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ABSTRACT

We address the problem of motion blur removal from an image sequence that was acquired by a sensor with
nonlinear response. Motion blur removal in purely linear settings has been studied extensively in the past. In
practice however, sensors exhibit nonlinearities, which also need to be compensated for. In this paper we study
the problem of joint motion blur removal and nonlinearity compensation. Two naive approaches for treating this
problem are to apply the inverse of the nonlinearity prior to a deblurring stage or following it. These strategies
require a preliminary motion estimation stage, which may be inaccurate for complex motion fields. Moreover,
even if the motion parameters are known, we provide theoretical arguments and also show through simulations
that theses methods yield unsatisfactory results. In this work, we propose an efficient iterative algorithm for
joint nonlinearity compensation and motion blur removal. Our approach relies on a recently developed theory for
nonlinear and nonideal sampling setups. Our method does not require knowledge of the motion responsible for
the blur. We show through experiments the effectiveness of our method compared with alternative approaches.

Keywords: Generalized sampling, interpolation, nonlinear sampling, motion blur, shift-invariant spaces.

1. INTRODUCTION

Imaging devices are prone to technological constraints, which lead to several types of degradation in the image
sequences acquired by them. One type of degradation is due to the non-negligible integration time of image
sensors, which leads to blurry images when objects in the scene move relative to the camera. If the motion is
global and purely translational, then the blurring effect corresponds to convolving the image with some point-
spread function (PSF). Motion debluring in this scenario is commonly treated in two stages.1 First, the motion
PSF is estimated, either by assuming a specific motion model2–4 or a general one.1 Then, a debluring algorithm
is applied. The latter stage can be carried out by any one of the vast amount of deblurring algorithms that
assume knowledge of the PSF. These range from the Wiener filter5,6 to state-of-the-art approaches such as
block-matching and the 3D filtering (BM3D) algorithm.7 An alternative paradigm for motion blur removal relies
on blind deconvolution techniques that jointly determine the PSF and the original image.8–10

Another type of degradation in imaging systems is due to the nonlinear response of sensors such as charge-
coupled devices (CCD).11,12 A common approach for dealing with this type of distortion is to apply intensity
and contrast corrections in order to compensate for the nonlinearity. If the nonlinear response function is known,
then this stage reduces to applying the inverse of the nonlinearity on each of the pixel values.

In this paper we address the problem of joint nonlinearity correction and motion deblurring (NCMD) from
an image sequence. As mentioned above, motion blur and sensor nonlinearities are problems which have been
extensively dealt with in the past. However, when both distortions appear together, they cannot be treated
independently. Specifically, two naive NCMD approaches are to apply the inverse of the nonlinear response prior
to or following a motion deblurring stage. As we explain in Section 3 and demonstrate in Section 6, both these
naive methods lead to unsatisfactory results even if the blur parameters are known.
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Figure 1: (a) Spatial sampling of the signal V (x, y, t). (b) Nonlinear sensor response m(z). (c) Temporal sampling
of the signal m(I(k, l, t)).

The approach we present in this paper relies on a recently developed theory for nonlinear sampling.13 Specif-
ically, the intensity values measured at a certain location in the image sensor correspond to nonindeal samples
(due to the nonzero integration time) of a nonlinearly distorted version (due to the sensor’s nonlinearity) of
the continuous-time intensity that impinged on the corresponding location in the sensor. Thus, we propose a
NCMD algorithm that recovers the continuous-time intensity corresponding to each of the pixels in the video
independently. As shown in,13 this is possible under certain mild assumptions on the temporal changes in the
continuous-time pixel intensities and on the nonlinearity. We propose using the iterative algorithm developed
in14 for this task. A significant advantage of our approach is that it does not require the knowledge or estimation
of the motion responsible for the blur.

The paper is organized as follows. Section 2 describes the NCMD problem and presents the underlying
imaging model. The naive approaches for solving the problem and their drawbacks are discussed in Section 3.
Section 4 briefly presents the recently developed recovery method for the nonlinear and nonideal sampling
settings, and summarizes the guarantees for its success. Our algorithm for joint motion blur removal and
nonlinearity compensation is presented in Section 5. Finally, Section 6 concludes with simulation results and
comparison of the performance of the different image restoration methods.

