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Active Polarization Descattering
Tali Treibitz, IEEE Student Member and Yoav Y. Schechner, IEEE Member

Abstract— Imaging in scattering media such as fog and water is
important but challenging. Images suffer from poor visibility due
to backscattering and signal attenuation. Most prior methods for
scene recovery use active illumination scanners (structured and
gated), which can be slow and cumbersome. On the other hand,
natural illumination is inapplicable to dark environments. The
current paper addresses the need for a non-scanning recovery
method, that uses active scene irradiance. We study the formation
of images under widefield artificial illumination. Based on the
formation model, the paper presents an approach for recovering
the object signal. It also yields rough information about the 3D
scene structure. The approach can work with compact, simple
hardware, having active widefield, polychromatic polarized illu-
mination. The camera is fitted with a polarization analyzer. Two
frames of the scene are instantly taken, with different states of the
analyzer or light-source polarizer. A recovery algorithm follows
the acquisition. It allows both the backscatter and the object
reflection to be partially polarized. It thus unifies and generalizes
prior polarization-based methods, which had assumed exclusive
polarization of either of these components. The approach is
limited to an effective range, due to image noise and falloff of
widefield illumination. Thus, these limits and the noise sensitivity
are analyzed. The approach particularly applies underwater. We
therefore use the approach to demonstrate recovery of object
signals and significant visibility enhancement in underwater field
experiments.

Index Terms— Computer vision, Modeling and recovery of
physical attributes, Scene Analysis - Color, Physics-based vision,
Vision in scattering media, Inverse-problems, Polarization, Image
recovery

I. INTRODUCTION

Scattering media exist in bad weather, liquids, biological tissue
and even solids [3]. Images taken in scattering media are charac-
terized by loss of contrast. Light passing through undergoes ab-
sorption and scattering, causing changes in color and brightness.
Moreover, light that is scattered back from the medium along
the light of sight (backscatter) veils the object, degrading the
contrast. Therefore, applying traditional computer vision methods
in such environments is difficult. Nevertheless, there is a strong
need to perform vision tasks in these media. Examples include
vision through biological tissue [16], underwater applications,
such as port inspection, measuring ecological systems [15], and
navigation in bad weather [1].

Previous studies tackled this challenge in various ways. Some
recovered visibility as well as the three dimensional (3D) structure
in haze and underwater [38], [39], [40] under distant natural illu-
mination. However, application fields operating in highly turbid
media use artificial illumination sources at short distances, be
it underwater or in the human body. However, artificial lighting
usually causes a strong backscatter. Backscatter can be modulated
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and then compensated for in image post-processing. Prior mod-
ulation methods require acquisition of long image sequences by
structured light [21], [23], [31] or time-gating [6], [9], [14], [47],
[49]. Ref. [32] required many frames as well, to achieve quality
results. Such sequences may lengthen the overall acquisition time.
Moreover, such systems may be complex and expensive.

To counter these problems, we look at wide-field (not scanning)
illumination with a small (or no) baseline, where the backscatter
is modulated by polarization. Preliminary studies [10], [11],
[24] indicated that backscatter can be reduced by polarization.
However, we go further. By post-processing we remove residual
backscatter that is not blocked by optical means. Moreover, a
rough estimate of the 3D scene structure may be obtained from the
acquired frames. The acquisition setup is a simple modification of
instruments used routinely in such media: simply mounting two
polarizers, one on the light source and another on the camera.
The acquisition process is instantaneous, i.e., requiring only two
frames, rather than scanning. In this paper, we describe and
demonstrate each step separately.

Some prior methods used polarization in scattering media.
Some assumed a negligible degree of polarization (DOP) of the
objects [38], [39], [41], [50]. Others assumed the contrary, i.e.,
that object reflection is significantly polarized, rather than the
backscatter [52]. However, here we allow both the backscatter and
the object reflection to be partially polarized. Thus, our analysis
unifies and generalizes the mentioned previous methods.

The approach is based on several insights into the image
formation process. We show that backscatter and attenuation
of artificial illumination can be well approximated by simple
closed-form parametric expressions. To incorporate polarization,
we made some empirical observations in real underwater scenes:
in a temperate latitude sea (the Mediterranean), a tropical sea (the
Red Sea) and in a murky lake (Sea of Galilee). Our approach has
limits stemming from the wide-field nature of the illumination and
from the acquisition noise. In this paper, we thoroughly analyze
the reconstruction limits of both signal and 3D structure.

In Sec. II, the paper first describes the scientific model of the
imaging system, and sets the ground for polarization imaging
(Sec. III). The reconstruction is done in two steps: first, we recover
the object signal (Sec. IV). Then, we estimate the scene structure
(Sec. V). Experimental results follow each step. In Sec. VI
we discuss estimation of essential parameters. Then, Sec. VII
analyzes the limits of our method due to image noise. Partial
results appeared in [50].

II. STATEMENT OF THE PROBLEM

Consider a perspective underwater camera (Fig. 1). Let
X = (X, Y, Z) be the world coordinates of a point in the water.
We set the world system’s axes (X, Y ) to be parallel to the (x, y)

coordinates at the image plane, while Z aligns with the camera’s
optical axis, and the system’s origin is at the camera’s center of
projection. The projection of X on the image plane is x = (x, y).
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Fig. 1. A camera inside a dome port with a radius r. The variables are detailed in the text.
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Fig. 2. Simulation of an underwater scene. The scene was assigned a linearly varying distance map ranging between [0.2m, 1m]. (a) A
uniformly lit clear scene. (b) The simulated attenuated signal. (c) The backscatter component. (d) The sensed underwater scene, accounting
for both scattering and attenuation.

In particular, an object point at Xobj corresponds to an image
point xobj. The line of sight (LOS) to the object is

LOS ≡
{
X : Z ∈ [0, Zobj], X = (Z/f)xobj, Y = (Z/f)yobj

}
,

(1)
where f is the camera’s focal length. The measured image is

I(xobj) = S(xobj) + B(xobj), (2)

where S(xobj) is the object signal and B(xobj) is the backscat-
ter [17], [26], [28]. Before detailing these components, note that
backscatter is the major cause of contrast deterioration [18],
rather than signal blur. This was demonstrated in [38], [39]
using objective criteria. Interestingly, according to Ref. [53],
human vision associates image quality mostly with contrast, rather
than resolution. For these reasons, we do not focus here on
image blur or deblurring. Rather, we consider the prime effects
associated with turbidity to be backscatter and attenuation. Fig. 2
demonstrates these effects.

