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Abstract. Light-field imaging can be scaled up to a very large area,
to map the Earth’s atmosphere in 3D. Multiview spaceborne instru-
ments suffer low spatio-temporal-angular resolution, and are very ex-
pensive and unscalable. We develop sky light-field imaging, by a wide,
scalable network of wide-angle cameras looking upwards, which upload
their data to the cloud. This new type of imaging-system poses new
computational vision and photography problems, some of which gener-
alize prior monocular tasks. These include radiometric self-calibration
across a network, overcoming flare by a network, and background esti-
mation. On the other hand, network redundancy offers solutions to these
problems, which we derive. Based on such solutions, the light-field net-
work enables unprecedented ways to measure nature. We demonstrate
this experimentally by 3D recovery of clouds, in high spatio-temporal
resolution. It is achieved by space carving of the volumetric distribu-
tion of semi-transparent clouds. Such sensing can complement satellite
imagery, be useful to meteorology, make aerosol tomography realizable,
and give new, powerful tools to atmospheric and avian wildlife scientists.

1 Introduction

Plenoptic, light-field and integral imaging [1, 6, 8, 12, 23, 35, 29] sample the direc-
tional and spatial distribution of radiance. This imaging mode has been used
in small-scale setups. However, it can be scaled up to map the Earth’s atmo-
sphere in 3D. Sampling the atmospheric radiance spatio-angularly is achieved by
a few spaceborne and airborne instruments, including the Multiangle Imaging
SpectroRadiometer (MISR) [18, 21], the Airborne Multiangle SpectroPolarimet-
ric Imager (AirMSPI) [19, 20] and POLDER [10, 14, 39]. These architectures have
crude resolution spatially (up to kilometers per pixel), angularly (≈ 9 angles per
view) [47], or temporally (orbit takes several days to return to the same terres-
trial spot). Furthermore, spaceborne instruments are extremely expensive and
unscalable. We develop a complementing approach: the atmospheric light-field
is captured from below, by wide-angle cameras looking upwards. This approach
is a scalable sensor network, that captures images simultaneously over a very
large area, densely.

Creating and exploiting such a network poses several requirements: low-cost
units, communications, and tailored computational photography algorithms. The
first two requirements are met thanks to wireless infrastructure, low-cost cam-
eras and cloud computing services. Hence, we can deploy solar-powered cameras
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wherever communication reaches. By wireless, they upload their sky-images to
the “cloud”, from which the light-field data can be analyzed. However, this new
type of imaging-system gives rise to new problems and algorithms, part of which
we deal with in this paper. In a sense, the network generalizes some problems
that had been posed for monocular setups a decade ago. On the other hand,
network redundancy offers solutions to these problems.

The computational photography problems include radiometric self-calibration
across a network of cameras, background estimation, and overcoming saturation
and flare by a network. We demonstrate this in real field experiments by build-
ing a small version Sky-Technion Array of Sensors (STARS). Such a network
enables unprecedented 3D imaging of cloud fields, in high spatio-temporal res-
olution. This approach can complement multi-angular satellite imagery. It can
make aerosol tomography [2, 5] realizable, offer new ways to study weather phe-
nomena and avian wildlife, and aid electric power management [40].

2 Background

2.1 Monocular radiometric self-calibration

A large network should use low-cost camera units. Such cameras often have spa-
tial and temporal radiometric inconsistencies. For example, spatial gain (e.g., by
vignetting [27, 36]) is often modeled by a function M(x), where x = (x, y) is a
camera pixel. The image irradiance at time t is Ĩt(x) = M(x)It(O), where It(O)
is the pixel irradiance when M = 1, for observed object O. For a single camera,
consistent readouts can be obtained in the field by self-calibration. The strongest
methods rely on redundant images, taken at modulated settings. Correspondence
is established between modulated readouts, e.g. by aligning a pan sequence.
Assuming brightness constancy, corresponding measurements yield constraints.
Aggregating constraints over different pixels and frames recovers parameters of
radiometric inconsistencies. This recovery makes monocular pixel readout spa-
tially consistent. Sec. 4 expands this principle to a camera-array.

