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Abstract
Shallow waters are very important for human and bio-

logical activity. Remote sensing of these areas is challeng-
ing, as it requires separation of ocean (or lake) bottom, wa-
ter and atmospheric effects. In this paper we describe a
concept and theory for spaceborne recovery of the under-
water depth map, optical characteristics of the water and
atmosphere, and the descattered ocean bottom. The sensing
is based on multi-angular geometry and polarization. An
orbiting platform captures a subspace of the Earth’s light
field, which is sensitive to the atmospheric and water char-
acteristics. Consequently, it is possible to invert the image
formation process using the acquired data. Recovery is sim-
plified using recent findings about natural characteristics of
deep water backscatter and surface transmissivity. It also
exploits accumulated historical sounding data.

1. Introduction
Remote sensing of the ocean is important for oceanogra-

phy, atmospheric sciences, and climatology. Thus, research
satellite instruments1 are used for oceanic remote sensing,
mainly in deep, open areas. However, shallow waters are
important. Lakes, waterways, coral reefs and coastal wa-
ters possess a significant amount of biological activity [3],
and are by far the most used and thus important for human
activity [3]. Imaging in such regions is useful, thus, for
biologists, geologists and archaeologists. Mapping there is
important for boat safety, to avoid spots that are too shallow.
It is also useful to oceanic engineers.

It is more difficult to analyze regions corresponding to
shallow water. The open ocean is easier to analyze, since
it is effectively dark in near-IR. This eases isolation and
inversion of atmospheric effects [22, 26]. In shallow wa-
ters (termed Case 2 [4, 26]), however, coastal constituents
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1These include Polarization and Directionality of Earth’s Reflectances
(POLDER), MODerate resolution Imaging Spectroradiometer (MODIS),
MEdium Resolution Imaging Spectrometer (MERIS), Sea-viewing Wide
Field-of-view Sensor (SeaWiFs) and Multi-angle Imaging SpectroRa-
diometer (MISR)
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Figure 1. A satellite having multi-angular cameras. Camera N al-
ways looks at the nadir. Camera F looks obliquely forward, along
the orbit track. In a short time, any surface point is sampled from
multiple directions. Each view has systematically different levels
of attenuation and path radiance by the water and atmosphere.

change the near-IR radiance, complicating IR-based recov-
ery [26], and the sea bottom affects the radiance as well [4].

Remote depth estimation (bathymetry) of shallow areas
has been impressively done using single-view hyperspec-
tral data [21, 28, 31]. This approach assumes that ratios of
attenuations at multiple wavelengths indicate depth. The es-
timated depth, however, changes with the albedo of the sub-
merged object, since the approach does not invert the image
formation model. Several parameters need to be tuned.

We propose an approach for remote underwater imaging,
to recover: (1) the appearance of submerged objects, as if
they are shallow; (2) the underwater depth map; (3) op-
tical characteristics of the water, which imply the type and
concentrations of hydrosols; (4) optical characteristics of
the atmosphere, which imply the type and concentrations of
aerosols. Goal (3) is important for studying and tracking
the marine biological environment, specifically by recover-
ing the concentration of chlorophyll [3, 26]. It is also im-
portant for geological studies of ground deposits in water.

The theory in this paper shows that a multi-angular sys-
tem (Fig. 1) which is polarization-sensitive appears to pro-
vide sufficient constraints, to essentially invert the image
formation process and recover the important unknowns. We
exploit the fact that shallow areas, being of human inter-
est for ages, have had their depths sampled by boats. We
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also exploit scientific findings about natural characteristics
of water polarization and deep water radiance. We believe
this theory can suit a new generation of remote sensing in-
struments, having multiangular and polarimetric capabili-
ties [5, 12], in addition to high spatial resolution.