Define Lobj(xobj) as the object radiance we would have sensed
had no disturbances been caused by the medium along the LOS,
and under uniform illumination. Propagation of light to the object
and then to the camera via the medium yields an attenuated [17],
[26] signal. The signal is

S(xobj) = Lobj(xobj)F (xobj), (3)

where F is a falloff function described below.

A point X in the water is at total distance ‖X‖ from the camera.
If the camera is enclosed in a dome port1 as in [38], [39], then
the distance from the dome to X is

Rcam(X) = ‖X‖ − r, (4)

where r is the dome’s radius. Consider for a moment a single
illumination point source. From this source, light propagates
a distance Rsource to Xobj. Free space propagation creates a
1/R2

source irradiance falloff. Yet, there is turbidity, characterized
by an attenuation coefficient c. Hence

F (xobj) =
exp

{
−c

[
Rsource(Xobj) + ‖Xobj‖ − r

]}

R2
source(Xobj)

Q(Xobj).

(5)
Here Q(X) expresses the non-uniformity of the scene irradi-
ance (Fig. 3), solely due to the angular inhomogeneity of the
illumination (anisotropy), which is insensitive to the medium
properties. Thus, in water-based media, for example, it can be
pre-calibrated in clear water. For multiple illumination sources,

1Dome ports often shield cameras from water [38], [39]. With a dome,
optical distortions are smaller than when using other shapes of windows,
provided that the center of projection of the lens is accurately aligned with
the center of the dome. Ref. [38], [39] explains that when the lens and the
dome are aligned, the polarization measurement is more accurate because chief
light rays do not change their path when passing through the port. Distortions
caused by a flat port are analyzed and calibrated in [51].
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Fig. 3. An example of an anisotropic illumination pattern Q(X):
Even in the same radial distance from the lamphead, the lighting
changes laterally.
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Fig. 4. Backscatter caused by single scattering [solid line] and
multiple scattering [dashed].

or for a wide spread source Eq. (5) is derived for each point
source, and then all F ’s are summed up. This can be generalized
to include illumination due to multiple scattering [48].

In order to calculate the backscatter that appears in Eq. (2),
define first Isource as the irradiance of a point in the volume [17]
by a small illumination source of intensity Lsource:

Isource(X) = Lsource
[
1/R2

source(X)
]
exp[−cRsource(X)]Q(X).

(6)
Then, according to the single-scattering model (Fig. 4), the

backscatter is given [17], [50] by integration along the LOS

B(xobj) =
∫ Rcam(Xobj)

Rcam=0

b[θ(X)]Isource(X) exp[−cRcam(X)]dRcam ,

X ∈ LOS, (7)

where θ ∈ [0, π] is the scattering angle, and b is the scattering
coefficient2 of the medium: it expresses the ability of an in-
finitesimal medium volume to scatter flux to θ. Eq. (7) applies
to each illumination source: accumulating the results yields the
total backscatter. Note that the integration in Eq. (7) stops when
it reaches the object in the LOS. Therefore, the backscatter
accumulates (increases) with the object distance. If there is no
object on the LOS, the integration in Eq. (7) continues to an
infinite distance. The value of B then increases until it reaches
a saturation value. We term the distance in which B effectively
saturates3 as the saturation distance zsat.

Our goal in this research is two-fold: first, to estimate the
backscatter component, in order to remove it from the raw image
and reveal the object signal. Second, to study the potential use of

2Note that b(θ) and c depend on the wavelength. Thus each available
wavelength band is analyzed independently.

3As in every asymptotic function, the effective distance can be defined in
different ways. For example, it can be defined as the distance where Brel =
0.99.

the backscatter component for extracting information about the
distance map of the scene. Sec. III describes how we achieve the
first goal by polarizing the light source.

III. POLARIZATION IMAGING

As mentioned earlier, we suggest modulating the light by po-
larizing the light source and imaging through a camera-mounted
polarizer (analyzer) in two orthogonal polarization states. The
system setup is depicted in Figs. 1 and 5. By mounting a polarizer
(either linear or circular) on the light source, we polarize the
illumination. The polarized light propagates to illuminate the
scene and part of it is scattered back by particles in the medium
towards the camera. During this propagation, some energy of
the light becomes unpolarized (a process termed depolarization).
This process is complex and depends on the distribution of
particle types and sizes [19], [25], [36]. Apparently, this process
affects each polarization type differently: some studies suggest
that depolarization during propagation is weaker in circular po-
larization [19], [25], [29], [36], while Refs. [19], [36] suggest
weaker depolarization of linear polarization in dense tissues. An
empirical study [44] has looked at the the rate of depolarization
with distance in seawater. A preliminary empirical study [11]
done decades ago has shown that if the illumination is circularly
polarized, then it flips handedness upon backscattering. Thus,
Ref. [11] achieved significant improvement in image contrast in
an optical method, where it used an analyzer having the same
handedness as the illumination polarizer.

That said, despite the scientific efforts that have been invested
by various researchers (see for example [33]). The known art
has not supplied a clear answer as to which polarization type
is preferable in the true environments we worked in, and how
the depolarization rate can be determined by the scattering and
attenuation coefficients in those environments. Therefore, we
tested our method with either linear or circular polarization in
different locations. In the case of linear polarization we mount a
linear polarizer on the light source and a linear analyzer on the
camera. Then, an orthogonal image pair is taken by either rotating
the polarizer or the analyzer. Specifically, we chose to rotate
the analyzer, as it was easier in our setup. When using circular
polarization, orthogonal states result from switching handedness
rather than rotating the polarizers. As a consequence, linear polar-
ization is easier to use. Moreover, wideband and widefield circular
polarization is difficult to create. In any case, raw polarization data
still contains significant backscatter. Therefore, there is a need for
post processing, as described in Sec. IV. The post processing we
perform does not depend on the polarization type used.

IV. BACKSCATTER REMOVAL BY POLARIZATION

This section describes and demonstrates through experiments
visibility enhancement by active polarization imaging. This is
done by separating the signal and the backscatter components.
Later, in Sec. V-A, we explain how the estimated backscatter
may be used for estimating the 3D structure of the scene.

A. Model and Algorithm

Former studies have used polarized illumination for backscatter
removal. Ref. [50] assumed that objects back-reflect unpolarized
light to the camera. On the other hand, studies using polarization
difference imaging (PDI) assume the opposite- that the light
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Fig. 5. A single-lamphead version of our system.

reflected from the objects is polarized and that the backscatter
is almost unpolarized. Here we give a more general model.
Fortunately, if the object yields polarized specular reflection,
it behaves similarly to the backscatter: out of the two frames,
generally, the one in which the backscatter is brighter is also the
one in which the object back-reflection is brighter.4

As described in Sec. III, we take two images of the same scene
using two orthogonal polarization states of the polarizer. Had the
backscattered light completely retained its polarization, it could
have been optically eliminated by the analyzer. We discovered
that a substantial DOP is maintained upon backscattering. We
exploit this phenomenon.5 Consequently, placing an analyzer in
the orthogonal state to the backscatter’s polarization state yields
an image with minimum visible backscatter. We denote this image
as Imin. Imaging with the opposite orthogonal state, denoted
Imax, maximizes the backscatter.

