
A Unified Approach to State Estimation Problems

Under Data and Model Uncertainties

Daniel Sigalov

Applied Mathematics

Technion - IIT

Haifa, Israel

Tomer Michaeli

Electrical Engineering

Technion - IIT

Haifa, Israel

Yaakov Oshman

Aerospace Engineering

Technion - IIT

Haifa, Israel

Abstract—We present a unified approach to the problem of
state estimation under measurement and model uncertainties.
The approach allows formulation of problems such as maneu-
vering target tracking, target tracking in clutter, and multiple
target tracking using a single state-space system with random
matrix coefficients. Consequently, all may be solved efficiently
using a single IMM algorithm or using a linear optimal filter,
derived elsewhere, thus replacing the need for deriving a unique
algorithm for each problem.

Index Terms—Maneuvering target tracking, clutter and data
association, hybrid systems, multiple target tracking

I. INTRODUCTION

State estimation in dynamical systems with randomly

switching coefficients is an important problem with a variety

of applications. The most natural examples are maneuvering

target tracking and fault detection and isolation (FDI) featured

by navigation systems. The standard modeling presumes that

the dynamics of the state, being a continuous random variable,

is controlled by an evolving mode that takes discrete values.

This is the well known concept of hybrid systems [1].

Various problems have been formulated within this model-

ing. In problems involving uncertain, or intermittent obser-

vations, such as [2]–[7], the mode comprises the matrices

of the measurement equation. In maneuvering target tracking

applications considered in, e.g., [8]–[11] the mode usually

comprises the matrices of the dynamics equation.

As is well known, the optimal, in the minimum mean

squared error (MMSE) sense, estimator of the state in systems

with randomly switching coefficients, or more specifically, in

Markov Jump Linear Systems (MJLS), requires exponentially

growing resources [9] and is, thus, impractical in most prob-

lems of practical interest. Therefore, suboptimal state estima-

tion algorithms attract special interest of both researchers and

practitioners. The Interacting Multiple Model (IMM) [10] is

perhaps the most famous method that proposes a successful

compromise between performance and complexity. Another

option is using linear optimal recursive filters [12], [13].

A related class of problems is referred to as data association

or data ambiguity. In this family, the estimation process is

further complicated by the fact that the acquired data has

uncertain origin. For example, in the problem of tracking a

single target in clutter, each of the obtained measurements

may originate from the true target or may represent a false

alarm that does not carry useful information. In multiple target

tracking, each of the true detections may be attributed to each

of the targets without a-priori labeling.

A well-known Bayesian method for tracking a single non-

maneuvering target in clutter is the Probabilistic Data Associ-

ation Filter (PDAF) [14] in which the optimal state estimate

is approximated by fusing, in a Kalman filter’s manner, the

previously obtained result with a nonlinear combination of the

measurements from the current scan. Recently, the problem of

tracking in clutter was formulated using a single state-space

system and solved in a linear-optimal manner [13]. In the case

of multiple targets the joint PDAF (JPDAF) [15] approximates

their states by considering all possible association events

between the estimates from the previous cycle and the new

set of measurements. Treating maneuvering targets in cluttered

environment is possible by combining the PDAF/JPDAF with

the IMM algorithm.

In this paper we show how some of the above problems

may be modeled within the framework of a single, general-

ized state-space system with randomly switching coefficients.

Consequently, all may be solved using a single IMM or a

linear-optimal filter provided that the set of the system modes

is properly chosen. Specifically, we consider the classical

problem of tracking a maneuvering target and perform a

comparison of IMM and the linear optimal filter. In addition,

we discuss the problem of tracking in clutter with both

adaptive and linear methods. We extend the treatment of [13]

and show that the classical PDA approach is equivalent to an

appropriately designed IMM. Finally, we solve the multi-target

tracking problem and discuss cons and pros in using IMM and

linear algorithms.

The remainder of the paper is organized as follows. In

Section II we define and discuss the general modeling and

outline the possible generic solutions. Section III is devoted to

applications of the unified modeling. We begin with the clas-

sical problem of maneuvering target tracking in Section III-A

and solve it using IMM and linear methods. Section III-B

considers the classical problems of tracking a single target

in clutter, where we also show the equivalence between the

resulting IMM procedure and the classical PDAF. Section III-C

discusses the multiple target tracking problem. Concluding

remarks are made in Section IV.