2. PROBLEM FORMULATION

The light intensity impinging on the image plane in an optical imaging device is a spatia-temporal signal V (x, y, t)
of the continuous variables x, y, and t. This signal is spatially sampled by the sensor array to yield the discrete-
space continuous-time signal

I(k, l, t) =
∫ ∫

V (x, y, t)p(x− l∆x, y − k∆y)dxdy. (1)

Here, k and l are the pixel indices, ∆x and ∆y are the distances between adjacent pixels in the sensor array in
the x and y directions respectively, and p(x, y) is the spatial response of a single sensor cell.

Image sensors exhibit nonlinearities, such as saturation at high intensities in CCD sensors.11,12 Therefore, the
voltage produced by the (k, l)th sensor cell is given by m(I(k, l, t)), where m(·) is the nonlinear sensor response
function. This voltage is integrated and sampled over time to produce a discrete-space discrete-time signal,
which can be recorded on digital media:

c[k, l, n] =
∫

m(I(k, l, t))s(t− nT )dt. (2)

2



DeblurM−1c[k, l, n] ĉ1
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Figure 2: Block diagrams of two naive NCMD methods.

Here, T denotes the the temporal sampling period and s(−t) is a linear time-invariant (LTI) filter, which
corresponds to the temporal integration profile.

Figure 1 demonstrates the spatial sampling, nonlinear distortion and temporal integration that yield the
digital video sequence c[k, l, n]. The solid and dot-dashed lines in Fig. 1c show the input and measured signals
respectively for a single pixel. The x-marks in this figure show the resulting pixel sequence obtained by the
process (2). Due to motion in the scene during time intervals of length T , the filtering applied to each of the
pixel signals lead to a degradation in the acquired image sequence in the form of blur.

Our goal is to restore from the acquired image sequence c[k, l, n] given by (2), an image sequence ĉ[k, l, n]
which is close to the input intensity I(k, l, t) at times tn = nT . This would result in a video sequence in
which both the motion blur and the nonlinearity effects are removed. We note that in practical scenarios, the
measurements c[k, l, n] are often perturbed by the sampling device, in which case equation (2) also contains an
additive noise component. However, to gain insight into the inherent difficulties in NCMD, in this paper we
focus on the noise-free situation.

3. NAIVE APPROACHES

In this section we present two naive methods aimed at solving the NCMD problem described in Section 2.
The most simple approach we can take is to treat the motion blur and the nonlinear distortion in an entirely
independent fashion. Each type of image degradation will be handled separately and all that is left is to determine
is which one will be treated first. Block diagrams for the two naive methods are shown in Fig. 2. The “deblur”
block that appears in this figure can be implemented by any one of the algorithms that were proposed in previous
works for motion-blur removal. The operator M(·) corresponds to applying the scalar function m(·) on each of
the entries of its argument. The inverse operator M−1(·) is defined similarly. Unfortunately, as appealing as
these methods seem to be, they do not lead to satisfactory results. To shed light on the inherent flaws of this
approach, we now examine in detail a simple example.

Consider a static scene V0(x, y) observed by a moving camera

V (x, y, t) = V0(x− dx(t), y − dy(t)) (3)

where the translations dx(t) and dy(t) are piecewise constant functions that take values which are integer multiples
of the sensor’s cell dimensions ∆x and ∆y respectively. Assuming without loss of generality that dx(0) = dy(0) =
0, we see from (1) that in this case

I(k, l, t) = I

(
k − dy(t)

∆y
, l − dx(t)

∆x
, 0

)
(4)

for any t. Substituting this expression in (2) reveals that in this scenario, the digital video sequence c[k, l, n] is
given by

c[k, l, n] =
∑

q

∑
r

an
q,rm(I(k − q, l − r, nT )) (5)

for some set of coefficients {an
q,r}, that are determined by the integration profile s(t) and the time instances at

which dx(t) and dy(t) are discontinuous. Thus, the nth image in the video sequence is related to the nth desired
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image I(k − q, l − r, nT ) via the matrix equation

cn = AnM(in), (6)

in which cn and in denote the column-stack representations of c[k, l, n] and I(k, l, nT ) respectively, and An is a
matrix which accounts for the filtering by an

q,r. The goal of a NCMD algorithm is to recover in from cn. Notice
that if the motion responsible for the blur is unknown, then the entries of An need to be estimated from the
data itself. For simplicity, we will assume here that An is known.

