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Abstract—We consider the problem of tracking a target that
may split, several times, into separate targets, such that each split
becomes an autonomous target. This setting arises, for example,
when an aircraft launches a series of missiles, or a ballistic
missile with multiple warheads breaks into pieces in the reentry
phase. The problem is cast into a framework proposed in an
earlier work and formulated using a single, generalized state-
space model with randomly switching coefficients. Consequently,
the states of the original target, as well as of the splits thereof,
are tracked efficiently using a single IMM-like algorithm.

I. INTRODUCTION

Splitting targets are typically encountered in air-to-air mis-
sile applications or in situations in which a ballistic missile
with multiple warheads breaks into pieces in the reentry phase.
Characterized by a sudden increase in the number of targets
present in the scene, estimating the states of all targets may
be an important task in both military and civilian applications.

A straightforward approach to tracking splitting targets
in cluttered environments is to employ standard multiple
target tracking methods. These techniques typically combine
tracking algorithms that are robust to clutter, such as the
Nearest Neighbor (NN) filter [1] or the Probabilistic Data
Association (PDA) method [2] with some track initiation logic.
Indeed, in [3] a utilization of the Multiple Hypotheses Tracker
(MHT) [4] to deal with the case of splitting targets was
proposed. Alternatively, the authors of [5] derived a heuristic
combination (see [6]) of the Interacting Multiple Model (IMM)
filter [7] and the Joint PDA (JPDA) method [8]. In all these
cases a single split of the main target was permitted.

Two aspects characterize the problem of tracking a split-
ting target. First, in practical settings, the number of splits
is bounded by some (small) integer. This stems from the
physical limitations of any fighter carrying missiles, or any
platform equipped with countermeasure flares. Second, the
initial conditions of every new target, at the moment of the
split, are identical to the current state of the original target.

In this paper we utilize the above assumptions and, fol-
lowing the general approach of [9], formulate the problem
of tracking a splitting target using a single state space model
with randomly switching coefficients. Such modeling has been
shown to allow a unified treatment of various other problems
involving uncertain, or intermittent observations [10]–[15], and
maneuvering targets [7], [16]–[21].

As is well known, the optimal, in the minimum mean
squared error (MMSE) sense, estimator of the state in systems
with randomly switching coefficients, or more specifically, in
Markov Jump Linear Systems (MJLS), requires exponentially
growing resources [17] and is, thus, impractical in most
problems of interest. Therefore, suboptimal state estimation
algorithms attract special interest of both researchers and prac-
titioners. The IMM filter is perhaps the most famous method
that proposes a successful compromise between performance
and complexity. Another option is using linear optimal recur-
sive filters [22], [23].

We utilize the formulation of the problem as an MJLS and
design an IMM-like algorithm to simultaneously estimate the
states of both the original target and the splits thereof. We note
that the resulting algorithm does not require any additional
logic to deal with track initiation and data association. In
addition, the proposed method is not limited to cases of a
single split as is demonstrated in the sequel. In this sense, the
current paper formalizes and generalizes previously reported
approaches.

The remainder of the paper is organized as follows. In
Section II we formally define the problem. The standard IMM
algorithm is briefly outlined in Section III. The proposed
solution is described in Section IV and its performance is
demonstrated in Section V. Concluding remarks are provided
in Section VI.

II. PROBLEM FORMULATION

Consider a target whose state 𝑥0
𝑘 evolves in a given surveil-

lance region according to the linear dynamics

𝑥0
𝑘+1 = 𝐴0𝑥0

𝑘 + 𝐶0𝑤0
𝑘, 𝑘 = 0, 1, . . . (1)

where
{
𝑤0

𝑘

}
is a zero-mean, unit-covariance Gaussian process

noise, 𝑥0
0 is a Gaussian random vector with mean 𝑥̄0 and

covariance 𝑃0, and 𝐴0 and 𝐶0 are deterministic matrices
representing the state dynamics and process noise covariance,
respectively. At any sampling time 𝑘, the target may split, with
probability 𝑝, into two targets, or continue evolving according
to the original dynamics without splitting with probability
1−𝑝. In the former case, the original target continues following



the dynamics (1) and the new target begins evolving according
to the independent dynamics

