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ABSTRACT

We address the problem of minimum mean-squared error (MMSE)
estimation where the estimator is constrained to belong to a pre-
de�ned set of functions. We derive a simple closed form formula
that reveals the structure of the restricted estimator for a wide class
of constraints. Using this formula we study various types of con-
strained estimation problems that arise commonly in the �elds of
signal processing and communication.

Index Terms� Constrained estimation, Nonlinear estimation,
MMSE estimation.

1. INTRODUCTION

Constrained Bayesian estimation refers to the problem of estimating
a random vector (r.v.) x based on a realization of the r.v. y subject
to a restriction on the types of estimators we can use. Speci�cally,
we wish to design an estimator � that minimizes the mean squared
error (MSE) E[kx� � (y)k2] under the constraint that � belongs to
a certain family of functions.

If no constraint is imposed on �, then it is well known that the
minimum MSE (MMSE) estimator is �0 (y) = E [xjy]. As for the
constrained case, a few problems were studied in the past. Perhaps
the most famous restriction for which a formula is available is that �
be a linear function. This is known as the linear MMSE (LMMSE)
estimator [1]. Other classic results include the constraint that � be a
lower triangular matrix (the �nite dimensional version of the causal
Wiener �lter [2]), a low rank matrix [1], a matrix that causes the
covariance of the estimated vector to possess a prede�ned structure
[3], and a few more.

In all of the examples above, the estimator � is linear. In [4] we
addressed the general problem of constrained LMMSE estimation,
namely the problem of designing an MMSE linear estimate subject
to linear or nonlinear constraints on the estimate coef�cients. We
presented a generic formula that applies to a wide range of such
problems. These include all of the results above and many more.
Nevertheless, it seems that very little is known on constrained non-
linear estimation problems (i.e. where � is nonlinear). Our goal here
is to study these types of problems.

One mathematical tool for designing a constrained estimator is
the orthogonality principle, which is adequate only for linear restric-
tions1. Constraining � to be a linear transformation or a lower trian-
gular matrix may be handled using the orthogonality principle, but
a restriction of the type E [k� (y)k] � " is nonlinear and must be
handled differently. In a recent paper [5] we provided a general-
ization of the orthogonality principle to the case of convex restric-

1A linear constraint is a set of functions S that form a subspace, i.e. if
�1; �2 2 S then also ��1 + ��2 2 S for every �; � 2 R.

tions2, called the extended orthogonality principle. This principle is
an inequality that the optimal constrained estimator must satisfy. Its
disadvantage, thus, is that it is not constructive in the sense that it
does not lead to an equation whose solution is the desired estima-
tor. Furthermore, among the various problems studied in [5] using
this principle, only in one example did we consider a nonlinear �.
Speci�cally, we constructed an estimator � that minimizes the MSE
subject to the constraint � (y) 2 A for all y, where A is a closed
convex set in Rn.

In this paper we prove a simple, yet powerful, theorem which
reveals the structure of a very large class of constrained nonlinear
estimators. This class contains, for example, the deterministic re-
striction on � (y) studied in [5]. Our approach also allows the treat-
ment of stochastic constraints on � (y), i.e. constraints on the statis-
tical properties of the r.v. bx = � (y). We demonstrate the theorem
in the contexts of two types of problems which commonly arise in
signal processing and communication applications. The �rst is re-
stricting the estimated vector. Speci�cally, we obtain a closed form
solution to the minimization of the MSE subject to the following
constraints: E[k� (y)k2] � ", E [k� (y)k] � " and k� (y)k � ".
The second type of problems is the design of an estimator which is
resistant to an interference z which may be present at its input. In
this scheme we minimizeE[kx� � (y)k2] subject to the constraints
E[k� (z)k2] � ", E [k� (z)k] � " and fz (z) k� (z)k � ", where
fz (z) is the probability density function (pdf) of the r.v. z.