2. Background
2.1. Stokes and Mueller Formalism

Let us view a partially linear polarized object. When ro-
tating a polarizing filter in front of the camera, the mea-
sured intensity changes as a cosine of the filter orienta-
tion. The cosine has a 180o period and three degrees of
freedom, which depend on the scene: mean, amplitude
and phase. Rather than using these parameters, the object
state is conveniently parameterized [24] using an equivalent
three-element Stokes vector.2 Let an object at very shallow
water have Stokes vector lobj

UW = [lobj
UW qobj

UW uobj
UW]T, where

T denotes transposition. Here, lobj
UW is the object radiance.

The components qobj
UW and uobj

UW express polarization: their
joint norm is equivalent to the above mentioned cosine am-
plitude, while their ratio is equivalent to the phase.

Incoherent superposition of beams is expressed by sum-
ming the respective Stokes vectors. Reflection, refraction
and scattering instances, which are sensitive to the polariza-
tion components, are expressed by Mueller matrices, which
operate on the Stokes vectors. Specifically, consider refrac-
tion through a flat water surface. Relative to the nadir, the
submerged line of sight (LOS) is at an angle θw

LOS. The
submerged LOS is refracted to the airborne LOS, which is
at angle θa

LOS relative to the zenith (See Fig. 2). For a hori-
zontal water surface, Snell’s law dictates that

sin θa
LOS = n sin θw

LOS , (1)

where n is the optical refractive index of water (typically
n = 1.34). Across the water-air interface, transmission
(refraction) of a ray associated with a Stokes vector is ex-
pressed [18, 24] by a Mueller matrix

T =




(t‖ + t⊥)/2 (t‖ − t⊥)/2 0
(t‖ − t⊥)/2 (t‖ + t⊥)/2 0

0 0
√

t‖t⊥


 , (2)

where

t‖ = 1−[tan2(θa
LOS−θw

LOS)]/[tan2(θa
LOS+θw

LOS)] , (3)

t⊥ = 1− [sin2(θa
LOS−θw

LOS)]/[sin2(θa
LOS +θw

LOS)] . (4)

2.2. Atmospheric Attenuation in Oblique View
A camera flies above the atmosphere, and looks at the

ocean. Had the camera pointed directly downwards, the
radiance from the surface would have been filtered by the

2Stokes vectors have four elements, but we use a degenerate 3-element
version of it, expressing only linear polarization. Similarly, we use degen-
erate 3× 3 Mueller matrices, corresponding to linear polarization effects.

atmospheric transmissivity exp(−τatm), where τatm is the
optical depth of the atmosphere. However, the LOS in air
is inclined at angle θa

LOS. So, assuming a laterally uniform
atmosphere [2, 22], its transmissivity along the LOS [22] is

tatm = exp
(−τatm/µa

)
, where µa ≡ cos θa

LOS. (5)

2.3. Water Attenuation in Oblique View
In water, the submerged LOS is at angle θw

LOS relative
to the nadir (Fig. 2). Propagation of light from the object
along the submerged LOS undergoes attenuation by the wa-
ter, which is analogous to Eq. (5). Thus the water transmis-
sivity along the LOS is

twLOS = exp [−βwz(x)/µw] , (6)
where z(x) is the underwater depth of the object at lateral
location x = (x, y) on Earth. The depth is measured down-
wards from the ocean surface. Here µw = cos θw

LOS and
βw is the attenuation coefficient of the water. Moreover, the
object irradiance itself weakens with depth, since sunlight
gets attenuated on the way down. Let the sun beam prop-
agate at angle θw

sun underwater, relative to the nadir. Sim-
ilarly to Eq. (6), the water transmissivity along the light-
ing direction [11] is twsun = exp[−βwz(x)/µw

sun], where
µw

sun = cos θw
sun. Overall, the object signal becomes dim-

mer with underwater depth, due to both effects: attenuation
of irradiance and attenuation along the LOS. The combined
effective transmissivity of the water, from the surface to the
sea bottom and back to the surface [21] is

tw(x) = twLOStwsun = exp
[
−βwz(x)

(
1

µw
sun

+
1

µw

)]