2.2 Avoiding Blooming, Lens-Flare in a Single Camera

In wide-angle sky-views, the sun is liable to frequently shine directly into the
lens, creating blooming. Moreover, sun-rays create an additive, spatially varying
lens-flare. Reducing flare was suggested [30, 42, 43, 48] using either a specialized
detector array for nearby objects, or camera rotation during capture of a static
scene. Both ways complicate the need for simple, low-cost units and operation.

Sky-observing wide-field cameras often have a dynamic sun blocker: an opaque
object raised above the camera optics, blocking the Sun from view. There are
various configurations, but all of them move, as the Sun direction changes during
the day and across the year. Motorized solutions [41] that need to work year-
around significantly complicate such camera units, making them very expensive.
Sec. 7 explains that a large camera network inherently bypasses the problem,
without a need to constantly move a Sun blocker.
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Fig. 1. Regional stationarity: in a wide region, objects at infinity and the background
sky should have the same color, for a common view angle θ, e.g., [la,θ] vs. [lc,θ] at t1.
Nearby objects (clouds) result in pixel differences, e.g., [lb,θ] vs. [lc,θ] at t1. Neverthe-
less, the statistics (spatio-temporal variations and correlations) are stationary across
viewpoints. This enables statistical processing across viewpoints and time. Residual
measured bias is attributed to slight inter-camera radiometric inconsistencies.

2.3 Current 3D Cloud Mapping

Existing research and operational sky-imaging systems1 are few, relying on high
quality components [3, 9, 16, 28, 37, 46]. Due to their complexity and costs, they
were only used to estimate cloud-base over narrow regions right above a narrow-
baseline camera pair. Satellite-based estimation of 3D cloud-tops has been pro-
posed by MISR [45]. It takes several minutes for MISR to capture multiple
viewpoints of a region, during which the clouds generally move. Weather radars
sense raindrops, which are much larger than cloud-drops and ice crystals.

3 Regional Stationarity in a Camera Network

A network of sky-observing cameras is spread over a region. The location vector
of camera c is lc. Any image pixel x of camera c is back-projected to a ray at
direction-angle vector (zenith, azimuth) θ in a global coordinate system. The
data is the radiance measured per location, direction and time, Ĩt[lc,θ(x)]. An
interesting assumption that can be made is regional stationarity. In a region
containing the cameras, the chance of a cloud, clear sky, or haziness affecting
Ĩt[lc,θ] is independent of c. Thus, inter-camera image variations due to atmo-
spheric conditions are random and unbiased. This is illustrated in Fig. 1.

Some monocular algorithms tend to rely on gathering statistics over time,
thus assuming temporal stationarity. Nevertheless, simultaneous images captured
by different camera nodes are generally different from each other. Due to regional

1 There are also ground viewing webcams that happen to see sky parts [13, 26] and
weather cameras that are too sparse to be integrated for recovery.
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stationarity, a change of viewpoint has an effect similar to change in time: a cloud
in Ĩt[lc,θ] is often not in Ĩt[lc′ ,θ]. Consequently, monocular algorithms can be
extended to statistics gathered over both time and viewpoint (as done under-
water in [4]). Regional stationarity is supported by meteorological research [7,
33]. Stationarity breaks down across large topographic discontinuities: a moun-
tain ridge, coast line. These locations are known, and hence can be handled or
avoided in stationarity-based analysis.

4 Self-Calibration in a Camera Network

Internal geometric and radiometric camera characteristics (including distortions,
radiometric response) are calibrated in the lab using established monocular
methods. However, once a camera is placed in the field, unknown parameters
are introduced. External sources in the vicinity of a camera may create a weak
lens glare, that offsets radiometric readings, in way that varies both spatially and
across viewpoints. Moreover, residual gain variations may be between different
cameras, despite lab calibration. This may be exacerbated in the field by dirt
accumulation on lenses. Similarly to Sec. 2.1, the solution relies on redundant
measurements at corresponding points.