In noise-free scenarios (as the one treated here), standard motion debluring approaches are designed to solve
problems of the type cn = Anin, namely without the nonlinear function M appearing in (6). In this linear
setting, the component of in perpendicular to the null-space N (A) can be recovered without error by applying
the pseudo-inverse A† on the measurements cn. The component of in in the direction of N (A), however, is not
observed. Therefore, its recovery must rely solely on available prior knowledge on in, for example by using the
fact that it corresponds to a natural image. To conclude, any reasonable deblurring method has the form

deblur(cn) = A†cn + v, (7)

where v ∈ N (A)⊥ is determined by the prior on in. Using (7), the two naive methods of Fig. 2 correspond to

ĉ1
naive = deblur(M−1(cn)) = A†

nM−1(cn) + v = A†
nM−1(AnM(in)) + v, (8)

ĉ2
naive = M−1deblur((cn)) = M−1(A†

ncn + v) = M−1(A†
nAnM(in) + v), (9)

where we used (6).

It is quite immediate to see why the first naive method (8) is expected to fail. Due to the nonlinearity of the
function m, the operators M−1 and An do not commute. Therefore, the first stage does not compensate entirely
for the nonlinear distortion even if An is invertible, and the final result still contains distortions.

The second naive method (9) seems to be more promising at first sight. Had the matrix An been invertible,
A†

nAn would simply be the identity operator so that ĉ2
naive would coincide with in. However, in the more

realistic scenario of a rank-deficient matrix An, ĉ2
naive constitutes a good recovery of in only if the expression

A†
nAnM(in) + v is a loyal reconstruction of M(in). Nevertheless, this is not the case because v emerges from a

prior on in and not on M(in).

We conclude that from a theoretical standpoint, neither of the naive methods is appropriate for a satisfactory
removal of the nonlinear distortion and motion blur. In other words, treating the nonlinear distortion and the
motion blur in a separate fashion is suboptimal. In light of this understanding, we next propose a NCMD
algorithm that explicitly takes into consideration the model (2).

4. NONLINEAR AND NONIDEAL SAMPLING

Recently, an iterative algorithm for recovering a continuous-time signal from its nonlinear and nonideal samples
was proposed.13 This method was later on revised to be faster and easier to implement.14 In this section we
briefly describe the recovery algorithm,14 summarize the guarantees for its success, and show how it relates to
the NCMD problem.

Consider a setup in which a continuous-time signal y(t) is distorted by a memoryless nonlinear mapping
m(·) and sampled after passing through an LTI filter s(−t). Notice that for any given pixel location (k, l), the
model (2) precisely corresponds to this setting, where I(k, l, t), t ∈ R, is the continuous-time signal and c[k, l, n],
n ∈ Z, are its nonlinear and nonideal samples. For simplicity, we will drop the pixel indices (k, l) throughout
this section.

We wish to produce an estimate ŷ(t) of y(t) using the recovery formula

ŷ(t) =
∑

n

d[n]a(t− nT ), (10)
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Figure 3: The jth iteration of the recovery algorithm of a continuous-time signal from its nonlinear and nonideal
samples.14

where a(t) is a predefined reconstruction kernel and d[n] is a sequence of coefficients that remains to be found.
We denote by A the closed linear span of the functions {a(t − nT )}n∈Z. Spaces of this type are called shift
invariant (SI) and are widely used in sampling applications.15,16 Some important examples of SI spaces include
the space of bandlimited signals (corresponding to a(t) = sinc(t)) and splines. Similar to the reconstruction
space A, we denote by S the SI space generated by the sampling filter s(t) and refer to it as the sampling space.