𝑥𝑖
𝑘+1 = 𝐴𝑖𝑥𝑖

𝑘 + 𝐶𝑖𝑤𝑖
𝑘, 𝑘 = 𝑘𝑖, 𝑘𝑖 + 1, . . . (2)

Here, 𝑥𝑖
𝑘 denotes the state of the new target after the 𝑖-th

split,
{
𝑤𝑖

𝑘

}
is the corresponding Gaussian zero-mean, unit-

covariance process noise and 𝑥𝑖
𝑘𝑖

= 𝑥0
𝑘𝑖

(with probability 1)
where 𝑘𝑖 denotes the time of the of 𝑖-th split.

We assume that the total number of splits is upper-bounded
by a known constant 𝐿max such that after the 𝐿max-th
split there are 𝐿max + 1 targets 𝑥0

𝑘, 𝑥
1
𝑘, . . . , 𝑥

𝐿max

𝑘 driven by
𝑤0

𝑘, 𝑤
1
𝑘, . . . , 𝑤

𝐿max

𝑘 , respectively. The process noise sequences
of the different targets are taken to be mutually independent.

Let 𝑁𝑘 denote the number of targets at time 𝑘. It follows
from the previous discussion that {𝑁𝑘} is a Markov chain on
{1, . . . , 𝐿max + 1} with transition probability matrix (TPM)⎛⎜⎜⎜⎜⎝

1− 𝑝 𝑝 0 ⋅ ⋅ ⋅ 0

0 1− 𝑝 𝑝 0
...

...
. . .

. . . 0
0 0 1

⎞⎟⎟⎟⎟⎠ (3)

and initial condition ℙ {𝑁0 = 1} = 1.
Each independently evolving target is measured through the

following linear Gaussian channel

𝑦𝑖𝑘 = 𝐻𝑖𝑥𝑖
𝑘 +𝐺𝑖𝑣𝑖𝑘, 𝑖 = 0, . . . , 𝐿max, (4)

where
{
𝑣𝑖𝑘
}

is the corresponding Gaussian zero-mean, unit-
covariance measurement noise. The measurement noise se-
quences corresponding to the different measurement channels
are assumed to be mutually independent and independent of
all previously defined random quantities. It is also assumed
that the measurements are unlabeled, such that it is not known
a-priori which measurement corresponds to which target.

At each time, in addition to the target measurements,{
𝑦𝑖𝑘, 𝑖 = 1, . . . , 𝐿max

}
, a number of clutter measurements are

obtained. These will be denoted as 𝑦𝑗𝑘,cl, 𝑗 = 1, . . . ,𝑀𝑘−𝑁𝑘,
where 𝑀𝑘 is the total number of measurements at time 𝑘.
Clutter measurements originate from false targets and do not
carry any information about the target of interest. They are,
however, indistinguishable from true detections. At each time,
the clutter measurements are assumed to be independent of
each other, of the clutter measurements at other times, and
of the true states and observations. In addition, we assume
that these measurements are uniformly distributed in the
surveillance region, which is a common assumption in such
applications [2].

For simplicity, we assume that the measurement channels
are perfect, in the sense that there are no missed observations.
This assumption may be relaxed, as explained in the sequel.

The goal of this paper is to devise an efficient sequential
algorithm for estimating the states of the original target and of
the splits thereof using all the available measurements. Since
the MMSE-optimal estimator requires resources that grow

exponentially in time, we, inevitably, consider suboptimal ap-
proaches. In the sequel we show how the defined problem may
be cast into a single state space formulation with randomly
switching coefficients and, consequently, solved using a single
IMM-like algorithm yielding the estimates of all the targets.

