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Abstract. Ultrasound images are very noisy. Along with system noise,
a significant noise source is the speckle phenomenon, caused by interfer-
ence in the viewed object. Most past approaches for denoising ultrasound
images essentially blur the image, and they do not handle attenuation.
Our approach, on the contrary, does not blur the image and does handle
attenuation. Our denoising approach is based on frequency compounding,
in which images of the same object are acquired in different acoustic fre-
quencies, and then compounded. Existing frequency compounding meth-
ods have been based on simple averaging, and have achieved only limited
enhancement. The reason is that the statistical and physical characteris-
tics of the signal and noise vary with depth, and the noise is correlated.
Hence, we suggest a spatially varying frequency compounding, based on
understanding of these characteristics. Our method suppresses the var-
ious noise sources and recovers attenuated objects, while maintaining
high resolution.

1 Introduction

Ultrasound is an imaging technique that uses high frequency acoustic waves. It
is safe, suitable for many applications and is relatively cheap. It is used in sonar,
medical imaging and material science work. However, there are some problems
that interfere with the diagnosis. Fig. 1 illustrates some of these problems. The
most prominent problem, which distinguishes ultrasound from most imaging
techniques, is strong speckle noise. Speckles appear as grains of different sizes
and intensities, that result from the coherent nature of the ultrasound radia-
tion [2]. The speckle image is signal dependent. It is time invariant and thus
cannot be suppressed by temporal averaging. A second problem is attenuation.
The acoustic signal propagating in the medium is scattered and absorbed [2],
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Fig. 1. Problems that disrupt diagnosis in ultrasound imaging. The depth range is
0− 12cm.

and hence attenuated. This phenomenon is more pronounced in high acoustic
frequencies. When the attenuated signal is amplified, it is accompanied by am-
plification of system noise, which is signal independent. Below a certain level
of signal to noise ratio (SNR), objects are overwhelmed by system noise, thus
amplification in post-processing does not reconstruct these objects.

Most past approaches for denoising ultrasound images have used standard
image reconstruction tools, such as weighted median filter [9], wavelet based
methods [4] [5], Gaussian non-linear filters [3] and anisotropic diffusion [14].
All these methods essentially blur the image. Moreover, they do not handle
spatially varying physical effects, as attenuation. Another approach is frequency
compounding,3 in which images of an object are acquired in different acoustic
frequencies, and then compounded [10]. Existing compounding methods [1] have
used simple processing methods such as pointwise arithmetic averaging, and have
achieved only limited enhancement.

In this paper we present a method that does not suffer from the mentioned
disadvantages. It is based on frequency compounding, and the images are ana-
lyzed in a stochastic manner. The stochastic denoising is spatially varying and
it is based on statistical and physical characteristics of the signal and noise
as a function of depth and acoustic frequency. The stochastic denoising shows
significant speckle reduction, with no resolution loss, while deep objects are re-
constructed as well.

3 Spatial compounding is also possible. Yet, it introduces a complex registration prob-
lem, and it does not improve detection in deep regions.
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2 Theoretical Background

Let us first model blur. We assume the ultrasound images to be two-dimensional
(2D), given in their polar coordinates (r, θ). The r coordinate (radial axis) is
the axis of wave propagation, and θ (lateral axis) represents a serial scan of
the direction of the radiating ultrasound beam. The 2D signal measured by the
system is the result of a natural filtering of the 2D tissue reflectivity function
a0(r, θ) with a 2D point spread function (PSF). This PSF is space variant. In
particular, its lateral support changes with the depth r: the acoustic beam is
focused at a certain depth, where the lateral PSF is narrowest, while at other
depths this PSF gradually widens. Yet, in small regions we can assume this filter
to be space invariant. There, the measured signal is

aRF(r, θ) = a0(r, θ) ∗ h(r, θ) . (1)

Following [12], it is reasonable to assume the PSF to be separable. The PSF also
depends on system properties, such as acoustic frequency [2].