(7)
3. Image Formation

Let us describe a model for image formation when view-
ing objects through both the atmosphere and water. As
shown in Fig. 3, the measured radiance i(x) at the top of

orbit
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Figure 2. Sun rays irradiate the water surface at angle θa
sun and

refract at angle θw
sun. Relative to the nadir, the camera’s line of

sight (LOS) is inclined at angle θa
LOS in air, i.e., at angle θw

LOS in
water. The atmosphere and water are laterally homogeneous.
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Figure 3. The measured intensity is composed of several com-
ponents: airlight a, water backscatter b, and the object radiance,
which is lobj

UW if the object is very shallow. The camera points
away from sun-glint, and senses a reflection of the sky radiance
lsky. The bottom is at underwater depth z.

the atmosphere (TOA) is affected by several components:
• A submerged object. Had it been very close to the sur-
face [36], its radiance would have been lobj

UW. When the
object is submerged deeper, its radiance is attenuated by the
water. Propagating upwards along the LOS, the object ra-
diance is further reduced by the transmissivity of the water
surface tsurface and the atmospheric transmissivity (5).
• Scattering in the water creates water path radiance along
the LOS. This path radiance is sometimes referred to as
backscatter [29], and is denoted here by b. On its propaga-
tion upwards along the LOS, the backscatter is reduced by
the transmissivity of the water surface and the atmosphere.
• A portion of the sky having effective radiance lsky is re-
flected by the water surface,3 whose reflectivity is rsurface.
Also this component suffers from atmospheric attenuation.
• Light which is unrelated to the object at a specific pixel
irradiates the atmosphere. A direct irradiance source is sun-
light. Indirect sources include multiple scattering in the
atmosphere (skylight) and diffuse lighting from water and
land surrounding the field of view (FOV). Part of that light is
scattered towards camera along the LOS, creating an atmo-
spheric path radiance, referred to as airlight [8, 27, 30, 32],
and denoted here by a.

Overall, at the TOA,
i(x) ={[

lobj
UW(x)tw(x) + b(x)

]
tsurface + lskyrsurface

}
tatm + a.

(8)

According to Ref. [11, 21],
b(x) = b∞[1− tw(x)] , (9)

regardless of the slope of the LOS and the attenuation of
irradiance with depth. Here b∞ is the asymptotic value of b
corresponding to an infinitely deep sea bottom.

To generalize (8) to polarization fields, scalar radiance
is replaced by a Stokes vector. The respective vectors of

3Scattering by whitecap waves is another component. Our analysis fo-
cuses on weather conditions which do not create significant whitecaps.

airlight, the sky patch reflected by the water and backscatter
are a, lsky and b = [b qb ub]T. According to [11], similarly
to Eq. (8), b(x) ≈ b∞[1− tw(x)]. Here b∞ is the polar-
ization state of backscatter along an LOS submerged to an
effectively infinite depth. Transmissivities of bulk water and
bulk atmosphere have no polarization sensitivity, thus over-
all the Stokes vector measured at the camera is

i(x) = tatm
{
T

[
tw(x)lobj

UW(x) + b(x)
]

+ Rlsky
}

+ a.

(10)
Here R and T are Mueller matrices of water surface re-
flection and transmission (refraction), respectively, while
R[1, 1] = rsurface and T[1, 1] = tsurface. Both matrices
are governed by the Fresnel equations [24], and depend on
the angle between the LOS and the water surface normal.
At remote sensing scales, the water is horizontal, but some-
what rough due to water waves. The matrix R is discussed
in Ref. [18], particularly in the context of wavy water. The
vector Rlsky is sensitive to the wave conditions. However,
as we shall soon see, we do not need Rlsky. Thus, we skip
its details. The matrix T is detailed in Eq. (2) for flat water,
but what happens in a wavy sea? Fortunately, (2) holds even
in wavy conditions, as we discuss in Sec. 4.

4. Prior Knowledge
In addition to the model, we employ knowledge which

has been accumulated by marine researchers and users.

