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Abstract. Mutual information (MI) is a common criterion in indepen-
dent component analysis (ICA) optimization. MI is derived from proba-
bility density functions (PDF). There are scenarios in which assuming a
parametric form for the PDF leads to poor performance. Therefore, the
need arises for non-parametric PDF and MI estimation. Existing non-
parametric algorithms suffer from high complexity, particularly in high
dimensions. To counter this obstacle, we present an ICA algorithm based
on accelerated kernel entropy estimation. It achieves both high separa-
tion performance and low computational complexity. For K sources with
N samples, our ICA algorithm has an iteration complexity of at most
O(KN log N + K2N).

1 Introduction

Mutual information (MI) of signals is a natural criterion for statistical depen-
dency and is thus used in ICA algorithms (see for example in [5, 2, 7, 9, 10] and
references therein). MI is based on an estimate of the probability density func-
tion (PDF) of signals, which is computationally costly. For this reason, existing
ICA algorithms have assumed rough models for the PDFs [1, 4, 8], or used high
order cumulants instead of MI [3]. These approximations can sometimes lead
to failure, as demonstrated in [2] as well as in our current paper. In contrast,
rather robust separation can be achieved with non-parametric kernel-based es-
timation of PDFs [2]. The drawback of that algorithm is high computational
complexity. For K sources, each of which having N samples, that algorithm has
a complexity of O(K2N2). Another existing algorithm [7] has a complexity of
O(3KN + K2N), which may be tolerated for a small K, but has exponential
growth in K.

In this study, we develop non-parametric ICA that has O(KN log N +K2N)
complexity by using an approximation of the kernel estimator. The approxima-
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tion is calculated using a fast convolution. The errors caused by the approxima-
tion are reasonably small. Therefore, our method makes non-parametric ICA a
practical algorithm for large problems.

2 Blind Source Separation and Mutual Information

Let {s1, s2, ...sK} be a set of independent sources. Each source is of the form
sk = [sk(1), sk(2), . . . , sk(N)]T . Let {y1,y2, ...yK} be a set of measured signals,
each of which being a linear mixture of the sources. Denote {ŝ1, ŝ2, ...ŝK} as the
set of the reconstructed sources and W as the separation matrix. Then,

[ŝ1, ŝ2, ..., ŝK ]T = W[y1,y2, ...yK ]T . (1)

The MI of the K random variables ŝ1, ŝ2, ...ŝK is (see for example [5])

I(ŝ1, ŝ2, ...ŝK) = Hŝ1 +Hŝ2 + ... +HŝK
− log |det(W)| − Hmeasurements , (2)

where H(ŝk) is the differential entropy (DE) of ŝk. Here, Hmeasurements is inde-
pendent of W and is constant for a given sample set {y1,y2, ...yK}. Thus, the
minimization problem that we solve is

min
W

{
K∑

k=1

Hŝk
− log |det(W)|+ λ

K∑
k=1

(‖ŝk‖ − 1)2
}

. (3)

The last sum
∑

(‖ŝk‖ − 1)2 in Eq. (3) weighted by a constant λ penalizes
for un-normalized sources, therefore resolving ambiguities arising from the scale
invariance of MI1. The gradient of this normalization penalty term is trivial to
calculate and efficient to implement [11]. Therefore we do not discuss it further.

For non-parametric estimation of the DEs Hŝk
, we use the Parzen-windows

estimator [2, 12]. That estimator has a high computational complexity. Our
method bypasses this problem using FFT-based fast convolution.

3 Estimation of MI and Its Gradient

Estimating DE using Parzen-windows [12] enables us to differentiate the esti-
mated entropies, and have a closed form expression for the DE gradients. The
Parzen-window estimator for the PDF at a value t is

p̂(t|ŝk) ≡ (1/N)
N∑

n=1

ϕ[t− ŝk(n)] , (4)

where ŝk(n) is a sample from ŝk and ϕ(t) is a smoothing kernel2. The Parzen-
windows estimator [2, 12] for the DE of ŝk is

Ĥŝk
= − 1

N

N∑
l=1

log p̂[ŝk(l)|ŝk] , (5)