Image formation is also affected by attenuation of ultrasound in the medium [2].
A general simple and effective model of the amplitude of the signal is

aRF(r, θ) = e−2αrfacoustica0(r, θ) ∗ h(r, θ) , (2)

where α is the attenuation coefficient of the acoustic amplitude, and facoustic is
the acoustic frequency. A rule of thumb [2] is: attenuation in tissue is approx-
imately 1dB/(cm · MHz), for a signal going from a probe to the object and
then returning. It is clear from Eq. (2) that attenuation depends on the acoustic
frequency: high acoustic frequencies suffer from stronger attenuation and thus a
lower SNR, particularly at large depths. This is evident in Fig. 1

In ultrasound systems, the measured signal aRF undergoes several standard
conversion steps. First, attenuation is compensated for. Then, the acoustic mod-
ulation is extracted: note that aRF is a high-frquency (MHz) signal, which is
modulated by the tissue reflectivity function. To extract the tissue information,
the envelope of the attenuation-compensated aRF is detected, yielding

amagnitude(r, θ) =
∣∣envelope [

e2αrfacoustic · aRF(r, θ)
]∣∣ , (3)

where envelope [g(r)] is an operator [2] that extracts the envelope of a modu-
lated wave g(r) (recall that r is the axis of wave propagation). Note that Eq. (3)
derives the modulus of the envelope, since the envelope is complex, in general.

Speckle Noise

Speckle noise has a granular texture, as presented in Fig. 2. Speckles degrade
the ability to resolve details and detect objects of size comparable to the speckle
size. This noise stems from point scatterers in an homogenous tissue, that cannot
be resolved by the ultrasound system. These point scatterers, which are much
smaller than the ultrasound wavelength, scatter the wave. Two or more waves
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Fig. 2. Speckle appearance of the same tissue in different acoustic frequencies. High
acoustic frequency speckles are smaller than the low acoustic frequency speckles.

travelling to the probe from such scatterers may interfere with each other, con-
structively or destructively, creating bright and dark spots, termed speckles. For
interference, the backscattered signal from the scatterers should overlap in time
and space. This happens when the distance between them is within the PSF
(radially and laterally) support. This is an important point to remember: the
speckle typical size is similar to the PSF support. Since the PSF changes with
depth, the statistics of this noise are space (depth)-variant. Furthermore, they
change when the acoustic frequency used to acquire the image changes, as shown
in Fig. 2, as the PSF does. We exploit these properties in this paper.

Speckle is generally modelled as multiplicative noise [7]. The overall detected
magnitude is

atotal(r, θ) = amagnitude(r, θ) · smagnitude(r, θ) + η(r, θ) , (4)

where the real number smagnitude represents real nonnegative speckle noise at
certain coordinates, and η represents system noise there. The system noise in-
creases with depth, due to the attenuation compensation done in Eq. (3). Still,
assume for a moment that the additive noise is sufficiently small compared to
the multiplicative noise. Then, a log operation on Eq. (4) transforms speckles to
additive noise

log
[
atotal(r, θ)

]
︸ ︷︷ ︸ ≈ log

[
amagnitude(r, θ)

]
︸ ︷︷ ︸ + log

[
smagnitude(r, θ)

]
︸ ︷︷ ︸ .

alog = log(amagnitude) + slog
(5)

The logarithm operation is standard when displaying ultrasound images on a
computer screen [2], since the dynamic range of atotal is very large [2]. Therefore,
in the image used for display, the speckle noise is already additive.

3 Solution

Our solution is spatially varying frequency compounding, based on the best
linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted
least squares (WLS) [8]. This stochastic method relies on the following principles:

– The compounding should be space (depth) variant, since the statistics of
noise change with the depth r, as the PSF.
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– In speckles, adjacent pixels are correlated [12]. Therefore, it is desirable that
compounding would account for this spatial correlation.

– Speckles in different images of the same object, acquired with different acous-
tic frequencies, are correlated [13]. Therefore, simple averaging is not very
efficient for speckle reduction. On the contrary, we should account for the
cross-correlation between different acoustic channels.

– The method is not intended for sharpening. Therefore, it does not include de-
blurring. Nevertheless, we do not want to further blur existing information.

– In general, deep objects are not visible in high acoustic frequency (due to in-
creased attenuation). However, thanks to our use of a low acoustic frequency
image in the compounding, we should end up seeing even the deepest objects.

– In general, spatial resolution is low, when using a low acoustic frequency (due
to a wider PSF). However, thanks to our use of a high acoustic frequency
image in the compounding, we should end up with high spatial resolution,
at least in close distance.

In the following we detail our solution.