We expand Eq. (2) to the polarized components
Bmax, Bmin, Smax and Smin. Thus, the raw images are:

Imax(xobj) = Smax(xobj) + Bmax(xobj) ,

Imin(xobj) = Smin(xobj) + Bmin(xobj). (8)

The DOP of the signal pobj and the DOP of the backscatter pscat

are defined as:

pobj(xobj) =
Smax(xobj)− Smin(xobj)

Smax(xobj) + Smin(xobj)
,

pscat(xobj) =
Bmax(xobj)−Bmin(xobj)

Bmax(xobj) + Bmin(xobj)
. (9)

In the following (xobj) is omitted for simplicity. We end up with
two equations for the two unknown fields - S and B:

Imax + Imin = B + S (10)

Imax − Imin = pscatB + pobjS. (11)

The last equation is derived from plugging Eq. (9) into Eq. (8).
The solution to this equation set is:

Ŝ =
1

pscat − pobj
[Imin(1 + pscat)− Imax(1− pscat)] (12)

B̂ =
1

pscat − pobj
[Imax(1− pobj)− Imin(1 + pobj)]. (13)

4Empirically, we never encountered a reversed polarization of the signal
relative to the backscatter.

5Polarization has also aided other computer vision aspects [2], [5], [7], [8],
[27], [40], [43], [45], [54].

This is a general result, enabling separation of B and S from the
two raw images, given the DOPs pobj and pscat.

A very important property of Eq. (12) is that pobj contributes
only a scale factor to the signal reconstruction Ŝ. Suppose that
pobj is approximately constant across the scene, but it is unknown.
Then, the signal estimation (12) is consistent with the true
S up to a scale. For purposes of visibility enhancement, the
scaled Ŝ is sufficient: the backscatter is removed, and missing
parts are revealed. Furthermore, the backscatter is usually not
uniform across the image; some regions have high intensity
backscatter, and others have low intensity backscatter (see Fig. 2).
This hampers standard image enhancement techniques. Therefore,
removing the backscatter results in a signal estimation Ŝ with a
more uniform intensity. Thus, further image improvement may be
obtained by applying standard image enhancement techniques to
Ŝ, rather than applying them to I or Imin.

As pobj changes only the scale of Ŝ, good results can be
achieved [38], [39], [41], [50] based on the assumption that
pobj = 0. In this case, Eqs. (12,13) reduce to:

Ŝ = [Imin(1 + pscat)− Imax(1− pscat)]/pscat (14)

B̂ = (Imax − Imin)/pscat. (15)

Note, that in this case,

Imin = [B(1− pscat) + S]/2 , Imax = [B(1 + pscat) + S]/2. (16)

Let us examine the consequence of using an assumption pobj =

0 in Eq. (13), when image creation (Eq. 8) experienced pobj 6= 0

. This case yields a false estimation B̃ of the backscatter,

B̃ =
Imax − Imin

pscat
= B̂ +

Smax − Smin

pscat
= B̂ +

pobj

pscat
S. (17)

The last equality results from plugging in the DOP pobj from
Eq. (9). As discussed in Sec. II, B increases with the distance.
From Eq. (5), when the camera and the light sources are on the
same side of the object (a common scenario), S decreases with
the distance. In that case, a result of Eq. (17) is that B̃ is no
longer monotonic with Zobj.

As opposed to the assumption pobj = 0, methods based on
PDI [52] assume that pscat/pobj → 0. Plugging pscat/pobj → 0

to Eqs. (12,13) results in:

Ŝ =
1

pobj
[Imax − Imin] , (18)

B̂ =
1

pobj
[Imin(1 + pobj)− Imax(1− pobj)]. (19)

Note that in this case, Eq. (18) is a scaled version of the
polarization difference image. Here we see that Eqs. (12,13) unify
both the dehazing methods [38], [39], [41], [50], where pobj = 0,
and the PDI methods where pscat/pobj → 0.

Using Eqs. (12,13) without such approximations requires the
estimation of the DOPs. Sec. VI describes how the DOPs are
estimated in the general case. First, however, we demonstrate
backscatter removal in experiments.

B. Experiments

The method described above is general and it does not as-
sume a specific medium. However, as discussed in Sec. III,
depolarization depends on the medium [22]. Therefore, in order
to demonstrate the effectiveness of the method in real world
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Fig. 6. [Left] Scuba diving with a lift-bag, towards night experiments in the Red Sea. [Right] Preparations for an experiment in the
Mediterranean.

situations, we embarked on underwater dives rather than using
indoor tanks. Particles in substances (like milk, lipids, etc.) used
for diluting water in indoor tanks are usually homogeneous and
sometimes symmetric [19], [35] while oceanic particles are het-
erogeneous [28]. Therefore, we were concerned that polarization
experiments done with diluted substances would not represent
correctly the properties and the variety of the media in the field,
e.g., seawater. We have done experiments while scuba diving
at night in various environments, in a pool, the Red Sea, the
Mediterranean (Fig. 6) and the Sea of Galilee.

C. Equipment

Fig. 5 shows the system we used has two main parts:
• An SLR camera with an underwater housing. We use a

Nikon D100 camera, which has a linear response [38],
[39]. The camera is placed in a Sealux underwater housing
with a mounted polarizer. The considerations for choosing a
camera, an underwater housing and mounted polarizers are
detailed in [38], [39].

• Underwater AquaVideo light sources, with 80W Halogen
bulbs. A polarizer is mounted on the lighthead. We had
special consideration behind the selection of the lighting
setup, as detailed in the appendix.

We used standard off-the-shelf polarizers of Schneider and Tiffen.
The camera was mounted on a tripod. To safely transport this
amount of equipment while diving, a 50kg lift-bag was used
(Fig. 6). The tripod was set to resist swell by attaching weights
on its lower part.

