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Abstract
Widespread current cameras are part of multisensory

systems with an integrated computer (smartphones). Com-
puter vision thus starts evolving to cross-modal sensing,
where vision and other sensors cooperate. This exists
in humans and animals, reflecting nature, where visual
events are often accompanied with sounds. Can vision as-
sist in denoising another modality? As a case study, we
demonstrate this principle by using video to denoise au-
dio. Unimodal (audio-only) denoising is very difficult when
the noise source is non-stationary, complex (e.g., another
speaker or music in the background), strong and not indi-
vidually accessible in any modality (unseen). Cross-modal
association can help: a clear video can direct the audio es-
timator. We show this using an example-based approach.
A training movie having clear audio provides cross-modal
examples. In testing, cross-modal input segments having
noisy audio rely on the examples for denoising. The video
channel drives the search for relevant training examples.
We demonstrate this in speech and music experiments.

1. Introduction
Smartphones, tablets and a range of other devices inte-

grate cameras with a suite of other sensors, including micro-
phone, accelerometer, magnetometer, etc., all accessible in
synchrony through an integrated computer. The affordabil-
ity and dramatic spread of these integrated systems revolu-
tionizes computer vision. Vision becomes cross-modal. For
example, accelerometers are used in conjunction to cameras
for disambiguating structure from motion [7] and initializ-
ing image stabilization [22] and mosaicing. Cross-modal
analysis is also biologically-motivated: human and animals
integrate vision with other senses [12, 19]. We discuss the
following cross-modal question: can one modality be used
to denoise another? For example, can video be used to de-
noise accelerometer readings or a noisy mono soundtrack?
This is a general question, thus much of the analysis in
this paper is general. We focus on audio-visual (AV) cross-
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Figure 1. An input video accompanied by its soundtrack, which
is highly corrupted by an unknown, unseen non-stationary noise
source. The output soundtrack is denoised with the aid of the
video. A 8sec section of a 240sec movie is plotted. The video
with all the soundtracks can be linked through [35].

modal denoising as a case study (See Fig. 1). AV analysis
is an emerging topic [8, 26, 30, 38, 40], prompting studies
in a range of interesting tasks [2, 17, 24, 25].1

Unimodal denoising and source separation are difficult
when the intensity of the noise is very high (overwhelm-
ing the signal) and non stationary (structured). This is
the cocktail party problem [21], which is very challeng-
ing, especially when only a single sensor (microphone)
is accessible [5, 34, 36]. In AV studies, source separa-
tion [2, 6, 17, 29] assumes that all the audio sources are
visible in the field of view, e.g., a couple of speakers are
seen while they speak. Here we seek more general De-
noising: there may be no data about the auditory distur-
bance. The source of the noise may be in the background,
inaccessible, unseen. In our problem, one modality suffers
from strong noise which is non-stationary and unobserved
directly. The modality is denoised using data from another,
cleaner modality (video).2

1Some vision methods were adapted to unimodal audio analysis[23,
33].

2We aim to output cleaner audio, suitable for human and machine hear-
ing. The aim is not computational word recognition [11].



Déjà Vu + Déjà Entendu
Our approach is: if “you already saw it and heard it,” you

can hear it well if you see it again. Our method uses training
examples. A training movie has relatively clean audio. This
enables prior learning of cross-modal association. Based
on the learned association and clean training examples, it is
possible in testing to use the clean modality (video) to help
denoise the other (audio). For example, any smartphone has
a microphone and a camera aiming at the user’s face. Video
calls from a quiet home create a clean example database.
Later, calls are made in audio-noisy places such as a train
station, bar or workshop. There, the clear audio example
set can be used to denoise the voice. The examples are eas-
ily found since the video is relatively undisturbed. Another
example is music: suppose undisturbed examples of audio-
videos of a drum are obtained. Later they can be used to
isolate a drum’s sound in a rock show.

Example-based methods are used in various computer-
vision tasks [4, 10, 15, 18]. This work builds on these con-
tributions, extending them to cross-modal analysis.