For correspondence, geometric calibration [44] is necessary. The internal pa-
rameters Ψc of camera c are pre-calibrated in the lab. In the field, the location
vector lc is known by GPS but the orientation (yaw, pitch and roll angle vec-
tor Θc) is loosely set. The orientation is calibrated by automatically detecting
and tracking extra-terrestrial (XT) objects (Moon, planets, Sun) [32, 44], across
night or day,2 at pixel xXT

measured(t). Using astronomical charts, an XT object
is known3 to be at angle vector (zenith, azimuth) θXT(t) relative to a global
coordinate system. Given camera orientation Θc, a projection Π converts a ray
direction θXT(t) to pixel Π(θXT(t); Θc, Ψc).

During the course of a day or night, the number of frames N frames is O(100),
leading to a simple optimization formulation:

Θ̂c = arg min
Θc

N frames∑
t=1

‖Π(θXT(t); Θc, Ψc)− xXT
measured(t)‖2 . (1)

We solved it using exhaustive search or gradient descent from null initialization,
with the same results. The orientation calibration is illustrated in Fig. 2.

Based on Θ̂c, all captured images Ĩc,t(x) taken by camera c are aligned to
the global coordinate system: the backprojected ray has direction vector

θ(x) = Π−1(x; Θ̂c, Ψc) . (2)

2 Manual tracking of a special flight and long exposures at night were used in [44].
3 Higher than 20◦ above the horizon [11], errors caused by atmospheric refraction are

smaller than 0.05◦, much less than the angular size of each of our pixels, 0.18◦.
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Fig. 2. (a) To estimate the camera yaw-pitch-roll angle vector Θc, we rely on image
locations of extra-terrestrial objects, whose direction vector θXT(t) is known ∀t. (b)
Photo-montage of night sky images. It shows the Moon at different times, the expected
trajectory based on the estimated Θc, and a close-up on the corresponding sampled
images of Jupiter. (c) Photo-montage of the daylight sky. It shows the Sun at different
hours, the expected trajectory based on the estimated Θc and lens-flares.

Inter-camera Relative Radiometric Self-Calibration

Consider a fixed view direction θ observed by several cameras. The set {Ĩt[lc,θ]}c
corresponds to readouts of parallel rays, back-projected from all cameras in the
network. Values in this set generally differ from each other: Ĩt[lc,θ] 6= Ĩt[lc′ ,θ].
There are two causes for this difference:
1. Different camera locations mean different observed objects. Momentarily,
camera c may observe a cloud while c′ observes a clear sky, or vice versa. Cam-
era c′ may momentarily observe a somewhat denser haze volume than c, etc.
2. Slight inter-camera radiometric inconsistencies, which we need to estimate.

Cause 1 is usually dominant. We need to overcome it, in order to analyze
cause 2. Here we rely on the regional stationarity described in Sec. 3. Per camera
c and view angle θ, bias is due to cause (2). We easily detect and characterize
the bias by capturing statistics over time.

We performed experiments, with a small field-deployed network (STARS),
detailed in Sec. 5. Figure 3a shows radiometric inconsistency between cameras
a and b. Figure 3b is a scatter-plot of Ĩt[la,θ] vs. Ĩt[lb,θ], ∀t,θ, for the red-
channel. From such plots, we hypothesized that camera a has a slight offset vs.
b. We thus estimated, per color channel, the map of radiometric offset (across
pixels, or ray-directions). A temporal median was used:

ôb−a(θ) = mediant{Ĩt[lb,θ]− Ĩt[la,θ]}. (3)

The map ôb−a(θ) was then spatially smoothed and used to correct Ĩt[la,θ].
As shown in Fig. 3d, the results have much better inter-camera consistency. A
similar process was applied to other cameras, but they had negligible radiometric
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Fig. 3. [a] Splitting the field of view to upper/lower halves, to pixels corresponding
respectively to either Ĩt[la,θ] or Ĩt[lb,θ]. In the line between the marked arrows, radio-
metric inconsistency shows-up as a seam across which colors slightly change (please
view on a color computer screen). [b] Scatter-plot of Ĩt[la,θ] vs. Ĩt[lb,θ], ∀t,θ,
red-channel. [c] The estimated offset map ôb−a(θ), red channel. It is derived based on
a set of images taken during several hours. [d] Splitting the field of view in half, to
corrected pixels from either Ît[la,θ] or Ît[lb,θ]: inconsistencies in the line between the
marked arrows are greatly diminished.

offsets with respect to camera b. The spatially varying offset in camera a was
later found to be due to a nearby light source.