The recovery algorithm proposed in14 is designed to find a sequence of coefficients d[n] such that the recovery
ŷ(t) is consistent with the original signal y(t). The consistency requirement means that the nonlinear and nonideal
samples of ŷ(t) coincide with those of y(t). In cases where the consistent recovery is unique, it coincides with the
original signal if y(t) lies in the reconstruction space A. For signals y(t) not in A, the algorithm14 converges to
PAS⊥y, where PAS⊥ is the oblique projection onto A along S⊥. This projection is the unique operator satisfying
PAS⊥y = y for all y ∈ A and PAS⊥y = 0 for all y ∈ S⊥.16

One iteration of this algorithm is shown in Fig. 4. As can be seen, the expansion coefficients dj [n] of the jth
iteration are used to reconstruct an estimate ŷj(t) of the continuous-time signal. This estimate is then distorted
using m(·) and sampled using the filter s(−t) to produce the samples c̃j [n]. Finally, the difference between c̃j [n]
and the true samples c[n] is convolved with a filter g[n], multiplied by a step-size α, and added to dj [n], yielding
the expansion coefficients dj+1[n] of the next iteration. The discrete-time Fourier transform of the correction
filter g[n] is given by

G(ejω) =
1

φSA(ejω)
. (11)

Here
φSA(ejω) =

∑

k∈Z
S∗(ω − 2πk)A(ω − 2πk) (12)

and S(ω) and A(ω) denote the continuous-time Fourier transforms of s(t) and a(t) respectively.

The success of the algorithm of Fig. 4 depends on the behavior of the nonlinearity and on the cosine between
the sampling space S and reconstruction space A, as detailed in Theorem 1 below. The cosine between two SI
spaces is defined as17

cos(A,S) = ess inf
ω∈[−π,π]

φSA(ejω)√
φSS(ejω)φAA(ejω)

, (13)

where φSA(ejω), φSS(ejω), and φAA(ejω) are as in (12) with the appropriate substitution of filters S(ω) and
A(ω).
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Theorem 1. Assume that there exists a scalar α > 0 such that |φSA(ejω)| ≥ α for almost every ω ∈ [−π, π] and
that m(·) is differentiable almost everywhere. If m(·) is continuous and its derivative (when it exists) is bounded
below by q > 0 and above by Q < ∞, where

q

Q
>

1− cos(A,S)
1 + cos(A,S)

, (14)

then the iterative scheme of Fig. 4 converges to a consistent recovery ŷ(t) of y(t) given that the step size α
satisfies

1− cos(A,S)
q

< α <
1 + cos(A,S)

Q
. (15)

It is important to note that consistency is a good strategy only if the samples are noise-free and the original
signal is known to lie close to the reconstruction space A. Therefore, in practice, the reconstruction kernel a(t)
in (10) has to be chosen in accordance with the typical behavior of the signals y(t) encountered in a specific
application.16 As we demonstrate in the sequel, B-splines of small degree constitute a good choice for a(t), in
motion blur removal applications. We comment that when the samples are noisy, the consistency approach is
often modified to include a regularization term, which is aimed at suppressing the noise.18 In this paper we focus
on the noise-free case and thus disregard this term.

5. PROPOSED ALGORITHM

Based on the algorithm presented in the previous section, we now present a simple NCMD method which operates
as follows. For each pixel location (k, l), the iterative algorithm of14 is applied on the sequence c[k, l, n], n ∈ Z,
producing a consistent approximation Î(k, l, t), t ∈ R of the continuous-time light intensity collected by the
(k, l)th sensor element. The recovered image sequence, is then obtained by sampling Î(k, l, t) at times tn = nT :

ĉ[k, l, n] = Î(k, l, nT ) (16)

A pseudo-code of this approach is given in Algorithm 1 below. For a video sequence comprising N frames of size
K × L, the complexity of the algorithm is O(KLN).