D. Real World Results

Fig. 7 shows the results of applying Eqs. (14,15) on images
taken during four different experiments we have performed. We
tested the method using different light source locations. The left
column presents the raw images I. The center column shows Ŝ
(where the estimated backscatter is removed). The right column
shows the estimated backscatter component B̂. The experiments in
the three top rows were performed in the Mediterranean on three
different occasions. In all three cases, using linear polarizers have
yielded a DOP of pscat ≈ 65%. In experiment 1 we used two
light sources, shining from above and below the camera. Here,
Zobj < 3m. Notice the revealed rock in the upper left part, the

sand in the right side, the rocks on the bottom and the distant
part of the tube. In experiment 2, Zobj ∈ [0.5m, 6m]. Here, we
used a single light source, coming from the top right. Notice
the revealed rectangular cube in the background. The revealed
objects in the background are dark, as at this distance they receive
only dim irradiance from the sources. Experiment 3 shows a
scene illuminated from the bottom right. Consequently, the lower
parts have a lot of backscatter, hence poor visibility. Our method
enhanced the visibility in this part.

Experiment 4 shows a result of an experiment done in the
Sea of Galilee, a very murky lake. The light source is placed
above the camera. Here, Zobj ≈ 0.5m, which was the maximum
visibility distance. Here, circular polarization yielded pscat ≈ 9%

while linear polarization yielded pscat ≈ 5%. Despite the difficult
conditions, the method revealed the imaged object, its rough
contour and its colors. Notice that in both experiments 2 and 4,
the upper part of the raw frame is very bright, due to backscatter.
This may cause the viewer to falsely assume there is a bright
object in that part of the scene. After removal of the backscatter,
these areas become dark, as there is actually no light reflecting
from objects there. Then, we expect the scene radiance to act
according to Eq. (5). Indeed, in experiment 2, the brightest part
of Ŝ is the lower, close sand.

In our field experiments, both polarization types (linear and
circular) yielded good results. When visibility was moderate (in
the Mediterranean), linear polarization retained pscat ≈ 60−70%,
higher than circular polarization, for which pscat ≈ 50%. In the
murky Sea of Galilee, on the other hand, circular DOP was higher
than the linear one. There, perceptual difference hardly existed
between the raw frames, due to the low DOP value. Nevertheless,
our method still enhanced Ŝ significantly.

V. RANGE AND FALLOFF

A. Range

Let us have an estimate for the backscatter B̂ in a scene, for
example, using the method in Sec. IV. We would like to know if
we may leverage B̂ to estimate the 3D structure of the scene. A
general approach is presented for estimating Zobj based on B̂. It
does not depend on the algorithm used for extracting B̂ itself.

Similarly to [4], [30], [38], [39], [41], the backscatter B in-
creases with the distance Zobj, hence it can indicate the distance.
Previously [38], [39], [41], this principle was developed in the
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Fig. 7. Results of four different experiments. [Left] The raw images I. [Middle] The recovered signals Ŝ. [Right] The estimated backscatter
fields B̂.

simple special case of distant illumination sources (natural light),
where the following relation holds:

B = B∞{1− exp[−cRcam(x, y, Zobj)]} ≈
B∞{1− exp[−cZobj(x, y)]}. (20)

Such an estimation can be generalized to the use of sources
close to the camera. We found numerically [50] that in widefield
lighting, Eq. (7) can be approximated as

B(xobj) ≈ B∞(xobj) ·(
1− exp[−

{
−k(xobj)[Zobj(xobj)− Z0(xobj)]

}
]
)

, (21)

resembling Eq. (20). Fig. 8 presents an approximation done for a

particular setup. A major difference between Eqs. (20) and (21)
is that in Eq. (21) B∞ is space variant. Eq. (21) introduces two
new space-variant parameters, Z0(xobj) and k(xobj). The offset
Z0 is a distance, which indicates the first effective intersection
of the LOS with the light cone emitted by the lamphead. The
rate in which B increases with Zobj at Z0 is set by k. These
parameters (B∞, Z0, k) depend on the lighting geometry, the non-
uniformity (anisotropy) Q(Xobj) of the illumination sources and
on the medium parameters c and b (described in Sec. II). They
do not depend on Zobj.

Eq. (21) is easy to invert, deriving an estimate Ẑobj(xobj) as
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a function of B̂(xobj):

Ẑobj(xobj) = Z0(xobj)−
[
ln

(
1− B̂(xobj)

B∞(xobj)

)]
1

k(xobj)
. (22)

This, of course, requires calibration of the spatially varying
parameter fields B∞, k and Z0. An important parameter is B∞.
It expresses the backscatter at xobj, had there been no object in
the LOS. Therefore, the relation

Brel(xobj) =
B̂(xobj)

B∞(xobj)
, (23)

indicates how much the backscatter has reached its saturation
value B∞. Thus, Brel is monotonic with Zobj. The parameters k

and Z0 function as scaling factors in Eq. (22). It is easy [50] to
determine the field B∞ by taking a photograph in the medium,
where the camera is pointing “no-where” (to infinity). By approx-
imating k and Z0 to be uniform and plugging in typical values
for them in Eq. (22), a rough distance map can be estimated.

We simulated similar setups to those we used in our experi-
ments. To simplify the analysis, let us assume that the backscatter
coefficient b(θ) is uniform in the range of angles we use. This
assumption is supported by [22], which shows that in oceanic
water the function b(θ) is insensitive to θ at backscatter angles
(θ ≥ π/2). Fig. 9 shows a distance map derived by applying
Eqs. (22,23) on an underwater scene. For Eq. (22) we used the
values Z0 = 20cm and k = 0.6. Those values were chosen based
on a numerical analysis of setups where the light source was in
proximity to the camera. This analysis showed that Z0 ranges
between 10cm− 30cm and k ranges between 3− 6. The value of
k changes between different illumination-camera setups. It also
changes spatially in the image, pixels closer to the light source
having a higher k.

B. Falloff

Sec. V-A described the estimation of Ẑobj(xobj). Based on
Ẑobj(xobj), we may now estimate the falloff, using Eq. (5). Here
we need three additional parameters. First is the attenuation coeffi-
cient c, which can be measured by a transmissiometer. Second, we
need Q(Xobj). This can be pre-calibrated once per light source. In
addition, there is a need to know Rsource. It is derived based on a-
priori knowledge about the system baseline [48]: it is sufficient to
know the camera-light-source baseline Rsc, and the angle between

this source and the LOS, γ (See Fig. 1). Then,

Rsource =
√

R2
sc + R2

cam − 2RcamRsc cos γ. (24)

The value of R̂cam is estimated by setting z = Ẑobj in Eq. (4).
Then Eq. (24) derives R̂source. The use of Ẑobj and R̂source in
Eq. (5), derives an estimate for the falloff F̂ (xobj). Compensating
for the falloff by inverting Eq. (3) yields

L̂object(xobj) = Ŝ(xobj)/F̂ (xobj). (25)

To illustrate this, Fig. 10 shows a simulation of the entire
recovery method. A simulated object was assigned a non-trivial
distance map and artificial noise was added with standard devia-
tion of σImin = σImax = 1 grey level (out of 256 gray levels in the
raw frames Imin, Imax). Fig. 10d shows L̂object(xobj) after both
removal of the estimated backscatter and falloff compensation.
While the image is enhanced relative to the simulated I, there is
noise amplification in the distant parts [20], [37].