2. CONSTRAINED MMSE ESTIMATION

We now present our main result regarding the imposition of restric-
tions on the MMSE estimator. We assume that x 2 Rm and y 2 Rn
and thus the estimator is a function � : Rn ! Rm. To this end we
need to introduce a few de�nitions regarding such mappings. We
denote the set of all squared integrable functions from Rn to Rm as

L2 =
�
 : Rn ! Rm

��R
Rn k (y)k

2 dy <1
	
, (1)

where k�k denotes the Euclidean norm on Rm. In the following
derivations we use the concept of projections of functions in L2 onto
closed sets. Let g be a function in L2 and letW � L2 be a closed
set. Then the projection of g ontoW is de�ned by

PW (g) = arg min
 2W

R
Rn kg (y)�  (y)k2 dy. (2)

In our constrained estimation setup, we are interested in con�n-
ing � to belong to a certain family of functions. Note that if y is
such that fy (y) = 0 then the value of � (y) can be chosen arbi-
trarily since it does not affect the MSE. As for the behavior of � on

2A convex constraint is a set of functions S that form a conex set, i.e. if
�1; �2 2 S then also ��1 + (1� �)�2 2 S for every � 2 [0; 1].



the rest of Rn, we are interested in constraints that can be cast asp
fy� 2 W , where fy (y) is the pdf of y andW is a closed set in

L2. This somewhat unnatural representation has two reasons. First,
the solution to this constrained estimation problem has a very simple
structure which involves the projection operator PW , as presented in
Theorem 1 below. Second, this representation is very convenient for
the purpose of imposing stochastic constraints on bx, as we show in
the sequel.

We emphasize that the class of constraints that can be han-
dled within this framework is very large. From the view-
point of the estimator �, this representation includes all restric-
tions of the form � 2 V given that the induced set W =n
�
���� (y) =pfy (y) (y) ;  2 V

o
is closed. The solution to

this problem is presented in the following theorem.

Theorem 1 Let x 2 Rm be a �nite variance r.v. (i.e. E[kxk2] <
1), let y 2 Rn be a r.v. with marginal pdf fy (y) and let W be
a closed set in L2. Then among all estimators of the form bx =
� (y) that satisfy

p
fy� 2 W , an estimator that minimizes the MSE

E[kx� � (y)k2] is given by

� (y) =

(
1p
fy(y)

n
PW

�p
fy�0

�o
(y) fy (y) 6= 0

0 fy (y) = 0,
(3)

where PW is the projection operator onto the setW de�ned by (2)
and �0 (y) = E [xjy] is the unconstrained MMSE estimator.

Note that since � (y) can be chosen arbitrarily wherever
fy (y) = 0, of all the possible solutions, � (y) in (3) has the min-
imal variance E[k� (y)k2]. As for vectors y at which fy (y) > 0,
the solution is guaranteed to be unique ifW is a convex set. Theorem
1 can be extended to the case where x and y do not have densities
by using the Radon�Nikodym derivative of measures.

Theorem 1 implies two key stages in the design of a constrained
estimator. The �rst is to present the restriction in the form

p
fy� 2

W , whereW is a closed set in L2. The second is the derivation of a
formula for the projection operator PW . Once these two ingredients
are available, the solution is readily obtained by Theorem 1.

As a special case of Theorem 1, we can obtain the following.

Corollary 2 Let A be a closed set in Rm, then among all functions
� : Rn ! A, the MMSE estimator is

� (y) = PA (E [x jy ]) , (4)

where PA here is the projection of a vector in Rm onto the set A.

The proof of the corollary relies on Theorem 1 and is omitted
due to lack of space. It can be seen that a deterministic restriction of
the type bx 2 A (for every realization) leads to a simple and intuitive
result. The constrained estimate is the projection of the unrestricted
estimate E [x jy ] onto the set A. Corollary 2 provides a generaliza-
tion of [5, Theorem 2], where A was assumed to be a convex set.

In the following sections we give a few examples of Theorem 1,
where the constraint is not necessarily deterministic.

3. BOUNDING THE ESTIMATED VECTOR

An estimator is many times one block in a larger scheme. One exam-
ple is when a noisy signal is �rst to be cleaned and then transmitted
under certain limitations or coded ef�ciently. These tasks usually
require that the estimated signal be bounded in some sense. In the

following subsections we give a few examples for such situations
and derive appropriate estimators using our constrained estimation
framework.