III. BACKGROUND ON IMM

The IMM method estimates the state of the following
system:

𝑥𝑘+1 = 𝐴(𝜃𝑘)𝑥𝑘 + 𝐶(𝜃𝑘)𝑤𝑘 (5)
𝑦𝑘 = 𝐻(𝜃𝑘)𝑥𝑘 +𝐺(𝜃𝑘)𝑣𝑘. (6)

Here, {𝑤𝑘} and {𝑣𝑘} are independent, white, zero-mean,
unit-covariance Gaussian sequences, 𝑥0 is a Gaussian random
vector with known mean and covariance matrix, and {𝜃𝑘} is
a Markov chain on {1, . . . , 𝑟} with some known TPM, (𝑝𝑖𝑗),
and initial distribution vector.

At time 𝑘, the algorithm recursively estimates 𝑥𝑘 using
𝑦0, . . . , 𝑦𝑘 providing an approximation of the MMSE solution.
The main idea underlying the IMM algorithm is to maintain a
bank of primitive Kalman filters, each matched to a different
model in the given model set (different value of 𝜃𝑘). At step 𝑘,
the 𝑗-th filter produces a local estimate 𝑥̂𝑘,𝑗 with an associated
error covariance 𝑃𝑘,𝑗 using its initial estimate 𝑥̂init

𝑘−1,𝑗 and the
associated covariance 𝑃 init

𝑘−1,𝑗 , which are generated externally,
and the current measurement 𝑦𝑘, which gets processed by
all KFs in the bank. In addition, each filter produces a
current value of its own (model-matched) likelihood function
Λ𝑘,𝑗 . The key element of the IMM scheme is the interaction
block that generates, using all local estimates, covariances,
and likelihoods from the previous cycle, individual initial
conditions for each of the primitive filters in the bank.

The steps of the algorithm are summarized as follows.

A. Mixing Probabilities

For 𝑖, 𝑗 = 1, . . . , 𝑟 compute

𝜇𝑘−1(𝑖 ∣ 𝑗) ≜ ℙ {𝜃𝑘−1 = 𝑖 ∣ 𝜃𝑘 = 𝑗,𝒴𝑘−1 }
=

1

𝑐𝑗
𝑝𝑖𝑗𝜇𝑘−1(𝑖), (7)

where 𝑐𝑗 is a normalizing constant, 𝜇𝑘(𝑖) ≜ ℙ {𝜃𝑘 = 𝑖 ∣ 𝒴𝑘 }
is computed according to (10) below, and 𝒴𝑘 ≜ {𝑦0, . . . , 𝑦𝑘}.

B. Mixing Step

For 𝑗 = 1, . . . , 𝑟 compute the initial state estimate for the
filter matched to 𝜃𝑘 = 𝑗

𝑥̂init
𝑘−1,𝑗 =

𝑟∑
𝑖=1

𝑥̂𝑘−1,𝑖𝜇𝑘−1(𝑖 ∣ 𝑗) (8)

and the corresponding covariances.



C. Mode-Matched Filtering

For 𝑗 = 1, . . . , 𝑟, using (8) and the corresponding covari-
ance, compute the mode-matched estimate 𝑥̂𝑘,𝑗 and 𝑃𝑘,𝑗 as
well as the likelihood Λ𝑘,𝑗 , which is approximated as Gaussian

Λ𝑘,𝑗 = 𝒩 (𝑦𝑘; 𝑦𝑘,𝑗 , 𝑆𝑘,𝑗), (9)

where 𝑦𝑘,𝑗 and 𝑆𝑘,𝑗 are the predicted measurement and
innovation covariance computed by the 𝑗-th filter using the
initial conditions (8).

D. Mode Probability Update

Compute

𝜇𝑘(𝑗) =
1

𝑐
Λ𝑘,𝑗

𝑟∑
𝑖=1

𝑝𝑖𝑗𝜇𝑘−1(𝑖), 𝑗 = 1, . . . , 𝑟 (10)

where 𝑐 is a normalization factor.

E. Output Computation

At time 𝑘, the algorithm’s output is obtained as a fused
version of the local estimates:

𝑥̂𝑘 =
𝑟∑

𝑗=1

𝑥̂𝑘,𝑗𝜇𝑘(𝑗). (11)

The associated covariance is computed in a similar manner.

