements are taken.

p/m s = 1% s = 2% s = 5%

0.2 4.3 3.7 2.5
0.25 4.3 3.9 3.1
1/3 3.65 4.2 3.3
0.5 2 2.3 2.7
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Fig. 2: Example of original and reconstructed signals for m = 1024
using the random matrix, and the scatter plots for both the random
and optimized matrices. There are 22 non-zeros in x. The optimized
matrix considerably improves reconstruction accuracy, as evident
from the scatter plots.

VII. CONCLUSIONS

We presented a measurement matrix optimization algorithm for
Poisson compressed sensing. The optimization is done by mutual
coherence minimization, under the constraint of nonnegativity and
energy conservation. Simulation results demonstrate superior recon-
struction using our optimized matrices, compared to random nonneg-
ative matrices. This work is relevant to various optical applications.
Since our algorithm is not guaranteed to converge to a global
optimum, matrix optimization results depend on the initial random
matrix chosen. It would be interesting to explore stochastic global
optimization methods to escape local minima. We assume that the
signals are sparse in the canonical basis. However, our algorithm can
be generalized to sparsity in some noncanonical basis or dictionary
D [6], [7], [8], [9], [10], [11], by compounding D with the mixing
matrix Ψ, resulting in Ψ̃ = ΨD. Additional modifications might be
needed, since Ψ̃ is not necessarily nonnegative. Energy conservation
makes our matrices suitable for photon sharing architectures. In serial
sensing as [44], energy is not conserved, as signal modulation de-
creases the energy of each signal element. Then, energy conservation
must not be imposed on the optimization. Instead, it is advisable to
include the Poisson noise model directly in the matrix optimization.
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