3.1. Squared Norm Limitation

Suppose that after estimating x from y, the estimated vector is trans-
mitted under a power limitation. We may take into account this
power constraint by designing an estimator that minimizes the MSE
under the restriction that the variance of bx does not exceed a given
threshold ". Our problem is thus

argmin
�
E
�
kx� � (y)k2

�
s.t. E

�
k� (y)k2

�
� ".

(5)

To tackle this problem within our framework we need to express the
constraint as a restriction on

p
fy�. This can be done by writing

E
�
k� (y)k2

�
=

Z
Rn

pfy (y)� (y)
2 dy. (6)

Hence our constraint can be cast as
p
fy� 2 W , whereW is the the

L2 ball

W =

�
 : Rn ! Rm

����Z
Rn
k (y)k2 dy � "

�
. (7)

The projection operator PW (�) onto an L2 ball simply scales its
argument to comply with the norm limitation. Thus, using Theorem
1, the solution to this problem is

� (y) = cE [xjy] , (8)

where c � 1 is the largest value for which the power limitation is
satis�ed. Evidently, constraining the variance of bx is achieved by
using a scaled version of the unconstrained estimator E [xjy].

3.2. Norm Limitation

The squared norm limitation puts a heavy penalty on vectors with
large norms. In many cases this may be an over-pessimistic model-
ing of the problem at hand. Commonly, one is willing to sacri�ce a
few rare events of kbxk being large in order to obtain a small norm a
majority of the times. This behavior can be achieved by setting the
limitation E [kbxk] � ". Therefore, we are interested in the problem

argmin
�
E
�
kx� � (y)k2

�
s.t. E [k� (y)k] � ".

(9)

The expectation of the norm of bx can be expressed as
E [k� (y)k] =

Z
Rn

pfy (y)� (y)
pfy (y)dy. (10)

Therefore, we can identify this as a constrained estimation problem
with the restriction

p
fy� 2 W , whereW is the weighted L1 ball

W =

�
 : Rn ! Rm

����Z
Rn
k (y)k

p
fy (y)dy � "

�
. (11)

The projection f = PW (g) of a function g 2 L2 onto this set is
given by

f (y) =

(
0 kg (y)k � �

p
fy (y)

g (y)� �
p
fy (y)

g(y)
kg(y)k kg (y)k > �

p
fy (y),

(12)



where � � 0 is the minimum value for which f 2 W . Using Theo-
rem 1 along with formula (12), the bounded norm estimator is

� (y) =

�
0 kE [xjy]k � �

E [xjy]� � E[xjy]
kE[xjy]k kE [xjy]k > �. (13)

Like (8), the above estimator is a modi�cation of the uncon-
strained estimator E [xjy]. Only now, the larger kE [xjy]k is the
less the relative modi�cation is. This is balanced by mapping a set
of vectors y to the zero vector so that bx = 0 with nonzero probabil-
ity.

3.3. Per-Realization Norm Limitation

There may be cases where the limitation on kbxk should be enforced
for every realization. This precludes the option of using one of the
above estimators because neitherE[kbxk2] � " norE [kbxk] � " can
guaranty that kbxk is smaller than some constant with probability 1.
Thus we are interested in obtaining a closed form solution to the
following problem

argmin
�
E
�
kx� � (y)k2

�
s.t. supy2Rn k� (y)k� ".

(14)

Note that this problem is a special case of Corollary 2. To demon-
strate how it can be solved directly using Theorem 1, let us express
the restriction as

sup
y2Rn

k� (y)k = sup
y2Rn

(� (y)pfy (y)
 1p

fy (y)

)
. (15)

We see that this is simply a weighted L1 constraint on
p
fy�, i.e.p

fy� 2 W , whereW is de�ned by

W =

(
 : Rn ! Rm

����� supy2Rn

(
k (y)k 1p

fy (y)

)
� "

)
. (16)

The projection f = PW (g) of a function g 2 L2 onto this set is
given by

f (y) =

(
g (y) kg (y)k �

p
fy (y)"p

fy (y)"
g(y)
kg(y)k kg (y)k >

p
fy (y)".