1 This term does not affect the separation quality, but improves convergence of the
optimization algorithm [11].

2 We use a Gaussian kernel with a zero mean and variance σ2. Following [2], we use
σ = 1.06N−1/5.
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explicitly,

Ĥŝk
= − 1

N

N∑
l=1

log

{
1
N

N∑
n=1

ϕ[ŝk(l)− ŝk(n)]

}
, (6)

The gradient of log |det(W)| is (W−1)T (see for example [5]). Therefore, the
MI gradient is

∇WI(ŝ1, ŝ2, ...ŝK) = ∇W

K∑
k=1

Hŝk
− (W−1)T . (7)

We calculate the gradients of the sum of DEs ∇W
∑K

k=1Hŝk
in two stages, using

a chain rule. First, we calculate the DEs gradients with respect to the estimated
sources

∇ŝk
Hŝk

=
[

∂Hŝk

∂ŝk(1)
, . . . ,

∂Hŝk

∂ŝk(N)

]T

. (8)

Then, we calculate the gradients of the sum of DEs with respect to the separation
matrix by

∇W

K∑
k=1

Hŝk
= [∇ŝ1Hŝ1 , ...,∇ŝK

HŝK
]T [y1, ...,yK ] . (9)

The derivatives of Eq. (6) are

∂Hŝk

∂ŝk(r)
= − 1

N

N∑
l=1

1
N

∑N
n=1 ϕ′[ŝk(l)− ŝk(n)][δlr − δnr]
1
N

∑N
n=1 ϕ[ŝk(l)− ŝk(n)]

=

= − 1
N

1
N

∑N
n=1 ϕ′[ŝk(r)− ŝk(n)]

p̂[ŝk(r)|ŝk]
+

1
N

N∑
l=1

1
N ϕ′[ŝk(l)− ŝk(r)]

p̂[ŝk(l)|ŝk]
, (10)

where δlr is the Kroneker delta, ϕ′ is the derivative of ϕ, and p̂[ŝk(l)|ŝk] is defined
in Eq. (4). Define

Φ′[ŝk(l)|ŝk] ≡ 1
N

N∑
n=1

ϕ′[ŝk(l)− ŝk(n)] , (11)

F ′[ŝk(l)] ≡ 1
N

N∑
n=1

ϕ′[ŝk(n)− ŝk(l)]
p̂[ŝk(n)|ŝk]

. (12)

Then, Eq. (10) can be written as

∂Hŝk

∂ŝk(l)
= − 1

N

Φ′[ŝk(l)|ŝk]
p̂[ŝk(l)|ŝk]

+
1
N

F ′[ŝk(l)] , (13)

Calculating the MI gradient explicitly using Eqs. (7-13) has a complexity of
O(KN2 + K2N), for details see [11]. This complexity is achieved thanks to the
exploiting of the chain rule (Eq. 9) and it is lower than the O(K2N2) complexity
of gradient calculation presented in [2].
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4 Efficient Calculation of the Entropy Estimator

The PDF estimator given by Eq. (4) can be seen as a convolution

p̂(t|ŝk) = f ∗ ϕ , (14)

where

f(t) = (1/N)
N∑

n=1

δ[t− ŝk(n)] . (15)

It requires N2 calculations of ϕ to compute this convolution in N points as
needed in Eq. (5). On the other hand, it is known that fast convolution can be
performed in O(N log N) operations if done over a uniform grid. Therefore we
resample (interpolate) the function f(t) to a uniform grid. Then we convolve it
with a uniformly sampled version of ϕ, which we denote ϕsampled. Finally, we
interpolate the results back to the set of points ŝk(l) used in entropy calculation
Eq. (5). This process is illustrated in Fig. 1. The resampling of f starts by
defining a vote function v on a uniform grid of length M , with a step size of ∆v.
Let m# be the index of the grid node closest to the value of ŝk(n) that satisfies

m# ≤ ŝk(n)/∆v ≤ m# + 1 . (16)

Define the distance of ŝk(n) from the index m# (normalized by ∆v) by

η =
ŝk(n)
∆v

−m# , 0 ≤ η ≤ 1 . (17)