1. In some lateral coordinates xs, good assessment [21]
of the underwater depth z exists. It stems from sample
depth sounding of shallow waters, which has been per-
formed for many years. The discrete set of points for
which z(xs) is known prior to our recovery is termed here
soundings. Most of the FOV has unknown z.

2. Blur due to refraction by a wavy water surface
is negligible, at the relevant scales we work in. This
fact is used also by existing methods of multispectral
bathymetry [21, 31]. Hence, we do not attempt to measure
the wave structure [15, 16].

3. Around the nadir, b∞ is at a rather flat minimum, as
revealed by Refs. [2, 25, 34, 35]. Hence, we model it as

b∞(µw) ≈ b∞(N) + α(1− µw) , (11)

where b∞(N) is the value of b∞ at the nadir (µw = 1), and
α ¿ b∞(N) is a global constant.

4. Refraction induces a predictable polarizance ex-
pressed by T. It can be compensated. Deviations due to
water surface waves have a negligible effect. As shown
in Fig. 4, T is almost invariant to changes in the angles
of incidence, for a fairly broad range around the surface
normal. Thus, when waves change the angle of incidence,
they hardly change the transmittance. Second, a pixel in
a satellite camera does not sense individual wave patches,
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but averages a wide area, integrating over surface slopes.
Ref. [10] derives the strong insensitivity of the surface
transmissivity to the wind conditions. As a result, flat water
(no wind) transmittance suffices for our needs.

5. Assumptions
For a simple inversion, we make several assumptions.

I. Across the FOV, the atmosphere and the water are
laterally homogeneous: their parameters are constant. This
is commonly assumed in remote sensing [2, 22].

II. One sounding is in very deep water [21], where
z →∞, and thus tw → 0. There, the measured Stokes vec-
tor at the TOA is

ideep = tatm[Rlsky + Tb∞] + a . (12)

III. Blur due to scattering is negligible. Multiple
scattering can exist, but overall, blurring between nearby
small targets is neglected. The multiply scattered (blurred)
light from small targets is assumed to get attenuated with
distance similarly to singly scattered light, and the error in
this assumption is assumed to be small, relative to the total
signal. Neglecting blur is successful in a range of outdoors
works [14, 19, 20, 27, 29, 30, 32] in computer vision. It
is more valid in the current work, since usually the optical
thickness is smaller in a view from above, than in open
country horizontal views. While the satellite is hundreds
of kilometers high, it is mainly the lowest few kilometers
in which dense scatterers reside. Hence, blur is also
neglected in multispectral bathymetric estimation [21, 28].
Multiple scattering from diffuse, large sources (sky light,
or light radiated by the whole sea to the horizon) can be
significant. However, these components also add-up in
pixels corresponding to deep water. As we shall see, we use
the deep water radiance to cancel global, diffuse compo-
nents. Thus, such components are countered by our method.

IV. The submerged object at a sounding reflects unpolar-
ized light [29, 30]. Specularity underwater is weaker [29],
since refractive index mismatches are smaller there. Some
objects in the FOV may be partially polarized, though.

V. The object is effectively Lambertian when submerged.
This is supported by the reduced specularity just described.

1
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Figure 4. The non-zero elements of T.

Moreover, Ref. [36] shows that empirically, submerged
coastal materials are significantly more Lambertian than in
air, particularly when illuminated and viewed from roughly
above, as in our geometry. It is sufficient for this assump-
tion to hold within our range of θw

LOS, which is significantly
smaller than the range of θa

LOS, due to refraction.

6. Descattering and Depth Map Recovery
Recovering any of the unknowns in this paper is essen-

tially a parametric fitting problem. Thus, we will show how
the data yields constraints for a fit. Section 7 describes
how the spatially invariant parameters {βw, τatm, α} can
be estimated, based on soundings data and priors. Thus,
in the current section, assume that the respective estimates
{β̂w, τ̂atm, α̂} exist. Based on them, multi angular acqui-
sition by the satellite is exploited here to estimate the un-
known spatially varying z(x) and lobj

UW(x). The submerged
objects can be arbitrarily polarized, since we make no use
of polarization here.