(17)

Therefore, employing Theorem 1 and using the projection formula
(17), the bounded-realizations estimator is

� (y) =

�
E [xjy] kE [xjy]k � "

" E[xjy]
kE[xjy]k kE [xjy]k > ". (18)

We note that (18) can be thought of as a two-stage estimator. We
�rst compute the unconstrained estimate E [xjy] and then project it
onto a ball in Rm.

4. RESISTANCE TO INTERFERENCE

Consider the setup where one constructs an estimator to recover x
from the measurements y but there is uncertainty whether the r.v. y
will indeed be fed to the estimator. Instead, an interference signal z
with pdf fz (z) might exist at the input. This situation is commonly
encountered in speech and image denoising applications where the
sparsity of the signal in some transform domain is exploited. In this

context y corresponds to a coef�cient containing signal plus noise
and z corresponds to a noise-only coef�cient. A good estimator
would be one that outputs the zero vector when applied to a real-
ization of the r.v. z and outputs the MMSE estimate of x given y
when applied to a realization of the r.v. y. However this is an unre-
alizable approach as we do not know in advance whether the vector
at the input was drawn from distribution fz (z) or fy (y). In the
following subsections we suggest a few strategies for solving this
problem using our constrained estimation framework.

4.1. Squared Norm Resistance

One way to obtain resistance to z is as follows. Let us design an
estimator that minimizes the MSE between x and � (y) under the
constraint that the variance at the output of the estimator should be
smaller than " when applied to the r.v. z. Speci�cally, we are inter-
ested in solving

argmin
�
E
�
kx� � (y)k2

�
s.t. E

�
k� (z)k2

�
� ".

(19)

Let us express the variance of � (z) as

E
�
k� (z)k2

�
=

Z
Rn

pfy (y)� (y)
2 fz (y)
fy (y)

dy. (20)

This representation allows us to cast (19) as a constrained estimation
problem with the restriction

p
fy� 2 W , whereW is the weighted

L2 ball

W =

�
 : Rn ! Rm

����Z
Rn
k (y)k2 fz (y)

fy (y)
dy � "

�
. (21)

The projection f = PW (g) of a function g 2 L2 onto this set is
given by

f (y) =
1

1 + � fz(y)
fy(y)

g (y) , (22)

where � � 0 is the minimum value for which the constraint is sat-
is�ed. Therefore, employing Theorem 1 and using the projection
formula (22), the optimal squared norm z-resistant estimator is

� (y) =
1

1 + � fz(y)
fy(y)

E [xjy] . (23)

Interestingly, the function � in (23) is a concatenation of a
Bayesian soft-decision rule followed by the MMSE estimator. The
term fz (y) /fy (y) is the likelihood ratio (LR) which measures
how likely is the hypothesis that the interference z was received
over the hypothesis that the measurement y was received. The scalar
function 1 /(1 + �LR) in (23) is close to 0 if the LR is large, thus
achieving resistance to z. On the other hand, this function is close
to 1 for vectors with small LR, which makes � act approximately as
the unconstrained MMSE estimator E [xjy].

4.2. Norm Resistance

The squared norm z-resistant estimator developed above may be in-
adequate for certain applications. The reason is that it usually does
not output the zero vector even for inputs which are very likely
to be interference. To obtain a hard-decision rule, we may con-
sider the following alternative approach. As opposed to bounding
the variance of � (z) we wish to bound its probability of being



nonzero. Explicitly, we wish to minimize the MSE under the con-
straint Pr f� (z) 6= 0g � ". Unfortunately, this constraint is non
convex and there is no closed form available for the resulting projec-
tion.

The restriction Pr f� (z) 6= 0g � " can be thought of as im-
posing that k� (z)k be sparse (as a function over Rn). It is known
that an L1 restriction is a good approximation for sparsity. Thus, we
can replace our constraint by the requirement E [k� (z)k] � ". Our
problem is thus

argmin
�
E
�
kx� � (y)k2

�
s.t. E [k� (z)k] � ".

