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Wave propagation with rotating intensity distributions
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General solutions representing rotations of intensity distributions around and along the propagation axis are
derived for the paraxial wave equation. The formalism used is a key for understanding and synthesizing such
waves as experimentally demonstrated. A necessary and sufficient condition for rigid rotation as well as
limitations on the rotation rate are obtain¢81063-651X96)50507-9
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Wave fields containing invariant features have recentlychanics, dynamic behavidin the z direction is achieved by
stimulated the interest of the scientific community. Typicalsuperposition of these modes. We found it convenient to
examples of such fields are Gaussian modes, Bessel beamste each GL mode as
[1], and wave fronts containing phase dislocatidrg. ~
Bessel beams are solutions of the wave equation that propa- Un,m(") =(r[n,m)=Cp xG(p.2)Rn m(p) Pl ) Zn(2)
gate with invariant intensity. Phase dislocations are disconti- (29
nuities of the phase in a wave front such that the circulatio
of the phase around its axis is an integral multiple af. 2
Thus, they determine lines of zero intensity in space. Experi- Wo _
mental evidences of optical dislocations can be found, for G(p,z)= w2 exd —p 2lexdikp?/2R(z)]exd —i(2)],

Where

example, in Refs[3-5]. It was noted in Refs[4,6] that, (2b)
under certain circumstances, an array of dislocations nested

in a Gaussian beam rotates B2 rad from the waist to the R. (3)=[27 1mlLIml 25 2 2¢
far field, expanding with the host beam. o) =0V2P LGyl 26 29
~ The objective of this paper is to investigate general solu- ®,.(¢)=exgime], (2d)
tions having rotating intensity distributions around and along

the propagation axis. We start by demonstrating that these Z(2)=exd —iny(2)], (29

solutions are easily obtained in terms of the superposition of

Gauss-LaguerrdGL) modes. The rotation rate along the while p=p/w(z) is the radial coordinate, scaled by the
propagation is then derived and the set of all possible soluSaussian spot size, which is given by

tions presenting a specific total rotation angle is character-

ized. Finally, we analyze the limit of the rotation rate and w(2)=wo[ 1+(2/20)*]", (2f)
present experimental results for optical beams. 2
Let a scalar wave be represented by the function Zo=TWo/\ (29
is the Rayleigh | h
F(r,t)=u(r)exdi(kz— wt)], (1) Is the Rayleigh length,

¥(z)=arctanz/zy) (2h
wherer =(p,¢,2) in cylindrical coordinatese is the angular
frequency, andk is the wave number. The paraxial wave is the Gouy phase. The functiof2b) is common to all
equation for propagation a|0ng theaxis is ana|ogous to the mOdeS, and Comprises the radial Gaussian envelope of the
Schralinger equation of a free particle in two dimensions,beéam, a Gouy phase, and a radial quadratic phase factor,
where thez coordinate is replaced by the time variapfeg]. ~ With
This analogy allows us to use the formalism of quantum
mechanics to analyze paraxial wave fields. Although the
three-dimensional wave is stationary in time, we use tim
domain semantics to describe this e.VOIUt'O”' . ... the generalized Laguerre polynomials, and the integars

We seek solutions of the paraxial wave equation W|thObey the relation

scaled and rotated transversal intensity distributions. Our ap-
proach is to use a complete orthogonal set in which each n=|m|, |m|+2, |m|+4, ... . (4)
basis function is stationarfexcept for scalgin the z direc-
tion, and is an eigenmode of rotation about thaxis. The = We use the factor€, , to normalize the constant multipli-
GL function set satisfies both these requirements and theatives in(2c) around the axigsmall p), leading to the ex-
paraxial wave equatiof8,9]. In analogy to quantum me- pression

R(2)=2[1+(z5/2)?] )

%eing the radius of curvature of the wave frolnﬁ“‘_“nb,2 are
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isotropic about the axis and stationaryzirEach term in the
second sum represents a wave rotating linearly with) at
the local rotation rate

d_(p _Anjp di(2)
dz/. ~Am;, dz
ip

where An;,=n;—n, and Am;,=m;—m,. Terms having
(@) (b) m;=m, are isotropic and they do not satisfy the first condi-
tion above. Therefore, they will not be considered further. If
FIG. 1. (a) The theoretical intensity distribution at the waist and all the waves rotate at the same rate, scaled-rigid rotation
the far field.(b) Photograph of the far field. will be observed. That is the case wheuig(, /di) =const

for all j,p, leading to
n—|m|
Cnm=|\ 72—

In Eqg. (2a), the azimuthal dependence of each mode is
given exclusively by®(¢) through the indexm, while the  If Eq. (8) is not fulfilled, additional “harmonics” will appear
dynamic behavior is determined &(z) through the index in the rotation. Hence Eq8) is a necessaryand sufficient
n. To observe any kind of azimuthal change in transverseondition for rigid rotation of images in transverse planes.
planes the wave must possess the following two characterisFhis result is in agreement with RgfLO].
tics. The total rotation from the waisz=0), to the far field
(z=) is then A=V /2, as it is fromz=—x to the
waist. Half of Agyyiy IS Obtained at the Rayleigh distance.
We now study the limit of the achievable rotation rate