II. THE UNIFIED APPROACH AND EXISTING SOLUTIONS

We consider the dynamical system

xk+1 = A(�k)xk + C(�k)wk (1a)

yk = H(�k)xk +G(�k)vk + F (�k)x̂k−1. (1b)

Here xk is the state vector at time k. The process and

measurement noise sequences, {wk} and {vk}, are taken to

be i.i.d. with zero mean and unit covariance matrices, inde-

pendent of each other, and {A(�)}, {C(�)}, {H(�)}, {G(�)},
and {F (�)} are matrix-valued, finite domain functions of

a real scalar random variable � ∈ ℝ. The vector x̂k−1 is

some estimate of xk−1 using the measurements Yk−1 where

Yk ≜ {y0, . . . , yk}. For example, it may be the linear MMSE

(LMMSE) estimate of the state using the past measurements.

The last term in (1b) represents the fact that measurements are

not collected from the entire surveillance region but from a val-

idation window, set about the predicted measurement. Without

loss of generality, x0 is taken to be a zero vector with zero

covariance matrix. The mode of the system, {�k}, constitutes

a Markov process with a state-space {1, . . . , r}, a transition

probability matrix (TPM) Π, and an initial distribution �.

The goal is to obtain an efficient estimate of xk using the

available data Yk. Since the MMSE estimate is impractical,

suboptimal approaches are inevitable. We discuss some of

these next.

A. The Interacting Multiple Model Filter

The main idea underlying the IMM algorithm, in the ab-

sence of the additional term F (�k)x̂k−1 in (1b), is to maintain

a bank of primitive Kalman filters, each matched to a different

model in the given model set. At step k, the j-th filter produces

a local estimate x̂j(k) with an associated error covariance

Pj(k) using its initial estimate x̂0
j (k − 1) and the associated

covariance P 0
j (k−1), which are generated externally, and the

current measurement yk, which gets processed by all KFs in

the bank. In addition, each filter produces a current value of

its own (model-matched) likelihood function Λj(k). The key

element of the IMM scheme is the interaction block that gen-

erates, using all local estimates, covariances, and likelihoods

from the previous cycle, individual initial conditions for each

of the primitive filters in the bank. The steps of the algorithm

are summarized as follows.

a) Mixing Probabilities: For i, j = 1, . . . , r compute

�i∣j(k − 1) ≜ ℙ {�k−1 = i ∣ �k = j,Yk−1 }

=
1

cj
pij�i(k − 1), (2)

where cj is a normalizing constant and �i(k) ≜

ℙ {�k = i ∣ Yk }.
b) Mixing Step: For j = 1, . . . , r compute the initial

state estimate for the filter matched to mj

x̂0
j (k − 1) =

r∑

i=1

x̂i(k − 1)�i∣j(k − 1) (3)

and the corresponding covariances.

c) Mode-Matched Filtering: For j = 1, . . . , r, using (3)

and the corresponding covariance, compute the mode-matched

estimate x̂j(k) and Pj(k) as well as the likelihood Λj(k),
which is approximated as Gaussian

Λj(k) = N (yk; ŷj(k), Sj(k)), (4)

where ŷj(k) and Sj(k) are the predicted measurement and

innovation covariance computed by the j-th filter using the

initial conditions (3).

d) Mode Probability Update: For j = 1, . . . , r

�j(k) =
1

c
Λj(k)

r∑

i=1

pij�i(k − 1), (5)

where c is a normalization factor.

e) Output Computation: The algorithm output at time k
is obtained as a fused version of the local estimates:

x̂(k) =

r∑

j=1

x̂j(k)�j(k). (6)

The associated covariance is computed in a similar manner.

In the proposed formulation, each primitive KF should

be replaced with a corresponding Generalized KF (GKF)

incorporating the above feedback term. It is shown in [13]

that for a deterministic {�k}, the GKF estimate of the state

defined and observed through (1) is given by

x̂k+1 = Lkx̂k +Kkyk+1 (7)

Lk = (I −KkH)A−KkF (8)

Kk = P−k+1
HT

(
HP−k+1

HT +GGT
)−1

(9)

P−k+1
= A(P−k −Kk−1HP−k )A

T + CCT . (10)

Here, A, C, H , G, and F are functions of the deterministic

sequence {�k}.