A similar process detects slight variations of gain (vignetting). Suppose there
is no offset. In analogy to Eq. (3), the gain in b is higher than in a by a factor

M̂b/a(θ) = mediant{Ĩt[lb,θ]/Ĩt[la,θ]}. (4)

This way, all the network is radiometrically aligned to a single master camera.
After radiometric corrections, the light-field samples are denoted Ît[lb,θ].

5 More Details About The Experimental Setup

Before proceeding with mathematical problems and solutions, we give more de-
tails about a small version STARS network. Each of the five nodes is built from a
basic component set. Its core is a Raspberry-Pi computer and a 5MP Raspberry-
Pi camera, whose gain, response and white-balance can be fixed, avoiding tem-
poral radiometric variations. We manually mounted small fisheye lenses. Due to
this coarse lens-to-chip alignment, each camera has a different peripheral dead-
region, creating a missing part in the view-field and distinct vignetting (Fig. 4).
As we explain, a network as-a-whole can inherently overcome these issues. Every
30 seconds, synchronously, all units automatically transmit image data to the
internet (cloud-service). Each unit is solar powered. STARS operated for weeks
from rooftops at the Technion, uploading data [17].

6 Network-assisted Background Estimation

In monocular settings, change-detection algorithms use temporal filtering to
characterize the background: foreground dynamic objects are at different lo-
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Fig. 4. Images taken simultaneously by a 5-node STARS network. They are geometri-
cally aligned to the zenith and north, and resampled to polar azimuthal equidistant pro-
jection in this global system. Equidistant zenith angle circles are overlayed on Ĩt[le,θ]
(camera e). Each camera had dead-regions, due to rough lens alignment. Correspond-
ing to the frame in camera e, a cloud score map (Eq. 8) has high values in cloud-pixels,
diminishing outside them. [Bottom-right] The 3D setup of the small STARS, laterally
spread over hundreds of meters, at somewhat different altitudes.

cations at different times and are thus pruned. In our case this translates to
stating that a cloud in Ĩt[lc,θ] is often not in Ĩt′ [lc,θ], when t′ 6= t. However,
if clouds move slowly, while illumination gradually changes, temporal filtering
may be insufficient. This is illustrated in Fig. 5.

A light-field network enhances this principle, with more effective pruning-
per-time. Recall regional stationarity (Sec. 3). A change of viewpoint has an
effect similar to change in time: a cloud in Ĩt[lc,θ] is often not in Ĩt[lc′ ,θ].
Consequently, background sky values are obtained by data filtering over both time
and viewpoint. This network-based principle can enhance arbitrary background
estimation algorithms, which would otherwise be monocular. We demonstrate
this using a simplistic, basic criterion. In broad daylight, clouds are brighter than
the sky [24]. Hence, an estimator for the sky background can be, for example

SKY(θ) = arg min
t,c

Ĩt[lc,θ] (5)

where t ∈ [1 . . . N frames] and c ∈ [1 . . . Nviews]. This is illustrated in Fig. 5.

7 Bypassing the Sun Through a Camera Network

As Sec. 2.2 explains, in existing full sky-imagers, effects of direct sunlight are
often mitigated by a small dynamic sun-blocker, which complicates the system
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Fig. 5. [Left] Estimation of the sky background, using Eq. (5) based on five temporal
instances and five viewpoints. [Right] Estimation of the sky background, using five
temporal instances, but just a single viewpoint, resulting in more residual clouds.

and its cost, while having a blind-region. The network offers a different solution,
which can be radical, yet simple. On each camera, the sun-blocker is static, and
has no moving part. The blocker can be large, covering the entire range of direc-
tions the Sun may occupy during the year or part of it. In this configuration, each
camera unit has a large blind area (See Fig. 6). Nevertheless, the entire network
has no blind spot, when viewing the atmosphere. This remarkable property is a
result of network-redundancy, as we explain.