IV. THE PROPOSED SOLUTION

In this section, following the rationale proposed in [9],
we show how to efficiently solve the problem of tracking a
splitting target using a single IMM-like algorithm. To this end,
we need to define the Markov mode sequence {𝜃𝑘} and specify
the matrices 𝐴(𝜃𝑘), 𝐶(𝜃𝑘), 𝐻(𝜃𝑘), and 𝐺(𝜃𝑘).

A. Mode Set and Evolution

As mentioned above, at each time instant 𝑘, we collect 𝑀𝑘

detections of which only 𝑁𝑘 correspond to true targets and the
rest to clutter. Consequently, for each possible value of 𝑁𝑘,
there are 𝑀𝑘!/(𝑀𝑘−𝑁𝑘)! different hypotheses corresponding
to the identities of the 𝑁𝑘 true targets among the 𝑀𝑘 mea-
surements. Since the number of targets 𝑁𝑘 is known to be
between 1 and 𝐿max + 1, the total number of hypotheses at
time 𝑘 is given by

𝑟𝑘 =

𝐿max+1∑
𝑖=1

𝑀𝑘!

(𝑀𝑘 − 𝑖)!
. (12)

We therefore define a Markov chain {𝜃𝑘} on {1, . . . , 𝑟𝑘}, such
that states 1, . . . ,𝑀𝑘 correspond to the case in which the target
has not yet split, states 𝑀𝑘 +1, . . . ,𝑀𝑘 +𝑀𝑘!/2! correspond
to the case in which the target has split once, and so on.

Although 𝑟𝑘 is a large number even for humble values of
𝑀𝑘, it should be noted that combinatorial number of hypothe-
ses is standard in problems involving multi-target scenarios in
cluttered environment and cannot be avoided by using standard
methods based on, e.g., JPDA.

The TPM of the resulting mode sequence to be used in the
IMM is designed using the assumption that, a-priori, for a
given number of measurements 𝑀𝑘, any ordering of the true
detections and clutter measurements is equiprobable. Hence,
the TPM is obtained by multiplying each entry of (3) by an
all-ones matrix of appropriate dimensions. For example, the
TPM for the case of 𝐿max = 2 and 𝑀𝑘 = 4 is given by⎛⎝ 1−𝑝

4 14×4
𝑝
1214×12 04×24

012×4
1−𝑝
12 112×12

𝑝
24112×24

024×4 024×12
𝑝
2414×24

⎞⎠ , (13)

where 1𝑚×𝑛 and 0𝑚×𝑛 correspond to 𝑚× 𝑛 matrices of all
ones and zeros, respectively. Here, we utilize the fact that the
number of modes corresponding to 0, 1, and 2 splits is 4, 12
and 24, respectively (see the discussion before (12)). General-
ization to arbitrary values of 𝐿max and 𝑀𝑘 is straightforward.

B. Augmented System Dynamics

To specify a single state evolution equation we define
an augmented state as a columnwise concatenation of the
individual states 𝑥0

𝑘, 𝑥
1
𝑘, . . . , 𝑥

𝐿max

𝑘 . Likewise, the augmented
process noise is obtained by concatenating 𝑤0

𝑘, 𝑤
1
𝑘, . . . , 𝑤

𝐿max

𝑘

into a single process noise vector. It remains to describe the
structure of the matrices 𝐴(𝜃𝑘) and 𝐶(𝜃𝑘).

Before the first split, there is a single target following the
nominal dynamics (1). At this stage, the remaining 𝐿max

targets may be viewed as following the same dynamics,
driven by the same process noise and initialized with the
same initial conditions. Thus, the matrices corresponding to
𝜃𝑘 ∈ {1, . . . ,𝑀𝑘} are given by

𝐴(𝜃𝑘) =

⎛⎜⎜⎜⎝
𝐴0 0 ⋅ ⋅ ⋅ 0
𝐴0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...
𝐴0 0 ⋅ ⋅ ⋅ 0

⎞⎟⎟⎟⎠ (14)

and similarly for 𝐶(𝜃𝑘). After the first split, there are 2
targets evolving in an autonomous manner and 𝐿max −
1 targets following the dynamics equation of the origi-
nal target. Therefore, the matrices corresponding to 𝜃𝑘 ∈
{𝑀𝑘 + 1, . . . ,𝑀𝑘 +𝑀𝑘!/2!} are given by