B. The Linear Optimal Filter

To the best of the authors’ knowledge, linear-optimal algo-

rithms for the generalized system (1) have not been addressed

elsewhere. There are, however, special cases for which such

filters have been developed. In the absence of the feedback

term F (�k)x̂k−1 in (1b), the LMMSE algorithm proposed

in [12] presumes a finite number of possible modes described

by the possible outcomes of �k. The idea is to obtain a linear

optimal recursive estimate of the following augmented state

zk ≜ (xT
k  {�k=1}, . . . , x

T
k  {�k=r})

T . (11)

The estimate of the true state is obtained naturally by summing

up the entries of the linear optimal estimate of zk. The

resulting recursive scheme for the estimation of the augmented

state vector is summarized below.

ẑk = Aẑk−1 + (Sk − Vk)H
T
(
H(Sk − Vk)H

T +GkG
T
k

)−1

× (yk −HAẑk−1) , (12)



where Sk, Uk, and Vk are second-order moments of zk, ẑk,

and Aẑk−1, respectively. These may be recursively computed

from

Vk = AUk−1A
T (13)

Uk = Vk + (Sk − Vk)H
T
(
H(Sk − Vk)H

T +GkG
T
k

)−1

×Hk(Sk − Vk) (14)

Sk = diag(Sk(j)) (15)

Sk+1(j) =
r∑

i=1

pijA(i)Sk(i)(A(i))
T

+

r∑

i=1

pij�k(i)C(i)(C(i))
T , (16)

where �k(i) = ℙ {�k = i} and

A ≜

⎛

⎜
⎝

p11A(1) ⋅ ⋅ ⋅ pr1A(r)
...

. . .
...

p1rA(1) ⋅ ⋅ ⋅ prrA(r)

⎞

⎟
⎠ (17)

H ≜
(
H(1) ⋅ ⋅ ⋅ H(r)

)
(18)

Gk ≜

(

G(1)�
1/2
k (1) ⋅ ⋅ ⋅ G(r)�

1/2
k (r)

)

(19)

It was shown in [16] that when the Markov dynamics of

{�k} degenerates to an independent process, the LMMSE

estimator may be obtained without state augmentation. The

algorithm then assumes a convenient Kalman-like form.

It is shown in [13] that adding the additional term

F (�k)x̂k−1 in (1b), and assuming independent mode transi-

tions, the LMMSE filter comprises the following equations,

where we have denoted, for brevity, Ak ≜ A(�k) and similarly

for Ck, Hk, Gk, and Fk.

x̂k+1 = Lkx̂k +Kkyk+1 (20)

Kk = Γxk+1ỹk+1
Γ−1
ỹk+1ỹk+1

(21)

Lk = (I −KkE [Hk+1])E [Ak]−KkE [Fk+1] , (22)

where

Γxk+1ỹk+1
= (Σk+1 − E [Ak] ΛkE

[
AT

k

]
)E

[
HT

k+1

]
(23)

Γỹk+1ỹk+1
= E

[
Hk+1Σk+1H

T
k+1

]
+ E

[
Gk+1G

T
k+1

]

+ E
[
Fk+1ΛkF

T
k+1

]
− E [Fk+1] ΛkE

[
FT
k+1

]

− E [Hk+1]E [Ak] ΛkE
[
AT

k

]
E
[
HT

k+1

]

+ E
[
Hk+1E [Ak] ΛkF

T
k+1

]

+ E
[
Fk+1ΛkE

[
AT

k

]
HT

k+1

]

− E [Hk+1]E [Ak] ΛkE
[
FT
k+1

]

− E [Fk+1] ΛkE
[
AT

k

]
E
[
HT

k+1

]
, (24)

and

Σk+1 = E
[
xk+1x

T
k+1

]
= E

[
AkΣkA

T
k

]
+ E

[
CkC

T
k

]
(25)

Λk+1 = LkΛkE
[
AT

k

]

+Kk(E [Fk+1] ΛkE
[
AT

k

]
+ E [Hk+1] Σk+1). (26)

III. APPLICATIONS

In this section we present several classical problems and

show how they may be formulated under the considered frame-

work. We begin with the problem of tracking a maneuvering

target and discuss the solutions obtained by using the IMM and

the linear-optimal method. Next we consider tracking in clutter

and extend the study performed in [13] by implementing the

PDA approach using IMM. Finally, we discuss the multi-target

tracking problem and consider several solutions.