A static year-round sun blocker on camera c permanently obstructs a set
Γc of atmospheric voxels. These voxels, however, are generally visible at several
other cameras, e.g., those indexed e, f, g in Fig. 6. Hence, a sufficiently wide
network has no 3D blind spot, despite permanent sun-blocking. Voxels that are
not obstructed in any view are better constrained than voxels in Γc.

We now quantify the implication of this approach to the network extent, re-
ferring to the northern hemisphere without loss of generality. Nearly all weather
phenomena are under the tropopause, whose altitude H above sea level is typi-
cally 17km at the equator, and decreasing with latitude. The solar seasonal angle
amplitude is β ≈ 23.5o. At latitude γ, thus, a permanent sun blocker spans zenith
angles in the range γ ± β. Earth is divided here to three region classes:
• In the tropics, the sky directly above a camera is blocked. Consider a small
area A, e.g., 1km wide. According to Fig. 6c, the sky above A can efficiently be
observed without a blind spot by cameras to its south. The network needs units
extending to distance D = H tan(β− γ) + ε from A, where ε is a small distance,
sufficient for triangulation at H. At the equator D ≈ 7.4km. It can be shown
that if A is wider than 2H[tan(β−γ) + tan(β+γ)], the network can triangulate
all the sky above it.
• As latitude increases towards the tropic circles, D decreases to zero. Thus the
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Fig. 6. [a] Camera c has a blind-region, covering Sun directions at lc. The blind region
corresponds to set Γc of atmospheric voxels not sensed by by camera c. The network
as a whole still has coverage of voxels k ∈ Γc, as they are observed by cameras e, f, g.
[b] Simulation of a whole sky image (polar azimuthal equidistant projection), blocking
all solar directions during the year, at a mid-latitude. [c] In the topics, the network
must have nodes at distance D outside surveyed area A, if A is narrow. The distance D
depends on the latitude γ, while β ≈ 23.5o. [d] In the arctic, the blind region is adjacent
to the horizon, in all azimuth angles. Fixed blocking of the Sun over 360o blocks low-
altitude voxel k. [e] Arctic cameras fitted with a fixed north-facing sun blocker create
a network that operates 12 hours a day. An adjacent camera at each node has a fixed
south-facing sun blocker, for imaging during complementing hours.

network can observe and triangulate all the sky right above it, anywhere outside
the tropics, in the mid-latitudes.
• In the arctic and antarctic summer, the Sun can appear in all azimuth angles
over the day. A single 24-hour fixed sun-blocker blocks the horizon. So as shown
in Fig. 6d, voxel k is not observed. One solution would be to mount two cam-
eras, side by side, in each network node. Each camera in a node has a fixed sun
blocker, covering half of the azimuth angles. One camera operates in the polar
daytime (local 6AM to 6PM), as it has a south-oriented fixed blocker. The other
camera operates in the complementing time (Fig. 6e), having a north-oriented
fixed blocker. This way, the network never has a blind spot.
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8 3D Clouds by a Camera Network

One application is estimation of the 3D cloud field above the network domain,
and beyond. This can be done by the following steps: (A) Per time t, give a
cloud score s to each ray [lc,θ], as we explain below. (B) Perform a fuzzy version
of space carving [25, 31].

We first describe a simple method to implement (B). The set of all sampled
light-field rays is R, where |R| = N rays. A ray is indexed by r, and it corre-
sponds to a specific [lc,θ]. Voxel k projects to a subset of the rays ρk ⊂ R, that
reach νk viewpoints. Suppose a ray r ∈ R has a cloud-score s(r) ∈ [0, 1], where
s = 0 means there is definitely no cloud on the ray, while s = 1 means there is
confidently a cloud there. Per voxel k, define a back-projected score

Bk =

[∏
r∈ρk

s(r)

]1/|ρk|
if νk ≥ 2 . (6)

This score is null, if k is not observed by at least two viewpoints. This score is
null also if s(r) = 0 for any r ∈ ρk. If all r ∈ ρk have same score s, then Bk = s.
Equation (6) carves-out voxels that contradict support for clouds.