2. Background
Unimodal single-channel audio denoising and source

separation are long studied problems. In audio denoising,
noise is commonly assumed to be stationary [9, 28, 37,
39]. Nevertheless, there are unimodal source separation
techniques which successfully accomplish separating non-
stationary sources [34, 36]. Music and speech signals have
inherently different statistics. Thus, many algorithms are
distinct for each, while some [16, 34, 36] are oriented to
both. There, sparse representations of audio are used.

We also use a single microphone, and process music and
speech using statistics applicable exclusively to each. The
clear video enables audio denoising using simple mathe-
matical operations. We cope with very low SNR, under
overwhelming non-stationary noise, even when both the de-
sired signal and noise originate from the same source.3 In
recent years, source separation algorithms assisted by video
appeared. However, they [2, 6, 17] assume that all audio
sources appear in the visual data.

3. Cross-Modal Representation
We generalize example-based denoising [10, 15, 18] to

cross-modal processing, in the context of AV signals. The
formulation involves the following main steps:
1. Defining multimodal signals.
2. Extracting multimodal features.
3. Learning feature statistics, based on training over
natural signals (videos).
4. Performing cross-modal pattern recognition on multi-
modal feature vectors.

3For example, a xylophone melody suffering interference from a dif-
ferent xylophone melody.
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Figure 2. The initial and final frames and audio samples in tem-
poral segment k, where τ is continues time. Here both audio and
video segments have the same temporal length.

5. Rendering a denoised multimodal signal.

Here we focus on step 1. Steps 3, 4 and 5 are described in
Secs. 4, 5 and 6, respectively. Step 2 is given in Sec. 7.

Joint Signals
AV signals simultaneously evolve continuously: at time

τ , a camera senses an instantaneous object projection
v(τ) while a microphone senses instantaneous air-pressure,
whose temporal change is the audio a(τ). The signals are
sampled. The sampling periods of the audio and video are
∆τA and ∆τV, respectively. Define ρ = ∆τV/∆τA. Typ-
ically, O(ρ) ≈ 800.

A training video is divided into temporal segments, each
NF frames long. We define an example as a temporal
segment composed of video (ve) and audio (ae) compo-
nents. Consider k as an example index. The indices
[f0

k , ..., (f0
k + NF − 1)] are the frames in segment k, with

f0
k being its initial frame (See Fig. 2). The video data in this

segment is a visual-example,

eV
k =

[
ve(f0

k ) ve(f0
k + 1) . . . ve(f0

k + NF − 1)
]
. (1)

The video segment is accompanied by an audio stream, con-
taining NS samples. The audio sample indices in segment
k are [s0

k, ..., (s0
k + NS − 1)], where s0

k is the index of the
first audio sample in this segment (Fig. 2). The audio data
in this segment is an audio-example,

eA
k =

[
ae(s0

k), ae(s0
k + 1), . . . ae(s0

k + NS − 1)
]
. (2)

The corresponding examples measure the same event simul-
taneously in their respective modalities.

The k-th AV joint example is the row vector

ek ≡
[
eV

k eA
k

]
, (3)

where eV
k and eA

k are given in Eqs. (1,2). The example set
of AV signals constitutes

E = {ek}NE
k=1 . (4)

The examples can now be used for processing new AV test
data, based on a pattern recognition system. The test set
of raw measured input test signals is {im}M

m=1. Here, m
indexes the input signal composed of video and audio com-
ponents (Fig. 3). The input audio components are gener-
ally noisy and distorted, in contrast to signals obtained in
a clutter-less environment during training. The input se-
quence is divided into temporal segments, each including
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Figure 3. Periodic extraction of video and audio segments. Con-
secutive segments partially overlap in time.

NF frames and NS audio samples. The data in the m-th
segment is a visual-input iVm and an audio-input iAm. Thus,
the m-th AV joint input signal is the row vector

im ≡
[
iVm iAm

]
. (5)

There is a partial temporal overlap between input segments
extracted from the raw sequence.