A. Maneuvering Target Tracking

The problem of tracking a maneuvering target modeled

as an MJLS is usually solved using the IMM approach. In

this section we investigate the performance of linear-optimal

trackers and compare it with that of IMM.

We consider the system (1) with F (�k) = 0. The state vector

xk = [pk vk ak]
T comprises the target’s position, velocity,

and acceleration. At time k, the mode �k affects only the

dynamics equation We consider the case r = 2 such that in the

nominal regime, when �k = 1, the system obeys the dynamics

of the discrete white noise acceleration (DWNA) model [17],

specified by the following matrices:

A(1) =

⎛

⎝

1 T 0
0 1 0
0 0 0

⎞

⎠ , C(1) =

⎛

⎝

T 2/2
T
0

⎞

⎠�1, (27)

where T is the sampling period corresponding to a single

time step of the system (1), �1 is the nominal process noise

intensity. In the maneuvering regime, when �k = 2, the

corresponding model is chosen to be the discrete Wiener

process acceleration (DWPA) model [17], specified by the

following matrices:

A(2) =

⎛

⎝

1 T T 2/2
0 1 T
0 0 1

⎞

⎠ , C(2) =

⎛

⎝

T 2/2
T
1

⎞

⎠�2, (28)

where �2 is the abnormal process noise intensity.

The transitions between the two modes occur according to

a Markov process with the following TPM:

Π =

(
p 1− p
1/3 2/3

)

, (29)

where p is a deterministic parameter. The initial mode distri-

bution, �, is taken to be the invariant distribution of (29).

In the experiment below the following common parameters

were used: �1 = 0.3 m/s2, �2 = 6 m/s2, T = 10 s. These

parameters, as well as the second row of the TPM (29), are

adopted from [18] and are typical in aircraft tracking. The

above system was simulated for 100 time steps.

The measurements are generated according to (1b) where

H(�k) = [1 0 0], and G(�k) = �v = 1000 m is the

measurement noise standard deviation.

The above formulation allows a direct utilization of IMM

and the linear optimal filter defined in Eqs. (11)-(19). Note that

the linear filter for independently switching modes defined in

Eqs. (21)-(26) is not applicable, since the target maneuvers



according to a non-independent switching law. It does how-

ever, require smaller computational resources than the above

alternatives. We thus compare the performance of the three

methods and show that, at least in some cases, the performance

loss in using the independence assumption is not drastic in

comparison to the LMMSE filter of [12].

By sweeping the parameter p of (29) we compare the

performance of the linear filter of Eqs. (21)-(26) (referred to

as “IID”) with that of the linear optimal filter of Eqs. (11)-(19)

(refereed to as “Costa”) and the nonlinear IMM. To adapt the

IID filter to our Markovian scenario we set the distribution

of �k, for each k, to the invariant distribution of (29). In

addition, we run a “Genie” Kalman filter, that possesses perfect

information on the mode value at each time. This ideal (but

non-realistic) filter serves to provide an overall performance

bound, indicating for each of the compared algorithms how

far it is from the (unachievable) optimal performance.

Averaged over 1000 independent runs, the RMS position

and velocity estimation errors, versus p, are presented in Fig. 1.

It is readily seen that, for p ∈ [0, 0.6], both linear methods

attain similar performance. Moreover, both are only slightly

outperformed by the IMM. On the other hand, as indicated by

the errors of the Genie filter, there is room for improvement,

meaning that the problem is not trivial. We thus conclude that,

for this range of p, the independence assumption is reasonable,

and the potential improvement that may be achieved by more

complex nonlinear techniques is not significant.

For higher values of p, the Costa filter scores better than

the IID filter. It should be noted that, although the position

estimation accuracy of the IID filter degrades as p increases,

at p = 1 (not shown here) all three methods coincide with

the Genie filter, as in this case, the problem degenerates to a

standard, single-mode estimation setting.