3.1 Speckle Model

We refer to the signals amagnitude and alog as discrete N × 1 vectors. When
acquiring K images in different acoustic frequencies, then based on Eq. (5),




alog
1

alog
2
...

alog
K




=




log amagnitude
1

log amagnitude
2

...
log amagnitude

K




+




slog
1

slog
2
...

slog
K




. (6)

At this point we use the principle mentioned above, of not attempting to invert
blur, thus we do not consider the blur h in the reconstruction. Using a δ function
for h in Eq. (2) can estimate â0(r, θ) = e2αrfacousticaRF(r, θ). Therefore, we set

amagnitude
k ≈ |envelope (â0)| , (7)

for all k. Now, the frames amagnitude
k differ in the noise, which is indeed different,

especially the speckle noise. All frames include a similar object content, i.e.,

amagnitude
1 ≈ amagnitude

2 ≈ ... ≈ amagnitude
K = amagnitude , (8)

Hence, Eq. (6) reduces to



alog
1

alog
2
...

alog
K




=




I

I
...
I




log
(
amagnitude

)
+




slog
1

slog
2
...

slog
K




. (9)
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3.2 BLUE

Consider data adata in the general linear model

adata = Ha + n , (10)

where H is a known KN×N matrix (operator), a is an N×1 vector of variables
to be estimated, and n is an N × 1 noise vector with zero mean and covariance
C. The Gauss-Markov theorem [8] states that the BLUE of a is

â = (HT C−1H)−1HT C−1adata . (11)

To apply the BLUE on Eq. (9), we substitute a = log
(
amagnitude

)
as in

Eqs. (10,11), while adata represents the vector on the left-hand-side of Eq. (9).
Now, the noise covariance matrix C used in Eq. (11) has the form

C =




Cslog1 slog1
Cslog1 slog2

· · · Cslog1 slog
K

Cslog2 slog1
Cslog2 slog2

· · · Cslog2 slog
K

...
. . .

Cslog
K

slog1
Cslog

K
slog2

· · · Cslog
K

slog
K




, (12)

where Cslog
k

slog
i

is the cross-covariance matrix between two speckle images slog
k

and slog
i in different acoustic frequencies. Eq. (11) performs a linear combination

of all data adata (all pixels in all images) in order to estimate the value in
each pixel of â. Therefore, the BLUE may potentially perform deconvolution, in
addition to noise averaging. Nevertheless, in our case

H =
(
I, I, . . . , I

)T
, (13)

since we do not attempt deblurring. The BLUE exploits the correlation between
variables. This enables denoising based on partially correlated variables, in con-
trary to a simple average, which implicitly assumes uncorrelated variables.

3.3 Spatially Varying BLUE

To use the BLUE we need to know the noise mean and covariance (statistics),
in the set of images we use. When applying the method for noise reduction, we
need to consider the noise statistics. We estimate the covariance functions from
the data itself. We performed empirical measurements of these functions. This
empirical study revealed that the noise is not stationary. This is not surprising,
since according to [12], the auto and cross correlations of speckles depend on the
system PSF, which (Sec. 2) changes significantly with depth.

Let us first examine a certain block in the image. We can assume stationarity
within this block. However, the statistics change in different image regions. Is
there a need to divide the whole image to blocks, and measure the statistics
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Fig. 3. Estimating the spatially varying covariance matrix.

within each of them? Practically, the answer is No. Since the statistics change
gradually, it is possible to examine a few blocks in the field of view (FOV) as
illustrated in the left side of Fig. 3, and measure the noise statistics only within
them. This processing is applied in the polar coordinate space, as illustrated in
Fig. 3. Then the speckle statistics around any point in the FOV can be deduced.
The measurement of the statistics in these few selected blocks is described in
Sec 3.4, as is the inference from these few blocks to any other region.

The BLUE requires the cross-correlation between different channels. As any
cross-correlation function, it depends on the lag between pixels. When taking
into account a maximum lag of dradial

max in the radial direction and a maximum
lag of dlateral

max in the lateral direction, the size of the covariance matrix equals(
dradial
max · dlateral

max ·K)2. Empirical measurements that we performed in several im-
ages showed a fast decrease in the off-diagonal elements of Cslog

k
slog

i
. We conclude

that the lengths of the spatial correlation are short. Hence, small lags are suffi-
cient to reflect the statistics. We are thus allowed to use small regions, for which
the radial maximum lag is ≈ 40 pixels corresponding to ≈ 1.5mm in our system.

We now have the statistics in a few blocks. Then, using interpolation, we infer
the statistics in any region centered on any pixel in the FOV. Subsequently, we
can apply the BLUE around each pixel in the image. In other words, around
each pixel, we define a small region, and since the noise statistics in this region
has been estimated in the previous steps, we can apply the BLUE for it, and
estimate log

(
amagnitude

)
at that location.