VI. ESTIMATION OF THE DOPS

In Sec. IV we use the parameters pscat and pobj to reconstruct
S and B. Ways for estimating these parameters are discussed now.

A. Extraction of pscat

Light depolarizes as it propagates [44]. Therefore, it is rea-
sonable to expect the measured pscat to be nonuniform. The
reason for this is that backscattered light from a large Zobj

contributes pscat that is smaller than light backscattered from a
small Zobj. In total, the measured pscat is influenced by light that
is backscattered from all distances (up to the object), close and far,
on the LOS. However, we found empirically that the value of pscat

is practically constant across the field of view (FOV) in seawater.6

A possible explanation to this phenomenon is demonstrated in
Figs. (8,16): after a short distance, the backscatter is saturated.
Therefore, backscatter stemming from large distances (with a low
pscat) has almost no influence on the measurement.

As pscat is practically uniform, it is easy to measure. It can be
retrieved in several distinct ways. These include:

1) Measuring an area xvoid in the FOV in which
there is no signal. Since there is no object
in xvoid, then Imax(xvoid) = Bmax(xvoid) and
Imin(xvoid) = Bmin(xvoid). Thus,

p̂scat(xvoid) =
Imax(xvoid)− Imin(xvoid)

Imax(xvoid) + Imin(xvoid)
. (26)

Assuming that pscat is uniform across the scene, Eq. (26)
yields an estimation of pscat for the entire FOV.

2) Rigidly shifting the camera/illuminator system, to point to
a void region in the medium (where no object is in sight),
as in Sec. V-A. Then, an image pair Imax, Imin is acquired.
In this case, every pixel points to a void. Therefore, using
this pair with Eq. (26) yields a potentially spatially varying
pscat. This method enables a more flexible model.

Let us analyze the consequences of a mistake in the estimation
of pscat, i.e.

p̂scat = ψptrue
scat , (27)

where ptrue
scat is the true backscatter DOP. Underestimation and

overestimation correspond to ψ < 1 and ψ > 1, respectively. If

6We found it is constant up to ≈ 24◦ relative to the optical axis.
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Fig. 9. Estimation of a distance map. [Top] The different components of Eqs. (21,23) in an underwater experiment. The image Brel is
scaled to yield an estimation of the distance map. [Bottom] Views from different elevations of the reconstructed 3D scene composed of the
recovered signal and the estimated distance map.

aa bb cc ddcc

1m

0.3m

Fig. 10. Simulated backscatter removal, 3D recovery and falloff compensation of a noisy object. (a) An object was assigned a distance map
varying linearly to 1m with a sticking rectangle at a distance of 0.3m. (b) The simulated underwater raw frame I, with added noise. (c) The
estimated distance map Ẑobj. (d) The recovered object radiance L̂obj. In (c) and (d) the noise is amplified in the distant parts.

pobj = 0, then using Eq. (27) in Eq. (15) yields an erroneous
estimate

B̃ =
Imax − Imin

ψptrue
scat

=
1

ψ
B. (28)

Similarly, the signal is erroneously estimated as

S̃ = I− 1

ψ
B = S +

(
1− 1

ψ

)
B. (29)

The relative backscatter error

Erel
B =

∣∣∣∣
B̃− B

B

∣∣∣∣ = |1/ψ − 1| (30)

is constant over the FOV. On the other hand,

Erel
S =

∣∣∣∣
S̃− S

S

∣∣∣∣ = |1/ψ − 1| B(xobj)

S(xobj)
(31)

depends on B(xobj)/S(xobj). Generally B/S increases with
Zobj, hence S̃ is more affected by this error. Fig. 11 depicts
|1/ψ − 1|, which is the part that depends on ψ in Erel

B and

0 1 2 3 4
0

1

2

3

41
1

ψ
−

ψ

Fig. 11. Influence of a wrongly estimated pscat. The relative error is
typically smaller in overestimation of pscat than in underestimation.

Erel
S . From Fig. 11, the relative error is typically smaller when

ψ > 1. Therefore, it is better to overestimate pscat rather than
underestimating it.
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Fig. 12. An image of B̂rel in an underwater scene. (a) When assuming
pobj = 0, areas in proximity to the camera (lower part of the image)
are falsely assigned a high value. (b) Using an estimated pobj reveals
that B̂rel is indeed low at close distances. Here pobj is assumed to
be spatially uniform. Areas that do not comply with this assumption
stand out (blue ellipses).

Fig. 13. Off axis illumination results in areas with low backscatter
(the circled part). This area can be sampled to estimate p̂obj.

B. Estimating pobj

Sec. IV shows that for purposes of signal reconstruction, it is
possible to assume that pobj = 0. However, from Eq. (13), if
this assumption is wrong, it damages the estimation of B̂. As a
consequence, it damages the estimation of the object distances
Zobj, based on B̂, as described in Sec. V-A. Failing to estimate
pobj correctly, damages the monotonic relation between B̂ to Zobj

expressed in Eq. (21). For illustration, in a real scene which we
present in the following, pobj ≈ 30% at the rocks. In Fig. 12(a)
B̂rel is estimated under the wrong assumption that p̂obj = 0. Here,
B̂rel is rather uniform, despite variations of Zobj. On the other
hand, when taking into consideration pobj ≈ 30%, Fig. 12(b)
reveals the significant dependency of B̂rel on Zobj in this case.

Sometimes pobj can be sampled directly from the images.
Consider the marked circle in Fig. 13, in off-axis illumination,
the objects at the far fringe of the irradiated spot are lit, but are
effectively not veiled by backscatter (as in [31]).