B. Target Tracking in Clutter

In this section we consider the problem of tracking a

single, nonmaneuvering target in clutter and formulate it in

the framework of the proposed generalized model.

1) Modeling: The state evolution is obtained from (1a) by

setting A(�k) = A and C(�k) = C, which results in

xk+1 = Axk + Cwk. (30)

Here A and C are deterministic matrices representing the state

dynamics and process noise covariance, respectively.

At time k the target state is observed via the following linear

measurement equation:

yk,true = Hnomxk +Gnomvk,true. (31)

Here, yk,true and vk,true represent the true measurement of

the target and the true measurement noise, respectively. It is

also assumed that the target may go undetected at some sam-

pling intervals. This phenomenon is captured by the detection

probability PD.

In addition to yk,true, at each time, a number of clutter

measurements are obtained. These will be denoted as yk,cl.
Clutter measurements originate from false (or ghost) targets

and do not carry any information about the target of interest.

They are also indistinguishable from true detections. At each

time, the clutter measurements are assumed to be independent

of each other, of the clutter measurements at other times, and

of the true state and observation. In addition, we assume that

these measurements are uniformly distributed in space.

Instead of scanning the entire surveillance region, the sen-

sor initiates a validation window, centered at the predicted

target position, and the algorithm processes the measurements

obtained within the window. Since the clutter is uniformly

distributed in space, it is also uniformly distributed within the

validation window. The probability that the true measurement

is inside the validation window is PG. For simplicity of

exposition, we assume that the true measurement is always

present in the validation window. In other words, we assume

that PD = PG = 1. In terms of the modeling, this is not a

very restrictive assumption, and it may be easily relaxed, as

we discuss in the sequel.

In this setting, the acquired measurement vector at time k
becomes, for some integer N ,

yk =
(
(y1k)

T , (y2k)
T , . . . , (yNk )

T
)T

. (32)

Namely, yk is a concatenation of N measurements, such that

N − 1 of them originate from false targets, or clutter, and

only one originates from the (single) true target. The false

measurements are centered around the predicted target state

(since this is the center of the validation window), as opposed

to the true measurement, which is generated using the true

target state (31).

The described observation model follows from (1b) by con-

sidering an independent mode sequence {�k} taking values in

{1, . . . , N} with the corresponding probabilities {p1, . . . , pN},
and affecting the matrices of the measurement equation in the

following manner:

{H(�k), G(�k), F (�k)}

=

⎧

⎨

⎩

⎧

⎨

⎩

⎛

⎜
⎜
⎜
⎜
⎝

Hnom

0
...

0

⎞

⎟
⎟
⎟
⎟
⎠

, diag

⎛

⎜
⎜
⎜
⎜
⎝

Gnom

Gcl

...

Gcl

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

0

HnomA
...

HnomA

⎞

⎟
⎟
⎟
⎟
⎠

⎫

⎬

⎭

, �k = 1

...
...

...
⎧

⎨

⎩

⎛

⎜
⎜
⎜
⎜
⎝

0
...

0

Hnom

⎞

⎟
⎟
⎟
⎟
⎠

, diag

⎛

⎜
⎜
⎜
⎜
⎝

Gcl

...

Gcl

Gnom

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝

HnomA
...

HnomA

0

⎞

⎟
⎟
⎟
⎟
⎠

⎫

⎬

⎭

, �k = N.

(33)

Here, Gcl is the square-root of the covariance matrix associated

with the clutter.

Consider, for example, the first realization

{H(1), G(1), F (1)} in (33). It corresponds to the case

where the first of the N acquired measurements is the true

target measurement, yk,true, generated according to (31). All
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Fig. 1: RMS position (left) and velocity (right) errors vs. p in the maneuvering target tracking application.

other N − 1 measurements are clutter, the ith of which is

generated according to the following model:

yik,cl = HnomAx̂k−1 +Gclv
i
k,cl. (34)

Note that HnomAx̂k−1 is the predicted true measurement at

time k, which is also the center of the validation window set

by the sensor. Thus, clutter measurements acquired at time k
may be viewed as generated uniformly around this location.