At a pixel viewing deep water, the radiance of Eq. (12)
is ideep = tatm(rsurfacel

sky + tsurfaceb∞)+ a, where all the
variables depend on θa

LOS. Following Eqs. (8,9), define

iundeep(x, µa) ≡ i(x, µa)− ideep(µa) . (13)

Then, Eqs. (8,9,13) yield

iundeep(x, µa) = tsurface

[
lobj
UW(x)− b∞

]
twatm(x, µa),

(14)
where

twatm = tw(x)tatm . (15)

The simple calculation in Eq. (13) thus eliminates the un-
known atmospheric path-radiance and surface reflection, in
each view setting µa, as seen in Eq. (14).

Since tsurface is practically unaffected [10] by the waves,
it can be derived using Eq. (2) and be easily inverted.
For most angles θa

LOS, the inversion is very stable since
tsurface ≈ 1, yielding

iunsurf(x, µa) = iundeep(x, µa)/[tsurface(µa)] . (16)

Based on τ̂atm, define

ino
atm(x, µa) = iunsurf(x, µa) exp(τ̂atm/µa) . (17)

Based on Eqs. (14,16,17), ino
atm is compensated for both the

surface transmissivity and the atmospheric effects (airlight
and attenuation) along the LOS. Define

lobj
N (x) = lobj

UW(x)− b∞(N). (18)

According to Eqs. (7,11,14,17,18),

ino
atm(x, µa) = [lobj

N (x)− α(1− µw)]e−
(

1
µw
sun

+ 1
µw

)
βwz(x)

.
(19)

The orbiting satellite acquires images at a set of
known M > 3 elevation angles θa

LOS, i.e., known val-
ues of {µa

m}M
m=1. Correspondingly, the set {µw

m}M
m=1
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is known as well, using a cosine version of Snell’s law,
µw = 1

n

√
n2 − 1 + (µa)2. The sun state µw

sun is known
as well. Given the spatially invariant {βw, α}, Eq. (19),
has only two unknowns per pixel: the biased scatter-free
lobj
N (x), and the depth z(x). Yet, per pixel there is a set

of M empirically derived values {ino
atm(x, µa

m)}M
m=1, which

independently constrain the two unknowns through the non-
linear relation (19). Thus, estimating z(x) and lobj

N (x) is
over-constrained ∀x, thanks to multiview sensing.

In practice, the vector [z, lobj
N ]x can be searched to fit

Eq. (19) in multiple view angles simultaneously. The search
domain is finite: z ∈ (0, 50m), as 50 meters are already in
the “very deep” domain, while the object reflectivity do-
main is not different than that of dry objects.

The parameter b∞(N) is not recovered in this work.
Hence, Eq. (18) is not inverted to completely recover
lobj
UW(x). Thus, the object radiance is recovered up to a

global bias. The bias is small, since usually b∞(N) is signif-
icantly smaller than lobj

UW(x).

Simulation
As an example, we performed a simulation. The

simulation inputs are detailed below. Some parameters are
inspired by the MISR instrument, which has been acquiring
global multi-angle imagery of Earth aboard NASA’s Terra
satellite since 2000. It has nine pushbroom cameras arrayed
at nine along-track view angles.

Optical bands: Red=671.7 nm, Green=557.5 nm,
Blue=446.4 nm, as the visible MISR wavelength channels.

Atmosphere: Spherical particles with a bimodal size
distribution, where each mode is a log-normal distribution.
In mode 1, the median radius is 0.03 micron, and the
standard deviation (STD) of the natural log of radius is
0.501. In mode 2, the median radius is 1 micron, and the
STD of the natural log of radius is 0.642. In both modes,
the real refractive index is 1.45 and the imaginary refractive
index is 0. In the green band, modes 1 and 2 account,
respectively, for 70% and 30% of the optical depth. The
tropospheric aerosol base altitude, top altitude and scale
height are 0 km, 10 km and 2 km, respectively. Including
Rayleigh scattering, the total atmospheric optical depths
are [τatm

Red , τatm
Green, τatm

Blue] = [0.05716, 0.1122, 0.262].