Different cloud regions have signature appearances. Ignoring this would al-
low erroneous matching of, say, a darker cloud-bottom to a bright sun-lit side
of a cloud. Thus, photometric and appearance consistency across viewpoints is
incorporated (the photo-hull concept in space-carving [31]). From the images,
a feature vector v(r, t) is extracted for any measured ray r. We used SIFT
descriptors [38] and the radiance in each color channel. Element q of v(r, t)
is vq(r, t). The values of this element, for all rays that intersect voxel k, is
Vq(k, t) ≡ {vq(r, t)}r∈ρk . Across viewpoints, the measured variance in this set
is VAR[Vq(k, t)]. Define an appearance consistency score [49] as

Pk = exp
(
−Σq{VAR[Vq(k, t)]}/σ2

)
, (7)

where σ2 is a scale parameter. The total cloud-score of a voxel is Tk = BkPk. The
resulting 3D field {Tk} is a volumetric estimate of cloud occupancy. It is biased
to yield clouds larger than they really are: high-altitude voxels occluded by the
cloud-base from all viewpoints are interpreted as being cloudy, since for them Tk
is high. This is a realization of a basic ambiguity: if a voxel is occluded from all
viewpoints, then there is no way of telling if it is cloudy or not, unless auxiliary or
prior knowledge is available. Incorporating a visibility prior favors smaller clouds
that explain the data. If voxel k is completely occluded by other cloudy voxels,
then it can be pruned (carved) out. Voxel k can maintain its Tk if there are at
least two camera viewpoints from which k is not occluded by other cloudy voxels.
Pruning is achieved by sweeping [31] the field {Tk} iteratively. The pruned 3D
cloud occupancy field is denoted {T̃k}. We can maintain the non-binary (fuzzy)
nature or {T̃k}. This way, it possesses the inherent semi-transparency and subtle
ambiguity of clouds.
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Fig. 7. Classification error rate vs. Nviews, without or with a sun blocker.

Basic cloud score

In the literature there are various functions [40] for a basic cloud score (step A).
A ratio of image readout at the red/blue color channels, Ĩred/Ĩblue, is widely
used [44, 50]. Overall, we found it effective in broad daylight: clouds are grey
(unit red-blue ratio), and the cloudless sky is significantly biased to blue. Thus,
for demonstrations in this paper, the cloud-score we used per ray (pixel) is

s(r) =

{
6[Ĩred(r)/Ĩblue(r)−0.8]
0.2+Ĩred(r)/Ĩblue(r)

if Ĩred(r)/Ĩblue(r) > 0.8

0 otherwise
. (8)

Here s ∈ [0, 1], where either bound is achieved at gray clouds or blue sky, re-
spectively. An example of applying this operator on an image is shown in Fig. 4.

Simulations

Quantitative assessments used atmospheric-science simulators. An atmosphere
over 8× 8km was produced using off-the-shelf large eddy simulation (LES), cre-
ating clouds between heights of 500m to 1500m. Lighting conditions were consis-
tent with Copenhagen. Radiative transfer using the discrete ordinate spherical-
harmonic method (SHDOM) [22] rendered images taken by 100 cameras in a
2.5×2.5km2 domain. Recovery simulations used random subsets of the network,
where the whole network is either with or without a sun blocker. In the LES, a
voxel is occupied by cloud if its water-mass parameter is not null. In the recovery,
voxel k is classified as cloud if Tk > 0.01. We measured the classification error
rate, across all voxels. The results are plotted in Fig. 7. As expected of space
carving, results improve fast from 2 to 10 cameras (Fluctuations are within the
random sampling standard deviation). Even with a sun blocker, the algorithm is
able to reconstruct the cloud formation, but, more cameras are needed in order
to compensate for the limited view of each camera.
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Fig. 8. 3D cumulus cloud recovery results. (a,b) Cross-sections of the recovered cloud-
occupancy field {T̃k}. The domain of the clouds is much larger than STARS. Cloud
altitude is above sea-level. (c) Estimated sky-background image. Based on four view-
points (indexed a, b, c, d), the 3D volumetric cloud-occupancy field {T̃k} was derived.
The field {T̃k} was projected to viewpoint e, and overlayed on the estimated sky-
background image. The resulting synthetic cloud-score image J [le,θ] is shown in (d).
This can be compared to the real captured image Ît[le,θ], shown in (e).