That exactly one of the N observations is target-originated

is reflected in (33) by the fact that exactly one of the blocks of

H(�k) is set to Hnom, with all others being set to 0. Likewise,

all but one block of Fk are taken to be HnomA.

Captured by the matrix Gcl, the covariance of the clutter

measurements may be different from the true measurement

noise covariance, represented by Gnom. However, it is not

known a-priori which of the concatenated measurements car-

ries useful information. We assume that all possible orderings

of the true and clutter observations in the validation window

are equiprobable and thus set

pi =
1

N
, i = 1, . . . , N. (35)

Hence H(�k), G(�k), and F (�k) correspond to random per-

mutations of N possible positions of the true measurement

among the clutter measurements. Note that the overall number

of validated measurements (i.e., those that are in the validation

window), N , is assumed to be known, but may vary in time.

2) Implementing PDA with IMM: We now show that for

PD = PG = 1, the popular PDA algorithm is identical to the

IMM scheme with GKF modules. Since the mode sequence is

independent, the interaction block of IMM becomes obsolete

and the whole procedure reduces to a standard GPB. Hence,

we need to show that a standard GPB with modes defined

in (33) reduces to the PDA routine.

Consider the final state estimate produced by GPB:

x̂GPB
k+1 =

r∑

j=1

x̂j
k+1

�j(k + 1), (36)

where r is the number of modes, x̂j
k+1

is the output of the

primitive KF (GKF) matched to model j and �j(k + 1) =
ℙ {�k+1 = j ∣ Yk+1 }. In the considered case r = N . The

j-th mode-conditioned estimate, x̂j
k+1

, is given by the GKF

update defined in Eqs. (7)-(10). Consider the estimate matched

to the j-th realization of �k+1 in (33):

x̂j
k+1

= (A−Kj
kH(j)A−Kj

kF (j))x̂
GPB
k +Kj

kyk+1. (37)

Inspecting (9) it is easy to see that Kj
k has the following form

(0 ⋅ ⋅ ⋅ 0
︸ ︷︷ ︸

j−1

Kk,nom 0 ⋅ ⋅ ⋅ 0
︸ ︷︷ ︸

N−j

),

where

Kk,nom = P−k+1
HT

nom

(
HnomP

−
k+1

HT
nom +GnomG

T
nom

)−1
.

Thus, Kj
kF (j) = 0 and (36) reads

x̂GPB
k+1 = (A−Kk,nomHnomA)x̂

GPB
k

+Kk,nom

N∑

j=1

�j(k + 1)yjk+1
. (38)

Comparing (38) with (7) we note that the former is a KF-

like update step with an effective measurement computed as

a weighted sum of all the observations acquired at the current

time step. The above form is essentially the same as the one

used in PDA, meaning that showing equivalence between the

two methods boils down to showing that {�j(k + 1)}rj=1
are



the same as the PDA’s weighting probabilities. Indeed,

�j(k + 1) = ℙ {�k+1 = j ∣ Yk+1 }

=
1

c
p (yk+1 ∣ �k+1 = j,Yk )ℙ {�k+1 = j ∣ Yk }

=
1

c
p (yk+1 ∣ �k+1 = j,Yk ) pj . (39)

The term p (yk+1 ∣ �k+1 = j,Yk ) is the likelihood of the

latest measurement set, among which the j-th observation

is the true measurement having a (truncated) Gaussian dis-

tribution about the true target state, and the rest are clutter

measurements uniformly distributed about the predicted mea-

surement in the validation window. Alternatively, the uniform

distribution is specified by the covariance matrix Gcl. In the

present case we assume that the true target is always present

in the validation window, meaning that the probability of

detection is set to unity and the window is infinite. Hence,

Gcl must be taken to infinity and (39) is completely specified

by the likelihood of the true measurement coinciding with the

weighting factors of PDA for PD = PG = 1. This completes

the proof on the equivalence of the two methods.

In the case where the target may either go undetected, or

a finite validation window is used, the set of possible modes

should be augmented by �k = 0, such that

{H(0), G(0), F (0)} = {0, IN ⊗Gcl,1N ⊗HnomA} . (40)

Here, the symbol ⊗ stands for the Kronecker product, 1N is

an N × 1 vector comprising all ones, and IN is the N × N
identity matrix. The prior probability distribution of the mode

should be modified in a straightforward manner.