Each AV example and AV test input is pre-processed to
yield a multimodal feature vector [6, 29]

ẽk = P(ek) =
[
ẽV

k ẽA
k

]
, ĩm = P(im) =

[̃
iVm ĩAm

]
. (6)

Here, ẽV
k and ẽA

k are respectively the visual and auditory
feature row-vectors obtained from the k-th raw example.
Similarly, ĩVm and ĩAm are respectively the visual and au-
ditory feature vectors of the m-th raw input signal. The
pre-process P is described in Sec. 7. Between a feature
vector of the m-th input signal to that of the k-th example,
dV (̃iVm, ẽV

k ) and dA(̃iAm, ẽA
k ) measure the distance between

visual feature vectors or auditory feature vectors, respec-
tively.4 The distance measure can be the ℓ2 norm.

4. Feature Statistics as a Prior
Before processing input segments, we establish the sta-

tistical nature of the signal, using training. The statistics
then serve as prior knowledge, when processing a test se-
quence. As motivation, when listening to a familiar lan-
guage, a strong prior is that some temporal sequences of syl-
lables are highly probable (frequently appearing in words),
while others much less so. The probability distribution of
syllable temporal sequences is a prior, which can disam-
biguate speech under noise. Our work is motivated by lan-
guage. However, we avoid a high-level approach that seeks
division of the audio sequence into syllables. Instead, we
use low-level audio features in example segments, and use
training data to learn a probability distribution of temporally
consecutive segments.

Our segments are 0.28 sec long, approximately the du-
ration of a single syllable. Each example segment is turned

4To equalize the audio distance and the video distance, both feature-
vectors are separately normalized.
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Figure 4. [Left] Feature vectors of segments are clustered. The
probability of temporal transition from cluster q to cluster r is
P (q, r). [Right] Signals stem from a hidden Markov model
(HMM): an underlying cluster index c changes in time m based
on P, yielding a clean segment em (example). Audio noise inter-
feres, resulting in a noisy raw segment im.

into a feature vector ẽk. The set of example feature vectors
E (Eq. 4) undergoes clustering into C clusters (we use K-
means for this). The proper number for C is debatable, as
there are O(104) potential syllable types. To reduce dimen-
sionality in our experiments, we took as rule-of-thumb the
number of vowel×consonant combinations (in any order),
and then dictated C = 350. In this way, we obtain clus-
ters of AV segments. Segments in each cluster sound/look
rather similar. Segments across clusters can efficiently be
used in consecutive order to render speech.

Let segments have a fixed period of pF frames (see
Fig. 3). For the k’th example segment, the feature vec-
tor belongs to cluster ck = c(ẽk). The consecutive seg-
ment belongs to cluster ck+PF

= c(ẽk+PF
). The set of

all consecutive segments corresponding to fixed clusters
q, r ∈ [1, . . . C] is

Φq,r = {k | ck = r AND ck+pF = q} . (7)

The probability for a transition from cluster q to r is esti-
mated from the histogram of these sets,

P (q, r) = |Φq,r|/NE. (8)

The clusters and their transitions are illustrated in Fig. 4. In
a C × C matrix P, the (q, r) element is P (q, r). This ma-
trix is a statistical prior that expresses the joint probability
for consecutive signal segments. The prior views signals as
derived from a hidden Markov model (HMM) [13, 21, 31],
as plotted in Fig. 4.

5. Cross-Modal Association
We seek association for each noisy input segment m to

a single clean example whose index is km. A selected ex-
ample km should roughly replace the input audio segment
iAm. This choice should satisfy two requirements:
1. The feature vectors of example ẽkm

and input ĩm should
be similar. This requirement is expressed by a Data
(fidelity) term D in a cost function C, defined next.
2. Consistency with prior knowledge. In our case, it is
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Figure 5. Each pair (m, k) is equivalent to a graph node. Directed
graph edges represent transitions between examples selected for
consecutive input segments. We seek the optimal path in the graph
(thick black arrows). Out of NE potential examples in the plot,
only K = 4 are considered for each m in this illustration. This
beneficial focus is obtained by the visual modality.

encapsulated in matrix P (Sec. 4), which expresses the
probability that km is followed by km+1. This becomes a
Regularization term R in C.