In Fig. 14(a), for example, this occurs in the upper left part of
the FOV. Term such an image location as xclear. In such areas,
Imax ≈ Smax and Imin ≈ Smin. Then, similarly to Eq. (26),

p̂obj =
Imax(xclear)− Imin(xclear)

Imax(xclear) + Imin(xclear)
. (32)

For example, in the scene presented in Fig. 14, the measured
values of p̂obj in the red, green and blue channels are 0.22, 0.27

and 0.34 respectively.
1) Automatic Estimation: We discuss here an automatic ap-

proach for the estimation of pobj. It is based on the observation
that using a wrong value for pobj increases the crosstalk between

the estimated backscatter B̂ and the signal component Ŝ. Let

p̂obj = ptrue
obj + ε, (33)

where ε is the error in pobj. Using Eq. (33) in Eq. (12,13) , yields
an erroneous estimate of B,

B̃ = B− ε

pscat − ptrue
obj

S̃, (34)

where S̃ is the erroneous estimate of S. Note that Eq. (17) is a
special case of Eq. (34), in which ptrue

obj = pobj and ε = −pobj. In
any case, Eq. (34) shows that there is crosstalk between B̃ and S̃
that increases with ε. For example, Fig. 14(b) shows B̂ calculated
using the assumption that pobj = 0 (Eq. 15). Note that the value
of B̂ in the circled area is high. In fact, a rock from I can be
seen there. Fig. 14(c) shows B∞ for this setup. The value of the
circled part in B̂ is almost as high as its value in B∞. This falsely
indicates a far object.

To quantify the crosstalk, we may use mutual information (MI).
The MI is a quantity that measures mutual statistical dependency
of the two random variables B̃ and S̃. A high value indicates
some statistical dependency between the variables. Define b as a
gray level in the image B̃. Similarly, define s as a gray level in
the image S̃. Then,

MI(B̃, S̃) =
∑

b∈B̃

∑

s∈˜S

prob(b, s) log

[
prob(b, s)

prob(b)prob(s)

]
, (35)

where prob(b, s) is the joint probability distribution function
of pixels in B̃ and S̃. The marginal distribution functions of
B̃ and S̃ are defined as prob(b) and prob(s), respectively.
The true distribution functions are unknown and therefore they
are estimated using histograms, or, more efficiently, by Parzen
windows [46]. Thus, we estimate an optimal value for p̂obj as

p̂optimal
obj = arg min

p̂obj∈[0,1]

{
MI

[
B̃(p̂obj), S̃(p̂obj)

]}
. (36)

In the experiment shown in Fig. 14, the MI for different potential
values of p̂obj is plotted in Figs. 14(e,f). In each color channel,
there is one value of p̂obj that minimizes the MI. Note that these
values are very close to the values acquired by sampling (Eq. 32).
These values were used in Eq. (13) to calculate B̂ in Fig. 14(d).
It shows B̂ based on Eq. (13), using the value poptimal

obj derived by
Eq. (36). Now the circled part has a low value of B̂, as expected
from a close object. Another example for the automatic estimation
is shown in Fig. 15.

The problem becomes more complicated when pobj varies
across the scene. In Fig. 12 we can see (in blue ellipses) two
objects whose pobj is significantly different than the rest of the
objects. It causes distortions in the backscatter image. In this
case, we assigned for these objects the value of B̂rel of their
surrounding, in order to get an estimation of the distance map
which is shown in Fig. 9.

VII. EFFECTIVENESS UNDER NOISE

Secs. IV-VI described methods to recover the object visibility
and distance. An important question to ask is how distant can
objects be, and still be recovered? Even in a non-scattering
medium, widefield illumination is limited by the free-space falloff
term 1/R2

source. This poses an inherent limit on all approaches
that use widefield illumination. Objects at long distances, which
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Fig. 14. (a) A raw image I of an underwater scene. (b) The estimated B̂ using the assumption that p̂obj = 0. (c) B∞ of that setup. (d) B̂ using
an estimation for p̂obj. (e) The MI of B̂ and Ŝ as a function of p̂obj. In each color channel, the minimum of the MI sets p̂optimal

obj . (f) Zoom
into the marked part of plot (e).
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Fig. 15. Using Eq. (36) on the example of Fig. 9. The MI was calculated only on the part marked by the white rectangle in (a), to avoid
the anomalous objects on the left part of (a). The full plot is shown in (b). Zoom-in of the marked rectangle in (b) is shown in (c).

are not lit effectively, cannot be reconstructed. Moreover, no
imaging system is free of noise. As a consequence, when the
signal is in the order of the noise, reconstruction is limited. For
example, in our system, the recorded intensity of objects farther
than 6 − 7[m] was too low to be recovered by removing the
backscatter component.

As for distance recovery, a major concern is the resolution of
the function B̂(Zobj). The function in Eq. (21) is approximately
linear at short distances, yielding a good distance resolution.
However, Eq. (21) saturates very quickly, thus losing the capacity
of proper recovery. Again, when the resolution is in the magnitude
of the noise, the reconstruction may become fruitless. What are
the typical saturation distances? Fig. 16 depicts Brel as a function
of the object distance. It is a result of simulations based on three
classes of values for b and c, taken from [28], which are typical
to seawater at different environments. The simulated light source

was placed 15cm from the optical axis of the camera. Recall
(Sec. II) that the saturation distance zsat is the distance in which
B effectively becomes indistinguishable from B∞. We can see
that zsat does not vary much with the water properties. In either
case, beyond ≈ 1.5[m] the backscatter is already saturated and
is thus uninformative with respect to Zobj. Therefore, accurate
distance reconstruction based on backscatter is limited to the close
distances. Moreover, in all the simulated water types, Zsat ¿ c−1.
Sections VII-A and VII-B analyze the limits as a function of
various medium and imaging parameters.

A. Ŝ and B̂

Suppose we have two statistically independent intensity mea-
surements, Imax and Imin with noise variances σ2

Imax
and σ2

Imin

respectively. Let variable v be a function of Imax and Imin. Then,
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relB

satZ obj[ ]Z m

Fig. 16. The relative backscatter Brel as a function of the object
distance. The values for b and c are taken from [28]. The backscatter
saturates within a range of 1.5m. Moreover, the saturation distance
Zsat is similar in all three different water types.

in a first order approximation, the noise variance of v is given by

σ2
v =

(
∂v

∂Imin

)2

σ2
Imin

+
(

∂v

∂Imax

)2

σ2
Imax

. (37)

According to Eqs. (12,13), the variables Ŝ and B̂ linearly depend
on Imin and Imax. Therefore, with respect to these variables,
Eq. (37) is an exact expression. Following Eqs. (12,13), the noise
variances in Ŝ and B̂ are:

σ2
Ŝ

=

(
1 + pscat

pobj − pscat

)2

σ2
Imin

+

(
1− pscat

pobj − pscat

)2

σ2
Imax

(38)

σ2
B̂

=

(
1 + pobj

pobj − pscat

)2

σ2
Imin

+

(
1− pobj

pobj − pscat

)2

σ2
Imax

. (39)

It is obvious that if pobj ≈ pscat, then {σ
Ŝ
, σ

B̂
} → ∞, hence

the reconstruction is unstable. Thus, the method works best if the
medium and object differ significantly in their DOPs. Specifically,
in a medium where pscat is relatively high (usually in good
visibility), the method works best with depolarizing objects. On
the other hand, in a strongly depolarizing medium (low pscat),
objects are reconstructed better if they are polarizing. Note that in
Eqs. (38,39), the noise component due to Imin is amplified more
than that of Imax. For example, consider σ2

Ŝ
. If pscat = 0.5, then

σ2
Imin

is amplified 9 times more than σ2
Imax

.
Let us look for a moment on a case where signal-independent

noise dominates. Then, σImax = σImin = σ0, and

σ2
Ŝ

= 2σ2
0

[
1 + p2

scat

(pobj − pscat)2

]
, σ2

B̂
= 2σ2

0

[
1 + p2

obj

(pobj − pscat)2

]
.