𝐴(𝜃𝑘) =

⎛⎜⎜⎜⎜⎜⎝
𝐴0 0 ⋅ ⋅ ⋅ 0
0 𝐴1 ⋅ ⋅ ⋅ 0
𝐴0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...
𝐴0 0 ⋅ ⋅ ⋅ 0

⎞⎟⎟⎟⎟⎟⎠ (15)

and similarly for 𝐶(𝜃𝑘). Matrices corresponding to additional
splits are defined in a similar manner.

C. Augmented Measurement Equation

Similarly to the examples in [9], [23], [24], the matrices
𝐻(𝜃𝑘) and 𝐺(𝜃𝑘) are affected by 𝜃𝑘 due to the data association
ambiguity that stems from the multiple targets evolving in
cluttered environment. We concatenate all the measurements



acquired at time 𝑘 to obtain the augmented measurement and
define similarly the augmented measurement noise.

As it is not known a-priori which measurements are the
true target detections, their locations in the augmented mea-
surement vector are unknown. We thus obtain the following
values for 𝐻(𝜃𝑘) and 𝐺(𝜃𝑘) for 𝜃𝑘 ∈ {1, . . . ,𝑀𝑘}

{𝐻(𝜃𝑘), 𝐺(𝜃𝑘)}

=

⎧⎨⎩

⎧⎨⎩diag

⎛⎜⎜⎜⎜⎝
𝐻0

0
...

0

⎞⎟⎟⎟⎟⎠ ,diag

⎛⎜⎜⎜⎜⎝
𝐺0

𝐺cl

...

𝐺cl

⎞⎟⎟⎟⎟⎠
⎫⎬⎭ , 𝜃𝑘 = 1

...
...⎧⎨⎩diag

⎛⎜⎜⎜⎜⎝
0
...

0

𝐻0

⎞⎟⎟⎟⎟⎠ ,diag

⎛⎜⎜⎜⎜⎝
𝐺cl

...

𝐺cl

𝐺0

⎞⎟⎟⎟⎟⎠
⎫⎬⎭ , 𝜃𝑘 = 𝑀𝑘.

(16)

Here, 𝐺cl is the square-root of the covariance matrix associated
with the uniformly distributed clutter.

Consider, e.g., the first realization of 𝜃𝑘 in (16). It cor-
responds to the case where the first of the 𝑀𝑘 acquired
measurements is the true target measurement, 𝑦0𝑘, generated
according to (4). All other 𝑀𝑘 − 1 measurements are clutter.
That exactly one of the 𝑀𝑘 observations is target-originated
is reflected in (16) by the fact that exactly one of the blocks
of 𝐻(𝜃𝑘) is set to 𝐻0, with all others being set to 0. Note that
we have assumed that the true measurement is always present
in the acquired measurement set. To extend the treatment to
the case where true measurement may be missing, we need to
augment the previous set of values of the matrices 𝐻(𝜃𝑘) and
𝐺(𝜃𝑘) with the option {0, 𝐼𝑀𝑘

⊗𝐺cl}, where ⊗ denotes the
Kronecker product. For simplicity, hereafter we assume that
there are no missing observations.

Similarly, the feasible values of 𝐻(𝜃𝑘) and 𝐺(𝜃𝑘) corre-
sponding to 𝜃𝑘 ∈ {𝑀𝑘 + 1, . . . ,𝑀𝑘 +𝑀𝑘!/2!} are

{𝐻(𝜃𝑘), 𝐺(𝜃𝑘)}

=

⎧⎨⎩

⎧⎨⎩
diag

⎛⎜⎜⎜⎜⎜⎜⎝

𝐻0

𝐻1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,diag

⎛⎜⎜⎜⎜⎜⎜⎝

𝐺0

𝐺1

𝐺cl

...

𝐺cl

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭
, 𝜃𝑘 = 𝑀𝑘 + 1

...
...⎧⎨⎩

diag

⎛⎜⎜⎜⎜⎜⎜⎝

0
...