One example is selected per input segment m. Concate-
nating the sequence of selected examples, yields a vector
of indices k = [k1, k2, . . . km . . . kM ]. The cost function is
C(k) = D(k) + λR(k), where λ weights5 the regulariza-
tion (prior) relative to the data term. We seek the overall k
that simultaneously optimizes C across the entire temporal
domain,

k̂ = arg min
k

[D(k) + λR(k)]. (9)

Once the data and regularization terms are defined, Eq. (9)
can be solved. Eq. (9) is equivalent to finding a path in a
graph, as illustrated in Fig. 5. A pair of input m and exam-
ple k is a node in the graph. Directed edges in the graph
represent transitions between examples selected for con-
secutive input segments. Graph node (m, k) carries a cost
D(km), while an edge between (m, km) and (m+1, km+1)
has a cost λω(km, km+1), which we define in Sec. 5.1. As
explained next, visual matching eliminates all examples ex-
cept for K ≪ NE candidates considered per m. The graph
reduces to M×K active nodes and (M−1)K2 edges. Vec-
tor k is a path in the graph, and k̂ is the optimal path. The
optimal path is efficiently found using dynamic program-
ming [3] over this graph.

5.1. Regularization Term R
At input segment m, the selected example is km. At

the consecutive input segment, m+1, the selected example
is km+1. These examples correspond to clusters ckm and
ckm+1 . This pair has prior probability P (ckm , ckm+1). We
use it to induce a cost

5The value of λ was set to 1.5 in our experiments.

ω(km, km+1) = − log P (ckm , ckm+1). (10)

A low probability transition between example segments in-
duces a high cost, while a highly likely transition induces
little or no cost. The cost ω(km, km+1) is a weight corre-
sponding to each directed edge in the graph of Fig. 5. The
term R sums Eq. (10) over all temporal input segments:

R(k) = −
M−1∑
m=1

log P (ckm , ckm+1). (11)

5.2. Data Term D
Data fitting in cross modal processing is challenging and

interesting. This work does not aim to denoise both modal-
ities using examples. The input video is relatively clean,
with sufficient quality. Only the audio is considered as
noisy, and needs to be estimated. Being of good quality, the
video features ĩVm and ẽV

k have critical importance. They
have a prime role in eliminating from E examples that are
unrelated to im. In this way, visual features suggest candi-
date examples from E that are potentially close neighbors to
im. However, visual information often does not have a clear
one-to-one correspondence to audio. In speech, different
sounds may be created by similar lip movements. Hence,
visual features provide a coarse fit in our audio denoising
task, greatly reducing the number of relevant examples to
K ≪ NE, per input. Audio features finely discriminate
among those examples.

For the m’th input segment, the set of K visual nearest-
neighbors are found among the visual feature vectors:

Km =
{

k | dV (̃iVm, ẽV
k ) < dV (̃iVm, ẽV

q ), ∀q /∈ Km

}
.

(12)
Here, Km ⊂ [1, .., NE] is of size |Km| = K. The subset
{ẽk}k∈Km represents candidate example vectors, whose
videos highly resemble the input video segment iVm. Among
those candidates, finer discrimination is achieved by penal-
izing for a high distance dA(̃iAm, ẽA

k ). Both criteria are com-
pounded to a single data-term. Let Tm be a threshold over
dV (̃iVm, ẽV

k ) that sets Km, as in (12):
dV (̃iVm, ẽV

k ) ≤ Tm, ∀k ∈ Km,

dV (̃iVm, ẽV
q ) > Tm, ∀q /∈ Km. (13)

For audio, define dmax
A ≡ maxm,k dA(̃iAm, ẽA

k ). All the au-
dio vector-distances are normalized by dmax

A , yielding

d̂A(̃iAm, ẽA
k ) = dA(̃iAm, ẽA

k )/dmax
A , (14)

where 0 ≤ d̂A ≤ 1. A data-fitting cost for a selected exam-
ple km can then be posed as

D(km) = [dV (̃iVm, ẽV
km

) ≤ Tm] [d̂A(̃iAm, ẽA
km

) − 1]. (15)

In Eq. (15), the left bracketed term is boolean, and it ex-
presses the requirement that km ∈ Km. The right bracketed
term is continuous-valued, and it expresses the requirement
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Figure 6. Output soundtrack m is silent, except for [s0
m, ..., (s0

m +
NS − 1)], which includes the denoised content ek̂m

. The trape-
zoidal windows illustrate a weighting function w(s − s0

m) used
in audio mosaicing. Mosaicing output audio segments is done by
fading in and out each segment, using the weighting function.