3) Linear Optimal Filter: Since the mode sequence (33)

is independent, we utilize the recursive version of the linear

optimal filter given in Eqs. (21)-(26). To implement the

algorithm one needs to compute the expectations appearing

in the above equations. Although these may be computed

numerically, via direct summations, in the present application

closed form solutions exist as follows [13]:

E [Hk+1] =
1

N
1N ⊗Hnom (41)

E [Fk+1] =
N − 1

N
1N⊗HnomA (42)

E[Hk+1Σk+1H
T
k+1] =

1

N
IN ⊗HnomΣk+1H

T
nom (43)

E[Gk+1G
T
k+1]

=
1

N
IN⊗

(
GnomG

T
nom + (N − 1)GclG

T
cl

)
(44)

E
[
Fk+1ΛkF

T
k+1

]
= Ξ⊗

(
HnomAΛkA

⊤HT
nom

)
, (45)

where Ξ is defined by

Ξ =

{

0, N = 1
1

N

(
(N − 2)1N1

T
N + IN

)
, N > 1.

(46)

Finally,

E
[
Hk+1AΛkF

T
k+1

]

=
1

N
(1N1

T
N − IN )⊗

(
HnomAΛkA

THT
nom

)
. (47)

4) Numerical Example: In this section we demonstrate the

performance of the linear optimal filter for tracking a target

in clutter by comparing it with that of the standard Nearest

Neighbor (NN) [18] method and PDA. We consider a one-

dimensional tracking scenario, in which a target is represented

via a two dimensional state comprising position and velocity

information, xk = (pk, vk)
T . Starting at x0 = (0, 0)T with

P0 = ( 0 0
0 0 ), the target is simulated for 1000 time units by

running the dynamical equation (30) with

A =

(
0.95 0.2
0 0.95

)

, C =

(
1 0
0 1

)

. (48)

The true measurement is generated by computing (31) with

Hnom = (1 0), Gnom = 0.32. (49)

As mentioned earlier, for the IMM version of PDA we

assume an infinite validation window, taking advantage of the

inherent soft validation property of the PDA. For LMMSE

such option is not viable since, as shown in [13], the LMMSE

for tracking in clutter implements a KF-like procedure on the

average measurement in the validation window. Hence, we

enforce externally a validation window which is twice as large

as the innovation covariance (24).

We use two measures of performance to compare the

algorithms. The first is the time until the target is lost, which

is defined as the third time the distance between the predicted

position and the true state has deviated by more than five

standard deviations of the (true) measurement noise. The

second measure is the average squared error calculated over

the time interval until the first of the three algorithms has

lost track. This makes the comparison fair, in the sense that

none of the algorithms incorporates meaninglessly large errors

corresponding to a lost target.

We define � to be the average number of clutter measure-

ments falling in an interval of one standard deviation of the

(true) measurement noise. Averaged over 1000 independent

Monte Carlo runs, the RMS position errors and track loss

times, versus �, are plotted in Fig. 2. It is readily seen that the

linear optimal filter attains the longest track loss time while

keeping the estimation errors at a reasonable compromise

between the nonlinear IMM/PDA and NN algorithms.

C. Multiple Target Tracking

Here we consider N independently evolving targets, such

that the dynamics of target i is described by

xi
k+1 = Aixi

k + Ciwi
k, (50)

where Ai and Ci are target specific matrices, and
{
wi

k

}
is the

process noise sequence of target i, which is assumed to have

zero mean and identity covariance matrix.

This (multitarget) state evolution is obtained from (1a) by

defining an augmented state xk as a concatenation of the

individual states xi
k, i = 1, . . . , N . The dynamics and process

noise matrices, Ak and Ck, respectively, are:

A(�k) = diag
(
A1 A2 ⋅ ⋅ ⋅ AN

)
(51)

C(�k) = diag
(
C1 C2 ⋅ ⋅ ⋅ CN

)
. (52)
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Fig. 2: Position RMSE (left) and track loss times (right) vs. clutter density in the target tracking in clutter application.