3.4 Measuring Statistics

We have seen in Sec. 3.3 that we use few small blocks in the image, to measure
the covariance matrix, which is spatially variant. We chose blocks in which there
is no meaningful object detail.4

4 Practically, we would not expect a physician to select such blocks manually in each
session. Hence, the typical covariance matrix can be learned using sets of typical
speckle images of arbitrary objects. This is a matter we intend for future research.
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Covariance depends on both lateral and radial lags. Furthermore, radial and
lateral correlations differ. Based on the separability of the PSF [12], the covari-
ance matrix is also separable [12]. For each matrix element [d, q]

Ĉ[d, q] = Ĉradial[d, q] · Ĉlateral[d, q] , (14)

where Ĉradial and Ĉlateral are the noise covariance matrices in the radial and
lateral directions, respectively. Both matrices are measured in a similar way.
For example, the cross covariance in the radial direction between two acoustic
frequencies k and i, is estimated as

Ĉradial
sksi

[d, d + dradial] = Z
∑

l {sk[l]− µ̂sk
}{

si[l + dradial]− µ̂si

}
, (15)

where 0 ≤ d < L, l is a pixel index, dradial is the radial lag between pixels, Z is
a normalization factor, L is the block length and µ̂s is the estimated noise mean
(this mean is estimated using the same data). This estimator of the covariance
matrix is unbiased.

The estimated covariance functions of the selected blocks do not apply to
the entire radial dimension. We still need to evaluate it in between (see the
left side of Fig. 3). For this, we assume that between points in the FOV, the
statistics change gradually. Hence, we can fill the missing data by interpolation.
One can use interpolation methods of matrix-valued images [6], that preserve
the semi-definiteness of the covariance matrix.

4 Experiment

In the experiment, we used a commercial medical ultrasonic system, the GE
Vivid 3. The electronic signal generated by this system is a square burst with
duration of three half periods. The probes used are phased arrays by GE, named
3s and 5s. The algorithm was applied on data obtained from a tissue-mimicking
phantom, so that controlled and repeatable data can be generated. Fat was
placed on top of the phantom to demonstrate an attenuating layer. The ac-
quired images are presented in Fig. 1. One image was acquired with a burst
frequency of 1.5MHz and the 3s probe (referred to as low acoustic frequency
image). The second image was acquired with a burst frequency of 2.5MHz and
the 5s probe (referred to as high acoustic frequency image). As illustrated in
Fig. 2 speckle appearance of the same tissue changes in different acoustic fre-
quencies. Nevertheless, in the high acoustic frequency image, system noise is very
significant. We have direct access to aRF, received in MHz from the medium. We
then directly apply sampling, attenuation compensation, envelope detection and
log operation.

The input for the algorithm is alog
k . The BLUE was applied based on the

two images, as illustrated in Fig. 4. The stochastic reconstruction significantly
reduces speckle noise, along with high spatial resolution and reconstruction of
deep objects. A by-product of the stochastic reconstruction is system noise re-
duction, due to the weighted averaging of the images. The peak signal to noise



Ultrasound Image Denoising by Spatially Varying Frequency Compounding 9

���������	��
��� ������������
������	���� ���� �� ���������� ������� �

Speckle 
reduction

High spatial 
resolution

Reconstruction 
of deep objects

Fig. 4. Stochastic reconstruction vs. simple averaging. The stochastic reconstruction
produces an image with speckle reduction, along with high spatial resolution and re-
construction of deep objects.

Table 1. In all depths, the PSNR obtained by stochastic reconstruction is higher than
the PSNR obtained by arithmetic mean.

Depth (cm) Arithmetic mean Stochastic reconstruction

6 66 : 1 (18dB) 117 : 1 (21dB)

8 48 : 1 (17dB) 73 : 1 (19dB)

10 78 : 1 (19dB) 124 : 1 (21dB)

ratio (PSNR) was calculated. The results are presented in Table 1. The stochastic
reconstruction presents a higher PSNR in all depths.

5 Discussion

The method reduces noise of ultrasound images. It also exposes deep objects
while it maintains high resolution and does not blur the object to achieve denois-
ing. Our approach requires a fast acquisition of two or more acoustic frequencies.
There exists enabling technology [15] allowing that.

Future research can focus on the acquisition process as well as on the process-
ing. In particular, it is worth studying which acoustic frequencies are optimal in
this paradigm. In addition, more advanced mathematical tools can be used. For
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example, diffusion methods [14] and adaptive subdivision coupled to statistical
estimation [11] may be useful to this frequency compounding approach.

We wish to thank Zvi Friedman and Yonina Eldar for useful discussions.
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