for low audio misfit cost. The lower bound of D(km) is −1,
obtained when both the visual difference is low (dV ≤ Tm)
and the audio perfectly fits (d̂A → 0). This is the best we
can strive for. The upper bound of D(km) is 0, obtained if
the visual difference is high (dV > Tm) or the audio fits
poorly (d̂A → 1). The cost D(km) is associated with node
(m, k) in the graph of Fig. 5. The data term of C sums
Eq. (15) over all temporal segments of the input sequence

D(k) =
M∑

m=1

[dV (̃iVm, ẽV
km

) ≤ Tm][d̂A(̃iAm, ẽA
km

)−1]. (16)

6. Rendering a Denoised Soundtrack
The selected digital audio track example eA

k̂m
is a clean

version of the noisy input iAm. A denoised output audio
aoutput can apparently be created by concatenating the clear
tracks corresponding to each consecutive input segment,
aoutput

simplistic = [eA
k̂1

eA
k̂2

eA
k̂3

. . . eA
k̂M

]. As in image mosaic-
ing, a long soundtrack is created by stitching short audio
segments. A temporal segment m partial overlaps with con-
secutive and preceding segments.

The initial audio sample in each input segment is

s0
m = 1 + (m − 1)ρpF . (17)

From (17), segment m is [s0
m, . . . (s0

m + NS − 1)]. A de-
noised soundtrack om corresponding to segment m is silent
(zero valued) at all times, except for the specific temporal
samples [s0

m, . . . (s0
m + NS − 1)] as illustrated in Fig. 6.

There, the optimized example corresponding to segment m
is k̂m. Its corresponding audio is eA

k̂m
. This audio is finely

aligned.6 as explained in [35]. The sequence om is feath-
ered using a weighting function wm(s) = w(s − s0

m). The
output of our system is therefore the audio

aoutput(s) = ΣM
m=1 om(s)w(s − s0

m) . (18)
6The temporal resolution of the video (upon which the examples k̂m

are primarily selected) is too coarse for audio. Thus, the audio undergoes
a finer temporal alignment [35].

7. Auditory and Visual Features
7.1. Audio Features

Auditory perception is sensitive to far fewer degrees of
freedom than those of a raw soundtrack. The known art
determines the essential compact features of audio, such
that a simple dA measures the essential differences be-
tween perceived sounds. For stationary sounds in speech,
such features are the mel-frequency Cepstral coefficients
(MFCCs) [32]. Sound is generally not stationary through-
out the temporal extent of an audio segment. Thus, each
segment is divided into NT brief consecutive tiles, each in-
dexed by t. Per tile t, the MFCCs yield a feature row-vector
mt. Thus, overall, the audio feature vector of the whole seg-
ment is ẽA = [m1, m2, . . . , mNT ], similarly for exam-
ples and input. In our speech experiments, we used NT = 7,
and each mt contains just 13 MFCCs.

In music experiments, we used a spectrogram summa-
tion over time as the audio feature vector. This implies the
harmonic structure typical to musical instruments.

7.2. Visual Features
Extraction of visual features has three main steps:

i. Locking on the object of interest.
ii. Extracting global motion by tracking.
iii. Extracting features unrelated to global motion.

In speech, the object of interest is around the mouth.
Step ii involves tracking the global location and orienta-
tion of the mouth. Other than image registration, we make
no use of this global state here. Step iii extracts features
associated with lip motion. We used low-level features: a
stabilized region of interest around the mouth underwent
spatio-temporal discrete cosine transformed (DCT). Based
on the set E, NDCT DCT coefficients that have the highest
variance are found. These NDCT DCT coefficients form the
visual feature vector.7

In musical instruments, the motion of interest depends
on the kinetics of instrument operation. For a stationary
xylophone, the interest is on the global motion of a hitting
mallet. Training examples in E are sequences having exclu-
sive xylophone sounds: example k corresponds to a hit on
the k’th bar of the xylophone. A sound commences when
the mallet hits an object projected to a pixel whose horizon-
tal and vertical coordinates are xe and ye, respectively. The
hit is a vertical minimum point. In the input sequence, we
need to spot similar events. A local vertical minimum in
the trajectory xi(f) = [xi(f), yi(f)] of input segment m is
checked by the logical (binary) operator