(40)
Fig. 17 depicts σ

Ŝ
/σ0 and σ

B̂
/σ0, as derived in Eq. (40). The

cases [pscat, pobj] = [0, 1] and [pscat, pobj] = [1, 0] are two local
minima. In other words, it is preferable that polarization of either
the backscatter or the backreflection would be high and exclusive.
In any case, {σ

B̂
, σ

Ŝ
} > 1, i.e., the noise is amplified.

In reality, σImax 6= σImin due to photon noise. Define gelectr

as the number of photo-generated electrons required to change a
unit gray-level. Following [34], [42], the noise variance of a pixel
gray level in an image I can be modeled as:

σ2
I = ρ2/g2

electr + Dt/g2
electr +

I(xobj)

gelectr
, (41)

where ρ is the standard deviation (STD) of the electronic readout
noise, induced by electronic circuity in the camera system. It is

ˆ

0

S
σ

σ

objpp∞p∞

ˆ

0

B
σ

σ

objpp∞p∞
Fig. 17. The noise standard deviations σB̂ and σŜ as a function of σ0,
pobj and pscat. The diagonal pobj = pscat is unstable and therefore
it is cut from the illustration.
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Fig. 18. STD of the reconstruction noise of Ŝ, as a function of Zobj.
The effective distance ZS

eff is defined as the distance, beyond which
the noise STD in Ŝ is greater than Ŝ itself. In this case, it is in the
order of a meter.

measured as a number e− of electrons. Here, t is the exposure
time, while D is the detector dark current in units of e−/sec. In
Eq. (41), the first two terms are signal-independent. The third term
is photon noise, which is signal-dependent. As in [42], the signal
independent components are encompassed into a single term

κ2
gray = ρ2/g2

electr + Dt/g2
electr, (42)

assuming the same exposure time for all frames. Plugging
Eqs. (41,42) into Eq. (38,39) yields

σ2
Ŝ
(xobj) =

(
1 + pscat

pobj − pscat

)2 [
κ2
gray +

Imin(xobj)

gelectr

]
+

(
1− pscat

pobj − pscat

)2 [
κ2
gray +

Imax(xobj)

gelectr

]
(43)

σ2
B̂

(xobj) =

(
1 + pobj

pobj − pscat

)2 [
κ2
gray +

Imin(xobj)

gelectr

]
+

(
1− pobj

pobj − pscat

)2 [
κ2
gray +

Imax(xobj)

gelectr

]
. (44)

Let us look at the case where pobj = 0. From Eq. (16), Eq. (43)
then becomes

σ2
Ŝ
(xobj) =

1

p2
scat

·
{[

2κ2
gray +

S(xobj)

gelectr

]
(1 + p2

scat) +
B(xobj)

gelectr
(1− p2

scat)

}
. (45)

Interestingly, σ2
Ŝ

increases with the backscatter component B.
Therefore, it is beneficial to reduce B during acquisition. We can
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further use Eqs. (5,21,45) to approximate7 the dependency of σ
Ŝ

on Zobj:

σ2
Ŝ
(xobj) =

1

p2
scat

·
{

B∞{1− exp[−k(Zobj − Z0)]}
gelectr

(1− p2
scat)+

[
2κ2

gray +
Lobj(xobj) exp[−2cZobj]

gelectrZ
2
obj

]
(1 + p2

scat)

}
. (46)

We define the effective reconstruction distance ZS
eff as the distance

for which:
σ

Ŝ
(ZS

eff)

Ŝ(ZS
eff)

≈ 1. (47)

This is the distance, beyond which the noise STD in Ŝ is greater
than Ŝ itself. Note that when the signal dependent component
is negligible compared to κ2

gray, then Eq. (46) degenerates to
Eq. (40), by substituting σ0 = κgray and pobj = 0.

To gain insight into the dependency of σ
Ŝ

on Zobj, we numer-
ically assess two cases. The first takes into consideration only
the signal-independent noise κgray. The second case accounts
for all noise effects (the model of Eq. 41). Let B∞ = 250,
i.e. close to saturation in an 8-bit camera. Assume a moderate8

value for the DOP, pscat = 0.6 and attenuation coefficient
c = 0.2m−1. Furthermore, we set Z0 = 0.2m, which is a typical
value derived in simulations of setups where the light source
is in proximity to the camera. For acquisition noise, we use
typical values from [42]: κgray = 0.4, gelectr = 50. Based on
these values we assess Eq. (46) with these values. The results
are shown in Fig. 18. Clearly, when taking into consideration
photon noise, ZS

eff shortens. We note that we repeated this analysis
for different setups of camera/light-source and types of water.
Changing the setup hardly changes ZS

eff . However, increasing
the visibility (decreasing c), increases ZS

eff a little. In any case,
ZS

eff is in the order of a few meters. Apparently, this result
does not fit our experiments, where we reconstructed objects
up to 5 − 6m. However, our simulation suggests that whereas
the objects’ visibility is enhanced by the reconstructions, the
quantitative radiance values may be inaccurate.

B. Noise in Ẑobj

In Sec. V-A the distance map Ẑobj is estimated based on B̂.
Here we analyze the effectiveness of the estimation. The noise
in the estimated B̂ is uncorrelated with the noise in B∞, as both
are based on different measurements. Therefore, in analogy to
Eq. (37), the noise variance in the estimated distance is

σ2
Ẑobj

=

(
∂Ẑobj

∂B̂

)2

σ2
B̂

+

(
∂Ẑobj

∂B∞

)2

σ2
B∞ , (48)

in first order approximation. The value of B∞ does not change
between frames. Thus it can be calibrated accurately once, setting
σ2

B∞ ' 0. From Eq. (22):

∂Ẑobj

∂B̂
=

[
1

k(1−Brel)

]
1

B∞
. (49)

7For the falloff calculation in Eq. (46), we assumed the simple case of
collinearity of the camera and the light source axis. Eq. (46) also assumes a
uniform light source.