Camera zenith angles [degrees]: Similar to MISR,
θa
LOS ∈ {70.4, 60.3, 45.9, 26.5, 3.1, 26, 45.5, 60, 70.3}.

Solar zenith angle: 65o.

Ocean water: Albedo and surface reflectance distribu-
tions are those used by MISR’s retrieval products [22, 23],
for 2 meter/sec wind-speed. The attenuation coefficients
are [βw

Red, βw
Green, βw

Blue] = [1/5, 1/20, 1/10] meter−1.

Object: The reflectance texture is shown in Fig. 5. This
image was taken since it has average color balance (in the
respective wavelength bands) as a quartz beach sample

from the Gulf of Mexico (Sample 110 in [1]). The colors
in the image were slightly adapted to fit the beach sand
spectral data. The absolute reflectance was reduced by
45%, relative to the values in [1], to emulate darkening of
submerged sand [36]. The depth map is shown in Fig. 5.

Sensor: Similarly to MISR, pixel full well is 106e−. It
corresponds to the brightest readout. Photon noise domi-
nates in such bright images, and it was thus incorporated.

To analyze the images, we first created a look-up table
(LUT) of discrete [z, lobj

N ] values. Then, for each pixel, the
LUT was searched for the best fitting vector, which is de-
noted [ẑ, l̂obj

N ]. The fit was done, per pixel, by minimizing
the sum of absolute differences, along all θa

LOS, between the
two sides of Eq. (19). The results have some outliers, so a
simple spatial median filter was applied as post precessing.
It is illustrative to look at the results of the blue channel,
for which, in this simulation βw = 1/10 meter−1, i.e., the
median attenuation among the color channels.

According to the scatter plot, the estimated depths fol-
low the correct depth, until nearly 20 meters. This is twice
the attenuation length of the water. But, light passes back
and forth from the water surface, and the sun illuminates
from a rather shallow slope. So, light is being attenuated for
significantly more than twice the attenuation length. Thus,
around 20 meters, the recovery breaks down, and large er-
rors occur. This is also seen in the estimated radiance l̂obj

N :
there is nice recovery in the northern part of the image,
but the southern portion, corresponding to 20 meters and
deeper, demonstrates quick deterioration. There, the lack
of object signal is interpreted as a dark object at a random
depth. Consequently, the radiance scatter plot has two clus-
ters. One cluster nicely fits the true radiance lobj

UW (along the
main slope in the plot). The other cluster is around l̂obj

N = 0,
corresponding the erroneously dark region in the recovery.

Recovery of somewhat deep regions, which fails here,
is not lost. As shown in Ref. [17], regularized solutions
which are adaptive to depth can suppress noisy results in
deep regions. This is contrary to the recovery attempted
here, which is essentially pointwise. However, recovery of
deep regions leads to fast loss of spatial resolution, due to
the low signal-to-noise ratio there [33], despite having no
spatial blur in the optical model. Since photon noise is dom-
inant, it is best to minimize, during acquisition, the sky re-
flection and airlight. Thus, the method should avoid images
containing sun-glint. This is often achievable: thanks to the
multi-angular setup, if some cameras suffer from sun glint,
then others may not point in the glint direction.

The radiance scatter plot shows that some pixels have
a negative value for l̂obj

N . This is fine, since according to
Eq. (18), lobj

N < lobj
UW due to a negative bias. However, the

plot shows that the systematic bias is not large, relative to
errors stemming from the random noise. Hence, lobj

N can
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Figure 5. Left to right: input to image rendering; two simulated frames (out of nine views), which are input the to recovery step; recovery
results. The displayed images are gamma-corrected for clarity. Shallowest and deepest points are at z = 0 and z = 35 meters, and are in
the brightest a darkest pixels, respectively, in the depth map. Scatter plots are based on 1000 random points in the FOV.

often be a good approximation to lobj
UW.