M ≡
[
yi(f0

m + 1) < min{yi(f0
m), yi(f0

m + 2)}
]

, (19)

where NF = 3. Being in the vicinity of the k’th bar is
determined by the logical operator

7In our experiments, the mouth is bounded by a 71 × 91 window,
NF = 7 and NDCT = 1400.
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Noise Name Input
Digits Bartender Xylophone

Sweet 0.07 0.36 0.9
Phil 0.09 0.59 -
Female speech 1.05 1.1 -
Male speech 2.4 0.3 -
White Gaussian 1 0.38 0.001
Xylophone - - 1

Table 1. SNR values of each signal-noise combination. Added
noises are: [Sweet] Music from the song Sweet Child of Mine by
GNR. [Phil] Music from the song I Wish It Would Rain Down by
Phil Collins. [Male speech] and [Female speech] from the TIMIT
database [20].

Hk ≡
{
∥xi(f0

m + 1) − xe(f0
k + 1)∥2 < H

}
. (20)

Here H is a loose spatial tolerance for potentially being
near a bar. It allows K bars to yield Hk = 1 per frame,
since the visual trajectory has ambiguities. The ambiguities
stem from the xylophone being a 3D object (two levels) pro-
jected to a 2D video, and from a too coarse spatiotemporal
resolution of the video, particularly for fast playing motion.
Overall, the measure

dV (̃iVm, ẽV
k ) = {NOT [M AND Hk]} (21)

has a minimum value (zero) only at input video segments
iVm having spatial proximity to a sound-associated example
eV

k , while being at a minimum of the trajectory. Otherwise,
dV = 1. If no sound-associated example eV

k matches iVm
using these features, then the denoised audio prompted by
segment m is silence. In other cases, Eqs. (12,21) yield K
candidate examples, corresponding to different bars.

8. Experiments
We used a simple camcorder working at 25Hz video rate.

Audio was sampled at 8kHz for speech and 16kHz for mu-
sic. After the recordings, we added strong audio noise to
the test sequences, making them difficult to comprehend
(SNR can8 be ≪ 1). The noise types were varied and often
highly non-stationary. They are listed in Table 1

We made music and two speech denoising experiments.
As in [1, 6, 27, 29], we used a corpus of words, particularly
digits {0, 1, ..., 9}. Our first speech experiments included
randomly pronounced digits. Training lasted 60 sec, and
testing was based on a different video lasting 240 sec. Our
second experiment is of bartender speech, where a person
says names of 30 beverages under strong noise from sur-
rounding music. This is a much wider and more challeng-
ing corpus than digits. Training lasted 350 sec. The distinct
testing video lasted 48 sec, corrupted by each noise type.
Naturally, the sounds and appearances of lip motion varied
during speech repetition.

8SNR is measured by the ratio of signal and noise energies.
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Figure 7. Spectrograms corresponding to the soundtracks de-
scribed in Fig. 1 (8 out of 240 seconds). The noise is very intense
(SNR= 0.7). Top-right: our result. Bottom: results of other meth-
ods. Our method successfully denoised the signal while the other
methods failed.
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Figure 8. Spectrograms corresponding to the soundtracks of the
bartender experiment (10 out of 48 seconds).

For speech, we used NF = 7 and NS = 2240, corre-
sponding to 0.28 sec. We used pF = 6 on the test input.
Sample frames and an 8 sec section of the noisy digits input
are shown in Fig. 1, as is the corresponding denoised result.
The latter is very similar to the original plot (not shown, as
there is hardly any difference). This is also seen in spectro-
grams9 of the signals (Fig. 7).

The same applies throughout the long test sequences. As
a consequence, the spoken digits are comprehendible, ex-
cept for a few misses. This is acknowledged by watching
(and hearing) the movies which can be linked through [35].
The bartender experiment shows that the method can also
be applied on a richer domain of signals. Sample frames, a
10 sec section of a noisy bartender input spectrogram and
the corresponding denoised result are shown in Fig. 8.