Fig. 1. Efficient calculation of p̂[ŝk(l)|ŝk]: (A) The function f . (B) The result of voting
is a function on a uniform grid. (C) The result of discrete convolution with the sampled
kernel. (D) Interpolation to the original ŝk(l).
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Let h(η) be a function3 that satisfies h(1−η) = 1−h(η). Then, for each sample
ŝk(n) we update the vote function by

v(m)←
{

v(m) + h(η) for m = m#

v(m) + 1− h(η) for m = m# + 1 . (18)

After the voting is over, we associate v/N with the resampled f . This trans-
fers the function illustrated in Fig. 1A to the function illustrated in Fig. 1B.
Then, we convolve4 v/N with ϕsampled (Fig. 1B, → Fig. 1C).

p̂u = (v/N) ∗ ϕsampled . (19)

Note that p̂u resides on the uniform grid. However, the DE (Eq. 5) does not use
p̂u, but rather p̂[ŝk(l)]. We obtain an estimation of p̂[ŝk(l)] by interpolating the
values of p̂u onto the points ŝk(l), using the same interpolation function h(η) as
before

p̂[ŝk(l)|ŝk] = h(η)p̂u(m#) + [1− h(η)]p̂u(m# + 1) , (20)

where m# and η are defined in (16, 17). This step is illustrated in Fig. 1D.
Finally, we estimate the DE by Eq. (5).

The voting, the interpolation and the entropy calculation (Eqs. 5,18 and 20)
require O(N) operations. The convolution (Eq. 20) requires O(M log Nkernel)
operations5, where Nkernel is the length of ϕsampled. In addition, estimating the
sources (Eq. 1) requires O(K2N) operations. Therefore, the overall complexity
of calculating the DEs for the K estimated sources is O(KM log Nkernel+K2N).
This is significantly lower than the O(KN2 + K2N) complexity of the explicit
calculation of the K DEs using Eq. (6).

5 Efficient Estimation of the Entropy Gradient

Calculating the DE gradient explicitly using Eq. (11-13) requires O(N2) opera-
tions. Note we may calculate the gradient of any function in the same complexity
of calculating the function itself (see for example [11]). In order to compute the
DE gradient with complexity of O(M log Nkernel) we could have differentiated
the DE approximation derived in Sec. 4. However, the resampling is an approx-
imation causing fluctuations in the DE value as a function of W. This may stop
MI optimization at local minima. We avoid this problem altogether by taking
a different approach. Rather than differentiating an approximation based on re-
sampling, we elect to approximate the DEs derivatives (Eq. 13) directly. We do
so in a similar manner to the approximation of the DE itself. In the same way
as Eq. (4) is represented by Eq. (14), Eqs. (11,12) are equivalent to

Φ′(t|ŝk) = f ∗ ϕ′ , (21)
3 We use a linear interpolation function h(η) = 1 − η.
4 We used a Matlab code for fast convolution based on FFT, which had been written

by Luigi Rosa, luigi.rosa@tiscali.it, http://utenti.lycos.it/matlab.
5 Typically M and Nkernel are of the order of N or smaller. Therefore, the complexity

needed is at most O(N log N).
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F ′(t|ŝk) = (f/p̂) ∗ ϕ′mirror , (22)

where f is given by Eq. (15), and ϕ′mirror(t) = ϕ′(−t). We compute the convo-
lution (Eq. 21) in a fast way, using the array v (which is f , uniformly resampled
by Eq. (18))

Φ̂′
u = (v/N) ∗ ϕ′

sampled (23)

Finally, we interpolate Φ′
u to the set of points ŝk(l). We do so similarly to Eq. (20).

In a somewhat analogous manner, we obtain a fast calculation of Eq. (22),
as described next. First, we uniformly resample f/p̂: similarly to Eq. (18), we
define a weighted vote function w on the uniform grid. For each sample ŝk(n)
we update the this function,

w(m)←
{

w(m) + h(η)/p̂[ŝk(n)|ŝk] for m = m#

w(m) + [1− h(η)]/p̂[ŝk(n)|ŝk] for m = m# + 1 ,
(24)

where p̂[ŝk(n)|ŝk] has been computed in (20). We associate w/N with f/p̂. In ad-
dition, we define a sampled version of ϕ′mirror, termed ϕ′mirror

sampled. We thus imitate
Eq. (22) by

F̂ ′
u = (w/N) ∗ ϕ′mirror

sampled. . (25)

Finally, we interpolate F ′
u to the set of points ŝk(l), similarly to Eq. (20).