The first characteristic can be achieved only by superposinyith paraxial waves. As opposed to the spot size, which

modes with differenim’s, while the second is fulfilled only .hgnges quadratlcally_m the waist at a minimum r(aler(_)

by superposing modes with differens. limit), the absolute azimuth changes linearly in the waist at
Let us examine a superposition of such modes. Assumind'fS maximum rate{see Eqgs(2h) and (7)]. We assume the

without loss of generality, that;<n . ,. The intensity dis- superposition of only two modes, since the rate is uniquely
tribution is given by o defined by their ratid/. In order to maximize the angular

rate we assumgAm|=1 andn,=0, which leads to

n+|m|

Hm|! J2im

© N0y AN £V, j=12,..M-1. (®
= =cons ) =1lZ,..M—1.
mj+1_mj Amj J

(i) Anisotropy (no circular symmetryabout thez axis.
(i) Nonstationary behavior in thedirection.

2
@ma 0) =N N TW3, 9

M
I(r)= J_Zl a(r[n;,m;)

M Apparently, we can make this rate infinitely large by increas-
=|G(';3)|2’ Z |A;IPRE (D) ing the indexn,. However, the paraxial approximation im-
=1 Y poses a trade-off between andw?. To show this, we cal-
MM culate the effective width of the beam as the standard
+ 21 7 2|AJ-||Ap|RnJ_ 'mj('ﬁ) deviation of the intensity distribution. We did so by using the
j=1p=j+

analogs to the quantum-mechanical circular destruction and

creation operatorkl1]. We thus get

XRy_ m (p)cog (m;—my)e—(nj—ny) g(z) — 9]
ng.my, j p ] p 1P \ - <U|X2|U> ~ n+1 ,

<( X) >_ <U|U> - 4 w (Z)

n+1/( Az \?
7, 4

(6)

where the amplitude; comprises the complex amplitude

a; and the constanC, ,, of modej, while ¥;,=[arg(a;) Hence the effective half-angular-beam-spread for a GL beam
—arg(@p)]. The first sum on the right hand side of Ef) is  obeys

’ITWO
(10

FIG. 2. Cross-sectional photographs along zhaxis within the Rayleigh range. The middle photograph is taken near the waist.
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tar( Gbean) =yn+1

w_vvo . (11
Using relation(11) in Eq. (9), we obtain the upper bound for
the rotation rate as
K
n2~>oc )\

The paraxial approximation limit§,.,mand thus we assume
tan(bpeam=1/2. A similar criterion for the validity of the
paraxial approximation was employed in REf2]. Accord-
ingly, we have

¢max<0>=(§

n;

tanz( ebean) n2+ 1

tanz( Gbean) .
(12)

Pmal0)= 7 (13

Although the rotation rate increases asymptotically wit

n,, it gets close to the limit of Eq.12) even for smalin,.
As a consequence of relatidd?), if the beam is to pass
effectively through an apertui@ placed atz|=f>z,, then

<

Pmal0)~ (14)

YOAV Y. SCHECHNER, RAFAEL PIESTUN, AND JOSEPH SHAMIR

180 - 3

Faear}

120

-60

FIG. 3. The measured rotation angle along the propagation axis

h(black point3, and the theoretical curve. The first five points to the

left correspond to the frames of Fig. 2.

the adjacent ones. Note that the spot size is almost constant,
while the rotation is substantial. The measured rotation angle
along the propagation axis, compared to the theoretical
curve, is presented in Fig. 3.

In conclusion, we characterized the set of all possible

We note that this rate is in accordance with the axial-spatialparaxial solutions presenting scaled-rotating intensity distri-
frequency cutoff, which measures how fast the intensity camutions along the propagation. We defined the rotation rate

change along the direction of the optical aKlS].

and observed that the total rotation angle from waist to far

As an example, we show experimental results of a bearfield is a rational multiple of7/2. The experimental demon-
with A ¢o1a= 7. The beam consists of a superposition of twostration showed good agreement with the theoretical predic-

GL modes:

|uy=6|4,2)+|0,0). (15)

We realized(15) by using a computer generated hologram.

The beam hadvy=0.2 mm, using a He-Ne las¢xk=632.8
nm). The hologram was positioned a&=—2 m, and had
dimensions of X1 cn?. It encoded the superposition f5)

and a plane wave at off axis angle of 0.35° on 120201

bution at the waistand also at the far fiejJds shown in Fig.

tions. The limits of the rotation rate in the paraxial regime
were derived.

We further note that the total rotation, as well as the ro-
tation rate, not only depend on the existence of phase dislo-
cations(m number$, but also on the envelope of the beam
that hosts thentn number$. The relation between rotations
and self-imaging is presently under investigation.

It is worth nothing that the superposition of GL modes,
having different optical frequencies, may lead to temporal
rotations of the intensity distribution at fixed distances from

lution of the plotter, film, and camera, while keeping the?he beam waist. This effect has been obseifégdn mult-

physical dimensions of the beam and setup convenient for
laboratory work. The theoretical transversal intensity distri-

mode beams generated by lasers.
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