For music, a xylophone was played. Training lasted
103 sec, and testing was based on a different video last-
ing 100 sec. We pruned E: all examples were discarded,
except for those having audio onsets [2]. The examples’

9For clarity, the contrast of all shown spectrograms was stretched in
the same manner in the display. Furthermore, the display is negative (dark
elements express high energy).
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Figure 9. [Top] An input video of a person playing a xylophone.
The accompanied soundtrack is very noisy. The noise source is
unknown, unseen in the field of view and highly non-stationary.
[Bottom] The audio is denoised, with the aid of the video, yield-
ing clear sound and comprehension. The video with all the sound-
tracks can be linked through [35].

duration varies, NS ∈ [12800 − 25600], according to the
lingering of each note. We set P to be uniform here. The
noisy test movies included playing several tunes, to which
the mentioned strong noises were added. One of the added
noises is another melody of this xylophone. This kind of
separation (denoising) is very challenging to unimodal au-
dio techniques. The spatial tolerance H (Eq. 20) was set
to detect up to K = 5 candidates bars. During testing, the
method handled well music that was played fast, in an ar-
bitrary rhythm, since here pF = 1. Fig. 9 shows sample
frames, a spectrogram of a 10 sec section of the noisy input
and the corresponding denoised spectrogram. The result is
very similar to the clear original. Some differences stem
from example segments having lower/higher sound intensi-
ties than the noisy input. Nevertheless, the resulting music
completely got rid of the noise, and was recovered nicely.
This is clearly demonstrated by watching (and hearing) the
movies linked through [35].

Comparison to Other Methods
Consistently, cross-modal processing was by far superior

to unimodal (audio-only or video-only) denoising:
{Process 1} A process that was run on the examples and
noisy inputs, unimodally on audio without video. The ren-
dered results sound as a mess.
{Process 2} Optimization of k̂ used only video. The results
sound more coherent than audio-only results, but still un-
clear.
{Process 3} We applied several unimodal audio denoising
methods. State-of-the-art OMLSA [9], shrinkage [14] and
non-local means denoising borrowed from image process-
ing. In non-local means, the K examples are extracted by
generalizing Eq. (12) to bimodal feature vectors, per input
segment m

Km =
{

k | d(̃im, ẽk) < d(̃im, ẽq), ∀q /∈ Km

}
. (22)

Noise Name Minimizing D Minimizing C
Sweet 24% 67%
Phil 25% 68%

Female speech 30% 75%
Male Speech 29% 73%
White Noise 16% 64%

Table 2. Quantitative Evaluation. The correspondence rate of
k̂clear and k̂ in the Bartender experiment.

All unimodal audio denoising results were very poor (hear
in [35]).

There are unimodal denoising methods that cope with
non-stationary noise [36]. However, we show a scenario
that would truly challenge unimodal denoising. One xylo-
phone melody serves as interfering noise overlayed on an
another, desired, xylophone melody. Produced by the same
instrument, both have the same sounds. Indeed, our method
handles this scenario [35].

To quantify the performance in music, we counted the
percentage of correctly played notes. On average, only 30%
of the notes were correct in {Process 1}. Errors include
missing notes, inserting notes at the wrong time and swap-
ping notes. In cross-modal AV processing, 85% of the notes
were correct. We used the following criterion for speech.
First, an original sequence was “denoised” by the method.
The selected example sequence in this case is k̂clear. When
denoising a noisy version of the sequence, the result is k̂.
The rate of correspondence between k̂clear and k̂ is our cri-
terion. The correspondence rate in {Process 1} was zero.
This rate was 19% in {Process 2} and 64%-75% in cross-
modal processing (Table 2).

9. Discussion
The features and the recovery algorithm should seek

even better generalization, to treat movies that have a wider
variety. It can be useful if training is done using ordinary,
noisy examples. This paper relied on basic pattern recogni-
tion tools: nearest neighbors and HMM. However, highly
elaborate tools have been developed for unimodal tasks.
This work may motivate generalization of these advanced
tools to cross-modal denoising.
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