0

𝐻0

𝐻1

⎞⎟⎟⎟⎟⎟⎟⎠ ,diag

⎛⎜⎜⎜⎜⎜⎜⎝

𝐺cl

...

𝐺cl

𝐺0

𝐺1

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭
, 𝜃𝑘 = 𝑀𝑘 +𝑀𝑘!/2!.

(17)

Matrices corresponding to additional values of 𝜃𝑘 are defined
in a similar manner.

D. Designing the IMM

To implement a standard IMM for the described node
sequence, we maintain a bank of KFs each matched to a
different combination of the valid values of 𝐴(𝜃𝑘) and 𝐶(𝜃𝑘)
with those of 𝐻(𝜃𝑘) and 𝐺(𝜃𝑘). The transitions between
different modes are captured by a TPM of the form of (3) and
the mode sequence is initialized by assigning equal probability
to all the modes corresponding to the “no split” case and zero
to the remaining ones.

Note that unless 𝑀𝑘 is constant, the number of feasible
modes and, consequently, the number of primitive KFs and
the dimensions of the TPM at each time change. Therefore,
the IMM mode set and the TPM should be recalculated upon
receiving every measurement set.

We mention in passing that in the present case direct
utilization of the IMM scheme may only be made in an ap-
proximate manner. This is since the mode-matched likelihoods
of the standard IMM routine are approximated as Gaussian as
opposed to the standard assumption of uniformly distributed
clutter. One may modify the standard IMM by computing the
correct likelihoods, or, alternatively, use the standard algorithm
despite the above mismatch and obtain an IMM-like solution.
We pursue the second option in the next section.

V. NUMERICAL EXAMPLE

To demonstrate the proposed algorithm we simulate a target
such that the state in (1) comprises the target’s position and
velocity, 𝑥𝑘 = [𝑝𝑘 𝑣𝑘]

𝑇 , and follows the discrete white noise
acceleration (DWNA) model [25], specified by

𝐴0 =

(
1 𝑇
0 1

)
, 𝐵0 =

(
𝑇 2/2
𝑇

)
𝜎0, (18)

where 𝜎0 is some nominal process noise intensity.
The split targets follow the same dynamics up to the values

of the process noise. Noisy position-only detections of each
of the autonomous targets are available namely, 𝐻𝑖 = [1 0]
and 𝐺𝑖 = 𝜎𝑣 for all 𝑖 = 0, . . . , 𝐿max.

In the examples below the following common parame-
ters were used: 𝐿max = 2, 𝑝 = 0.05, 𝜎0 = 0.3 m/s2,
𝜎1 = 𝜎2 = 1 m/s2, 𝜎𝑣 = 200 m, 𝑇 = 5 s. Two to
five clutter measurements were uniformly generated about
the origin with standard deviation of 30𝜎𝑣 . In addition, the
initial state is 𝑥0 = [0 0]𝑇 , and 𝑃0 is an all-zero matrix.
In order to concentrate on the tracking performance and not
on initialization capabilities of the algorithm, the filter is
initialized in a perfect manner.

The positions and velocities of the targets, accompanied
by the corresponding estimates, are presented in Figs. 1a–1b.
The probabilities of the number of splits, calculated by the
algorithm, are presented in Fig. 1c. It is readily seen that the
algorithm is capable of successfully estimating all targets.
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Fig. 1: The proposed algorithm’s performance.

VI. CONCLUSION

We presented an algorithm for tracking a target that may
split, several times, into separate targets. Using the ideas
presented in a previous work, we showed how to cast the
problem into a unified framework of generalized state-space
model with randomly switching coefficients. Consequently, the
states of the original target, as well as of the splits thereof,
were tracked efficiently using a single IMM-like algorithm
defined over an augmented mode-set. To the best of the
authors’ knowledge, no algorithm that is capable of dealing
with multiple splits is available in the literature, and existing
solutions for less general problems are rather heuristic. In
addition, the idea presented herein may be generalized to
problems where several splits occur at the same time as well
as to cases where the target splits themselves may also split.
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