Recall from Sec. 4 that the complexity of the voting and the interpolation
is O(N), while the complexity of the discrete convolution is O(M log Nkernel).
Moreover, the complexity of Eqs. (13) is O(N), while the complexity of Eq. (9) is
O(K2N). Thus, the overall complexity of calculating the DEs gradients of the K
signals is the same as of calculating the entropy itself, O(KM log Nkernel+K2N).
A pseudo-code for the DE estimator and its gradient is given in [11].

6 Demonstrations

In order to evaluate our method, we performed numerous separation simulations.
The first set of simulations dealt with random sources of 3K samples. We sim-
ulated six sources: four of the sources were random i.i.d., with an exponential
PDF[α = 2], an exponential PDF[α = 0.6], a normal PDF[0,1] and a Rayleigh
PDF[β = 1] (Here α and β denote the parameters of the respective PDFs [2]).
The other two sources were extracted as data vectors from the Lena and Trees
standard pictures. The sources were mixed using randomly generated square
matrices (condition number≤ 20).

Source separation was attempted using three parametric ICA algorithms
[4, 3, 6]: InfoMax, Jade and Fast ICA. In addition, separation was attempted
using two non parametric ICA algorithms: the first is based on Sec. 3 and thus
does not use fast convolution. The second algorithm is the one we described in
Secs. 4 and 5. The software for the prior algorithms [4, 3, 6] was downloaded from
the websites of the respective authors.

In order to limit the signals to the grid range we use, we first performed
a rough normalization of the raw measurements. We subtracted the mean of
each signal and divided it by its standard deviation. The InfoMax and FastICA
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Table 1. Simulation results: The accuracy of the separation is measured in terms of
the signal to interference ratio (SIR).

Algorithm SIR [dB] Time
Non-parametric ICA, based on Sec. 3 18 ± 4 760 min
Non-parametric ICA with fast kernel convolution,
using 1K voting bins

22 ± 3 1.2 min

Jade 7 ± 4 0.2 sec
InfoMax 1 ± 0.5 1.4 sec
InfoMax with pre-filtering 8 ± 4 1.6 sec
Fast ICA 4 ± 4 1.1 sec
Fast ICA with pre-filtering 5 ± 3 1.9 sec

algorithms are more efficient when the measured signals are sparse. We thus pre-
filtered the inputs to these algorithms using the derivative operator [−1 0 1]/2.
Our separation procedure was based on the BFGS Quasi-Newton algorithm as
implemented in the MATLAB optimization toolbox (function FMINUNC).

The results of the simulations are presented in Table 1. The separation quality
is given by the signal to interference ratio (SIR)6. After performing numerous
simulations, we report the mean SIR and the standard deviation of the SIR.
Clearly, Table 1 shows that practically no degradation of the separation quality
is caused by our entropy approximation. On the other hand, the improvement
in the run time is huge, compared to the competing non-parametric method.
Our method does not compete with the parametric algorithms over run time,
but it outperforms them in separation quality. We can separate signals that the
parametric methods fail to handle.

Fig. 2. Four samples of a set of 10 pictures involved in a separation simulation. The
mixed signals had been filtered by a derivative operator prior to optimization. The
separation SIR is 20dB.
6 SIR=mink(‖sk‖2/‖sk − ŝk‖2). Note that the SIR is based on the signal k having

the worst separation quality. As explained in [11], the estimated ŝk is prone to
permutation and scale ambiguities. Thus, SIR is calculated from separation results
which are compensated for these ambiguities.
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To visually demonstrate the separation quality, we performed an additional
set of separation simulations based on 10 pictures. The pictures were mixed using
randomly generated full rank matrices. The results are presented in Fig. 2.
To Conclude: We presented an algorithm that delivers high performance and
possesses low computational complexity. The low complexity makes non para-
metric ICA applicable to high dimensional problems and large sample sizes. We
have yet to study the influence of the number of uniform grid nodes on the
algorithm performance.
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