The state of target i is observed via the following linear

measurement equation:

yik = Hnomx
i
k +Givik, (53)

where Hnom is a known deterministic matrix representing

sensor geometry and Gi represents the measurement noise

covariances, which may depend on the target.

At time k each of the targets generates a single measure-

ment, such the measurement vector at time k is a concate-

nation of the N measurements. It is not known, however,

which measurement corresponds to which target, such that

any measurements-to-targets association is possible. Similarly

to the case of tracking in clutter, we assume that any such

association is equiprobable, and independent of the past ones.

The described observation model follows from (1b) by

defining the following set of values taken, with equal prob-

ability, by the mode-affected matrices {H(�k), G(�k)}:

{H(�k), G(�k)} ∈
⎧
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. . .
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⎞
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⎟
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⎛

⎜

⎜

⎜
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(54)

Thus, the set of values taken by H(�k) is obtained by

permuting the rows of an N × N identity matrix and per-

forming a Kronecker product of every such matrix with

Hnom, and the set of values taken by G(�k) is obtained

by permuting the block-rows of the block-diagonal matrix

diag
(
G1 G2 ⋅ ⋅ ⋅ GN

)
. In the present example we set,

for simplicity, F (�k) = 0.

Consider, for example, the case where N = 2 targets are to

be tracked in the linear optimal sense. The first realization of

{H(�k), G(�k)} in (54) then reads

{H(�k), G(�k)}=
{(

Hnom 0
0 Hnom

)

,

(
G1 0
0 G2

)}

. (55)

This realization corresponds to the case where the first of

the 2 acquired measurements originates from the first target

and the second observation originates from the second target.

Due to the data ambiguity, each of the two hypotheses has a

probability of 1

2
of being correct. For general N , the number

of possible hypotheses is N ! and the corresponding probability

of each one being correct is 1

N !
.

To track the targets with IMM, we define N ! primitive

KFs capturing the different association hypotheses. The im-

plementation of the LMMSE filter is straightforward. We

note that using the IID filter is possible due to the assumed

independence of the modes, and in this case closed form

expressions exist for the required expectations:

E [Hk+1] =
1

N
(1⊤N1N )⊗Hnom, (56)

E
[
Hk+1Σk+1H

T
k+1

]

=
1

N
I ⊗ (Hnom(1

T
N ⊗ I)Σk(1N ⊗ I)HT

nom), (57)

E
[
Gk+1G

T
k+1

]
=diag

(
G1(G1)T ⋅ ⋅ ⋅ GN (GN )T

)
. (58)

To illustrate the feasibility of the approach we track two

crossing targets, as shown in Fig. 3, where the position

estimates of the LMMSE filter are compared with those of
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Fig. 3: Target positions accompanied by estimated trajectories

and raw measurements vs. time.

IMM. The matrices used in the example are

Ai =

(
0.95 0.2
0 1

)

, Ci = 0.2

(
0.5
1

)

, i = 1, 2, (59)

and

Hnom = (1 0), Gnom =
√
20, x1

0 = −x2
0 = (20 − 1)T .

It is readily seen that the LMMSE filter is capable of main-

taining tracks. It is, however, inferior to the more sophisticated

IMM, which may be shown to implement, in this case, the

JPDA filter similarly to the implementation of PDA in the

previous example. However, IMM and JPDA require, at each

time step, the calculation of N ! Kalman updates (assuming

that N measurements need to be assigned to N targets) and,

therefore, they are infeasible even for scenarios with a small

number of targets. The computational requirements of the

LMMSE filter, on the other hand, are at the bare minimum

and it only requires the inversion of an mN × mN matrix,

where m is the measurement dimension.

IV. CONCLUSION

We presented a unified modeling of state estimation prob-

lems under data and model uncertainties. This allowed a

representation of several classical problems within a single

state-space formulation with random matrix coefficients. Con-

sequently, a standard IMM and LMMSE filters were applied

to solve the maneuvering target tracking problem as well as

tracking under data ambiguity – target tracking in clutter and

multiple target tracking. In the case of tracking in clutter

we showed that the resulting IMM scheme is equivalent to

the classical PDA approach. We note that additional state

estimation problems may be cast in the considered framework.

These include maneuvering target tracking in clutter and

multiple maneuvering target tracking.
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