(24)

The expectation of the norm of � (z) can be written as

E [k� (z)k] =
Z
Rn

pfy (y)� (y)
 fz (y)p

fy (y)
dy. (25)

This allows us to formulate the constraint as
p
fy� 2 W , whereW

is the weighted L1 ball

W =

(
 : Rn ! Rm

�����
Z
Rn
k (y)k fz (y)p

fy (y)
dy � "

)
. (26)

The projection of a function g 2 L2 onto this set is
given by (12) with the weighting function

p
fy (y) replaced by

fz (y)
.p

fy (y) . Employing Theorem 1 and using the projection
operator (12), the norm z-resistant estimator is

� (y) =

(
0 kE [xjy]k � � fz(y)

fy(y)

E [xjy]� � fz(y)
fy(y)

E[xjy]
kE[xjy]k kE [xjy]k > � fz(y)

fy(y)
,
(27)

where � � 0 is the minimum value for which the constraint is satis-
�ed.

We see that the above estimator, as opposed to the variance con-
strained estimator, comprises a hard-decision rule. This means that
it outputs the zero vector with nonzero probability.

As in the variance constrained estimator, here too the LR plays
an important role. To understand its in�uence on � (y) let us recall
that there are two forces that shape the structure of the estimator.
On one hand � (y) should be as close as possible to E [xjy]. Thus
if we are to set � (y) = 0, it should be only for vectors y where
kE [xjy]k is small. On the other hand, vectors y for which the LR
is large correspond to the hypothesis that interference was received.
Hence, for such vectors we would like the estimator to output the
zero vector, i.e. � (y) = 0. The affect of these two driving forces is
nicely seen in (27). The decision whether to output the zero vector
or not is made by comparing kE [xjy]k against the LR (multiplied
by the constant �). Furthermore, for vectors y at which kE [xjy]k >
�LR, the estimator � (y) is a shrunk version ofE [xjy]. The amount
of shrinkage is, again, determined by the LR.

4.3. Maximal Rejection

The motivation for the last estimator was the achievement of a
threshold rule. We now consider the other extreme. Suppose that
the principle that guides us is the following. The more likely the
hypothesis that interference was received, the smaller the norm
at the output of the estimator is allowed to be. This is a per-
realization demand which is very different than the average restric-
tions E[k� (z)k2] � " and E [k� (z)k] � " treated in the previous

subsections. This behavior can be obtained by imposing the con-
straint fz (y) k� (y)k � ", 8y 2 Rn, i.e. we wish to solve

argmin
�
E
�
kx� � (y)k2

�
s.t. supy2Rn ffz (y) k� (y)kg � ".

(28)

The above constraint can be cast as a restriction on
p
fy� by

writing

sup
y2Rn

ffz (y) k� (y)kg = sup
y2Rn

(� (y)pfy (y)
 fz (y)p

fy (y)

)
.

(29)
Thus it is associated with the weighted L1 ball de�ned by

W =

(
 : Rn ! Rm

����� supy2Rn

(
k (y)k fz (y)p

fy (y)

)
� "

)
. (30)

The projection of a function g 2 L2 onto this set is given
by (17) with the weighting function 1

.p
fy (y) replaced by

fz (y)
.p

fy (y) . Using Theorem 1 with the projection formula
(17), the maximal rejection estimator is

�W (y) =

(
E [xjy] kE [xjy]k � "

fz(y)
"

fz(y)
E[xjy]
kE[xjy]k kE [xjy]k > "

fz(y)
. (31)

The above estimator acts in a complete different manner than
(27). It coincides with the unconstrained estimator wherever
kE [xjy]k is small and acts as a shrunk version of it where
kE [xjy]k is large. Moreover, it interestingly does not depend ex-
plicitly on the LR but rather solely on fz (y). This stems from the
fact that we want to ensure that every single realization of z satis-
�es fz (z) k� (z)k � ". Therefore, the value of fy (y) is irrele-
vant in this respect. The output of the estimator is clipped wherever
kE [xjy]k fz (y) exceeds ".

5. CONCLUSIONS

We presented a general framework for solving constrained MMSE
estimation problems. We demonstrated our approach on a series of
problems encountered in signal processing and communications. We
believe that the method developed in this paper can �nd many more
applications.
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