7. Estimation of Scene Parameters
7.1. The Atmospheric Optical Depth

There are algorithms for atmospheric correction of satel-
lite images over ocean [2, 4, 22], including estimation of
the atmospheric optical depth τatm. They are rigorous, and
account for multiple scattering and types of aerosols, hence
may work in our case. On the other hand, as discussed in
Sec. 1, they are challenged by shallow water scenarios. We
describe here a way to approach the problem.

It is important to estimate the water attenuation coeffi-
cient, βw. After βw is recovered, τatm can be estimated.
However, to ease the flow of the paper, we first describe the
estimation τatm, assuming, for the time, that βw is known.
To calibrate the parameters, we use the data in pixels xs cor-
responding to soundings. At soundings, the depth z(xs) is
known, and so is the water attenuation tw(xs), via Eq. (7).

Equation (16) is derived directly from the raw data, with-
out prior parameter estimation. Compensating for water at-
tenuation at the soundings and using (5,11) yields

idry(xs) =
iunsurf(xs)

tw(xs)
= [lobj

N (xs)−α(1−µw)]e−τatm/µa
.

(20)
Eq. (20) has three unknowns: the local lobj

N (xs) at a sound-
ing, and the global (and of interest) {τatm, α}. On the other
hand, the cameras acquire images at a set of known M > 3
elevation angle settings {µa

m}M
m=1. Thus, the parameters

can be recovered by fitting the data at xs to Eq. (20).
We now describe a simplified process. We may write

lobj
N (xs)−α(1−µw) ≈ lobj

N (xs)[1+(1−µa)ω(xs)] . (21)

Here ω(xs) is a small unknown. It is angularly-constant, but
changes from pixel to pixel. At the nadir, µa = 1, leading to

an exremum value lobj
N (xs) at the right hand side of Eq. (21).

Off nadir, as θa
LOS increases, both sides of Eq. (21) slowly

change quadratically (at small angles). From Eqs. (20,21),

idry(xs, µa) ≈ lobj
N (xs)[1 + (1− µa)ω(xs)]e−τatm/µa

.
(22)

Define ĩdry = log idry and l̃obj
N = log lobj

N . Then

ĩdry(xs, µa) ≈ l̃obj
N (xs)+(1−µa)ω(xs)−τatm/µa, (23)

where we use the relation log[1 + (1−µa)ω] ≈ (1−µa)ω,
when (1−µa)ω is small. Thus, for each xs, there is a set of
equations (23), which can be written as



1 (1− µa
1)

−1
µa

1

1 (1− µa
2)

−1
µa

2
...

...
...

1 (1− µa
M ) −1

µa
M







l̃obj
N (xs)
ω(xs)
τatm


 =




ĩdry(µa
1)

ĩdry(µa
2)

...
ĩdry(µa

M )




(24)
This set of equations solved, to estimate the unknowns
l̃obj
N (xs), ω(xs), and most importantly in this section, τatm.

Once the estimation of τatm (and lobj
N (xs)) is done, fitting

Eq. (20) to recover α becomes simple.

7.2. The Water Attenuation Coefficient
Equation (16) is obtained directly from the raw data,

without prior parameter estimation. Spatial variations in
Eq. (16) are affected by both the object radiance lobj

UW(x)
and the water transmissivity tw(x). We need to decouple
these functions, in order to recover the water transmissiv-
ity. This is the place where polarization is useful. We use
polarization at pixels xs corresponding to soundings.

Generalizing Eq. (13) to polarization, define the empiri-
cally derived field iundeep(xs) ≡ i(xs)− ideep, where (fol-
lowing Eqs. 10,15,12)
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iundeep(xs) = T
[
lobj
UW(xs)− b∞

]
twatm(xs) . (25)

From assumption IV, lobj
UW is unpolarized. Thus,

lobj
UW(xs) = [lobj

UW(xs) 0 0]T . (26)

Using Eq. (26) in Eq. (25) yields

iundeep(xs) = T








lobj
UW(xs)

0
0


−




b∞
ub
∞

qb
∞






 twatm(xs).