8This DOP value was chosen following our experiments, described in
Sec. IV-B.

Hence,

σ2
Ẑobj

=

[
1

k(1−Brel)B∞

]2

σ2
B̂

=
exp[2k(Zobj − Z0)]

k2B2∞
σ2

B̂
,

(50)
where σ2

B̂
is given by Eq. (44). As expected, σ

Ẑobj
→ ∞, i.e.,

the noise is greatly amplified as Brel → 1, i.e. when Zobj À
Z0, destabilizing the reconstruction. However, this exponential
amplification breaks the first-order approximation in Eqs. (37,48).
Thus, Eq. (50) is valid only at small values of Zobj. Beyond
that range, the effect of noise cannot be based on Eq. (48),
and it is thus assessed numerically. When Zobj increases, some
noisy pixels yield B̂ ≥ B∞, contradicting the physical model.
Then, B̂rel ≥ 1 and the argument of the logarithm in Eq. (22)
is either 0 or negative. This yields values of Ẑobj that are not
physical (complex values). Having even a single pixel of such
nature invalidates the variance calculation, and therefore σ

Ẑobj
is

undefined in that range.
To assess the effect of noise with respect to ground truth

data, we performed numerical simulations. We simulated the
acquisition process described in Sec. IV using the model from
Sec. II. Noise was added to the simulated images to obtain
Imin and Imax. Then, the distance Ẑobj (which is now noisy)
is reconstructed from Imin and Imax using Eqs. (13,22). We used
the same parameters as in Sec. VII-A, Imax, Imin ∈ [0, 255], and
pobj = 0. Fig. 19(a) plots σ

Ẑobj
/Zobj in the range Zobj = [0, 1]m.

The solid line shows the empirical noise variance obtained in the
numerical simulation. At small values of Zobj, it is consistent
with the first-order theoretical approximation (Eq. 50), which is
plotted as a dashed curve. When Zobj increases, the actual noise
grows beyond the first-order calculation.

As written above, at large distances the empirical σ
Ẑobj

is
undefined. Thus, in large distances, we assess the effect of noise
using other measures. Let us define Ωz as the set of all physically
valid pixels located in the same distance z:

Ωz = {x : B̂rel(x) < 1 , Zobj(x) = z}. (51)

The average estimated distance in the set Ωz is

Z̄obj(z) =
1

|Ωz |
∑

x∈Ωz

Ẑobj(x). (52)

The average Z̄obj(z) is regarded as the expected distance re-
construction for pixels corresponding to distance Zobj = z.
We estimated Z̄obj(z) in the simulation whose parameters are
described above. For this case, Fig. 19(b) plots Z̄obj(z) as a
function of Zobj. The distance estimation is in agreement with
the ground truth up to a distance of ∼ 1[m]. At some point, Z̄obj

effectively does not change with Zobj. We term the distance where
it happens Z

Zobj
eff , beyond which the distance estimation becomes

meaningless. This short range can be observed in Fig. 9. The
bucket in the middle of the scene is placed in Zobj ≈ 2m. As
expected, the value of Brel at the bucket is saturated, and thus the
bucket appears as having the same distance as the background.
Fig. 19(c) plots 1 − |Ωz |/Nz , where Nz is total number of
pixels (both valid and invalid) corresponding to the true distance
z. This is the percentage of the physically invalid pixels, i.e.,
where B̂rel ≥ 1. Above Zobj ≈ 1[m] this percentage increases
rapidly, which is in agreement with the loss of accuracy shown
in Fig. 19(b).
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Fig. 19. (a) The value of σẐobj
/Zobj in the range Zobj = [0, 1]: theoretical first order [dashed] and empirical [solid]. (b) The expected

distance reconstruction Z̄obj(z) [solid] based on valid pixels, in comparison to the utopian output Zobj [dashed]. (c) Percentage of the invalid
pixels (1− |Ωz|/Nz) as a function of Zobj. In these pixels B̂rel ≥ 1.

VIII. SUMMARY

We presented a polarization-based method for visibility en-
hancement and distance estimation in scattering media. The
method was demonstrated in real-life experiments. Our method
uses two frames taken with widefield polarized illumination.
Therefore, it is fast and simple. We use wide band light sources,
enabling colorful results. The visibility enhancement range de-
pends on the range of the light source. However, underwater, the
distance reconstruction is effective only in a range of 1− 2m. In
the future, it would be beneficial to expand the work to deal with
objects whose reflectance has spatially varying pobj. While we
performed experiments in the underwater domain, the formulation
of most of our problems is general and may thus be applicable to
other media. This work can be incorporated together with other
methods for vision in scattering media [12].

The analysis in this paper used the single scattering approxima-
tion. In principle, multiple scattering may occur. At least in one
of our experiments (sea of Galillee, Fig. 7(a)), multiple scattering
was significant, creating noticeable blur. Our method still resulted
in visibility enhancement. Nevertheless, it will be beneficial to
analyze the effects caused by multiple scattering on the methods
we presented in this paper.

APPENDIX

At the current stage of the research, we wanted to reduce
effects that can potentially disturb the experimental demonstra-
tion. Hence, we had several consideration for choosing the light
sources, beyond being watertight in the underwater depth.
• Stability: We had to avoid uncontrolled illumination fluctua-
tions in this research phase. Hence, we avoided current arc-based
flash bulbs, which have O(5%) fluctuations [13]. DC incandescent
sources are least prone to short-term fluctuations, once their
temperature saturates.
• Narrow lamphead exit aperture enables fitting of high
quality filters. Hence, we avoided current large LED clusters or
fluorescent bulbs.
• Holographic diffusers are used for higher transmission effi-
ciency and smaller diffusing angles than ground glass diffusers.
• Sealed diffuser. High efficiency diffusers are either
ground/sandblusted glass or holographic. The former become
clear (nondiffusing) in water, as their refractive index is nearly
matched by water in their concavities. The latter are destroyed in

water. Thus, we sealed the diffusers in air spaced windows.
• Diffuser before polarizer. Diffusers scramble light, causing
depolarization. Lab tests verified a higher illumination DOP when
the diffuser is placed between the polarizer and the lamphead,
rather than facing the object.
• High intensity extends the vision range in the water.
• Enough battery power to last for long underwater experiments
with fast recharging in field use.
We used the Aquavideo SuperNova system. It projects up to 400W
by two incandescent bulbs. A lower power of 80W lasts for about
an hour. It has a 50mm lamphead exit. The above considerations
stemmed from research needs. In a system for routine use, part
of these considerations may be relaxed.
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