Cloud Reconstruction Experiment

We applied the approach on various captured scenes.4 One scene had cumulus
clouds. Cross-sections of the recovered 3D cloud-occupancy field {T̃k} are shown
in Fig. 8. The lateral domain of the clouds is much larger than STARS. Ac-
counting for the altitude of STARS above sea-level, the clouds mainly reside
between 800m to 1450m above sea-level. We used two indicators to validate the
results. First, a balloon-based radiosonde measured the vertical humidity profile
in Beit-Dagan. It is on a similar coastal strip, and roughly used by forecasters

4 Sun blocker was not used here, since saturation and blooming do not impair cloud
shape reconstruction.
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for our Technion location. It indicated a layer of high humidity that can yield
clouds in the range [770, 1881]m above sea-level, consistent with our clouds.

Second, we cross-validated 3D recovery with a missing field of view. We used
four cameras (indexed a, b, c, d) out of five, for 3D estimation. Camera e was
ignored. Then, we projected the estimated 3D cloud distribution into viewpoint
e, and compared to the ground truth. The rendered image is created as follows.
Ray casting [34] of field {T̃k} is performed on a ray corresponding to [le,θ].
Ray-casting aggregates {T̃k} on all voxels intersected by the ray. The result is
a cloud-score image w[le,θ]. To visualize w[le,θ], we used it as α-map to the
estimated sky-background image (Eq. 5). The α-map is

α[le,θ] =

{
2w[le,θ] if 2w[le,θ] < 1
1 otherwise

. (9)

The rendered image is then J [le,θ] = α[le,θ]+(1−α[le,θ])SKY(θ). This image
does not pretend to properly render clouds in their true shades and effect on the
sky. It simply served to visualize the result (Fig. 8d), compared to the true cor-
responding image Ît[le,θ], in Fig. 8e. Like sun-blocking, this rendering exploits
network redundancy. Even if a viewpoint is blocked, much of its information can
be derived using other viewpoints compounded with 3D recovery.

Another scene had a layer of altocumulus clouds. Figure 9 shows sample
frames from this scene, and a cross-section of the recovered 3D cloud-occupancy
field {T̃k}. Accounting for the altitude of STARS, these estimated clouds mainly
reside on a horizontal layer at ≈ 3450 ± 500m above sea-level. Here, the ra-
diosonde indicated a layer of high humidity that can yield clouds in height range
[3072, 4180]m above sea-level. This is in strong agreement with our results.

9 Discussion

Scaling light-field imaging hugely to sense the sky, would use a large network
of camera nodes, each having a wide field of view, deployed over a wide area.
Such a network can reach anywhere communication exists. This sensing ap-
proach offers significant advantages over existing technologies (experimental and
operational) of atmospheric sensing, particularly 3D imaging, and doing so in
high spatio-temporal resolution. This sensing approach poses new questions for
computer vision and computational photography. These include network-based
extensions to monocular tasks including network-based radiometric calibration
and background estimation. Network redundancy offers the ability of by-passing
saturation or blind spots, as those created by the sun, without moving parts.

To enable a massive network, each node should have very low-cost. To demon-
strate this can work, units in the small STARS used very basic components and
coarse alignment. This concept can spawn more interesting research. In the direc-
tion of the sun blocker, other sensors can be incorporated. Night-time operation
is an interesting challenge. Furthermore, such a light-field system can be used
for studying airborne animals (birds, bats [15], locust), in 3D time-lapses.
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(a) (b)

cameras

4000 m
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4000 m

Camera a

Camera d

Fig. 9. 3D altocumulus cloud recovery results. (a,b) Sample frames. (c,d) Cross-sections
of the recovered cloud-occupancy field {T̃k}. Cloud altitude is above sea-level.
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