Algorithm 1 Iterative algorithm for joint nonlinearity compensation and motion blur removal.
Input: Nonlinearly distorted blurred image sequence c[k, l, n]
Output: Recovery Î(k, l, nT )

for k = 1 to K do
for l = 1 to L do

dk,l
0 [n] = 0

j = 1
repeat

Reconstruction: Îj(k, l, t) ← ∑
n

dk,l
j [n]a(t− nT )

Sampling: c̃j [k, l, n] ← ∫
m(I(k, l, t))s(t− nT )dt

ej [n] ← c[k, l, n]− c̃j [k, l, n]
fj ← 0.5

∑
n

(ej [n])2

Correction: dk,l
j+1[n] ← dk,l

j [n] + α(g ? ej)[n]
j ← j + 1

until fj converges
end for

end for
Return: ĉ[k, l, n] = Îj(k, l, nT )

We emphasize that this algorithm does not require knowledge of the motion responsible for the blur, which is
a significant advantage over the naive methods. Assuming the conditions of Theorem 1 are satisfied, the quality
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Figure 4: Iterative recovery for one pixel sequence.

of the recovery depends solely on the choice of the reconstruction kernel a(t) in (10). In our experiments, we
used a B-spline of degree 2. With this choice, the reconstructed signal Î(k, l, t) is a spline of degree 2. That
is, Î(k, l, t) is a continuously differentiable piecewise polynomial of degree 2 with breaks at integer multiples of
T . As we show in the next section, this choice is especially adequate for textured objects experiencing small
translations with respect to the camera.

Figure 4 demonstrates the recovery capability of the algorithm. In this experiment, the sampling filter s(−t)
is a rectangular kernel of width T and the nonlinearity is given by m(z) = λ arctan(γ(z − z0)), as depicted in
Fig. 1b. The parameters λ, γ, z0 were chosen to satisfy condition (14) of Theorem 1. The solid and dashed lines
correspond to the original and recovered signals respectively for a single pixel. The recovered signal is a spline
of degree 2 and thus does not match the original signal, which is much more edgy. However, as we see from the
o-marks in the figure, both signals are relatively close at times tn = nT .

6. SIMULATIONS

We now compare the iterative algorithm that was described in Section 5 to the naive methods of Section 3. In
this experiment, we generated a movie sequence from the 512× 512 Mandrill image by applying a circular global
translation

dx(t) = ∆xround
{

β cos
(

2πt

Tm

)}
, dy(t) = ∆yround

{
β sin

(
2πt

Tm

)}
. (17)

This type of motion models a rattling of the camera during long exposure periods. In order to ensure that the
motion is not too rapid, we set β = 3 pixels, and Tm = 6T , where T is the sampling interval. We used the
nonlinear response that appears in Fig. 1b and a rectangular sampling filter s(t) of width T . Figure 5 depicts
the original Mandrill image and one of the images in the resulting degraded sequence.

For the two naive methods, we assumed that the global motion is known, so that an appropriate PSF can be
provided for the deblurring stage. We used the BM3D algorithm7 for this purpose. For our iterative algorithm,
we used a step size of α = 0.8, which satisfies the condition of Theorem 1. In order to reveal the differences
between the different recovery methods, we focus on patches of size 128 × 128 located on the mid-left side of
the images. The recovered patches, along with the ground truth and degraded patches are shown in Fig. 6. We
can see from this figure, that in both naive methods the bright and dark textures look smeared. In the iterative
recovery, on the other hand, the texture appears to be more detailed and with better contrast. Overall, the
iterative recovery is the closest to the original image.

Note that this experiment was performed for the scenario where there is global motion in the movie and we
assumed that this motion is known to us. Notwithstanding, our algorithm outperformed the naive methods.
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(a) (b)

Figure 5: (a) Original Mandrill image. (b) A nonlinearly distorted motion-blurred version of the Mandrill image.

If the motion is unknown, the complexity of the naive methods is increased and the differences between the
recoveries is expected to become more salient in favor of our approach.

7. CONCLUSION

In this paper we addressed the problem of joint motion blur removal and nonlinearity compensation of an image
sequence. We presented a novel recovery algorithm that is based on the recently developed theory and methods
for nonlinear and nonideal sampling. This algorithm does not require knowledge or an estimation stage of the
motion responsible for the blur. This is a significant advantage over naive methods which rely on standard
deblurring algorithms requiring knowledge of the blur parameters. We demonstrated that when the motion is
not too rapid, our algorithm outperforms the naive methods, even in the case where we assume that the motion
is known. The differences in favor of our approach are eminent especially in regions containing textures.
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