(27)
The backscatter polarization components ub

∞ and qb
∞ are

spatially invariant and are not mixed with polarized com-
ponents of an object. Furthermore, T is spatially invariant
as well. Hence, focusing on the polarized components in
Eq. (27) should assist in the desired decoupling.

Following prior 4, T is predictable and stable even in
unknown wavy conditions, and is given by the flat water
expression Eq. (2). As shown in Ref. [18], for most angles
of interest, T is strongly diagonal - nearly the identity ma-
trix. Hence, its inversion is simple and stable. The surface
polarizance is thus compensated by




iunsurf(xs)
uunsurf(xs)
qunsurf(xs)


 = iunsurf(xs) = T̂−1iundeep(xs) .

(28)
The polarized vector component of iunsurf(xs) has mag-

nitude
ipol(xs) =

√
u2

unsurf(xs) + q2
unsurf(xs) . (29)

From Eqs. (15,27,28), uunsurf(xs) = ub
∞tatmtw(xs) and

qunsurf(xs) = qb
∞tatmtw(xs). Hence,

ipol(xs) =
√

(ub∞)2 + (qb∞)2tatmtw(xs) . (30)

Now, the spatial variations of the empirically measured
ipol(x) depend only on the spatial variations of tw(x).

Define ĩpol(xs) = log ipol(xs). Incorporating Eq. (7) in
Eq. (30), and taking the log,

ĩpol(xs) = C − βwz(xs) [(1/µw
sun) + (1/µw)] , (31)

where
C = log

[
tatm

√
(ub∞)2 + (qb∞)2

]
(32)

is spatially invariant. The view angle θa
LOS of any orbit-

ing camera is known, as well as the fixed θa
sun. Thus,

{µw, µw
sun} are known. Furthermore, according to prior 1

z(xs) is known (soundings). Hence,
z̃(xs) ≡ z(xs) [(1/µw

sun) + (1/µw)] (33)

is known ∀xs, and any θa
LOS. Using Eq. (33) in Eq. (31),

ĩpol(xs) = C − βwz̃(xs) . (34)

Thus, a plot of the measured ĩpol(xs) as a function of the
known values of z̃(xs) fits a line. According to Eq. (34),
the (negative) slope of this line yields an estimate β̂w of the
water attenuation coefficient.

8. Discussion
A flying multiangular set of cameras captures, essen-

tially, a slice of the Earth’s light field. The satellite in
orbit forms a huge, planet-sized light field camera, which
over time captures a 3D subspace of the 5D spatiotemporal
light field. Interestingly, the light field concept has recently
evolved [9] to treat short distance descattering problems us-
ing active illumination. In a sense, multiangular (light field)
sensing performs a set of tomographic projections of a mul-
tilayered scene. Tomography is used to recover multilay-
ered objects is many fields. Also in our case, multi angu-
lar imaging is the main force. Polarization and soundings
are auxiliary sources of information that greatly simplify
the needed parameter estimation. Thus, passive light-field
polarization imaging [13] appears give a handle on multi-
layer [6, 7] scattering and refraction problems. Conducting
experiments to test our theory will require systems under
current development such as those in Refs. [5, 12].

Multispectral analysis can be assisted by the method.
The spectral distributions τatm(λ) and βw(λ) are respec-
tively sensitive to the aerosol and hydrosol types and distri-
butions [22]. In the most simple form, parameter estimation
can be done per wavelength channel λ. The recovered func-
tions β̂w(λ) and τ̂atm(λ) may then be used in aerosol and
hydrosol retrieval [3, 26]. Multispectral data analysis can
also eliminate object specularities [37].

In some cases, our assumptions will not be good enough.
Assumption 1 does not hold if the water or atmospheric
characteristics change significantly within the FOV. As-
sumption 2 does not hold if the entire FOV has no point
which is ”very deep.” A more sophisticated model would
be needed to allow for gradual lateral changes of media and
calibrating components without deep water.
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