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Abstract

Canonical correlation analysis (CCA) is a classi-

cal representation learning technique for finding

correlated variables in multi-view data. Several

nonlinear extensions of the original linear CCA

have been proposed, including kernel and deep

neural network methods. These approaches seek

maximally correlated projections among families

of functions, which the user specifies (by choos-

ing a kernel or neural network structure), and are

computationally demanding. Interestingly, the

theory of nonlinear CCA, without functional re-

strictions, had been studied in the population set-

ting by Lancaster already in the 1950s, but these

results have not inspired practical algorithms.

We revisit Lancaster’s theory to devise a prac-

tical algorithm for nonparametric CCA (NCCA).

Specifically, we show that the solution can be ex-

pressed in terms of the singular value decomposi-

tion of a certain operator associated with the joint

density of the views. Thus, by estimating the

population density from data, NCCA reduces to

solving an eigenvalue system, superficially like

kernel CCA but, importantly, without requiring

the inversion of any kernel matrix. We also de-

rive a partially linear CCA (PLCCA) variant in

which one of the views undergoes a linear pro-

jection while the other is nonparametric. Using

a kernel density estimate based on a small num-

ber of nearest neighbors, our NCCA and PLCCA

algorithms are memory-efficient, often run much

faster, and perform better than kernel CCA and

comparable to deep CCA.
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1. Introduction

A common task in data analysis is to reveal the com-

mon variability in multiple views of the same phenome-

non, while suppressing view-specific noise factors. Canon-

ical correlation analysis (CCA) (Hotelling, 1936) is a clas-

sical statistical technique that targets this goal. In CCA,

linear projections of two random vectors are sought, such

that the resulting low-dimensional vectors are maximally

correlated. This tool has found widespread use in var-

ious fields, including recent application to natural lan-

guage processing (Dhillon et al., 2011), speech recognition

(Arora & Livescu, 2013), genomics (Witten & Tibshirani,

2009), and cross-modal retrieval (Gong et al., 2014).

One of the shortcomings of CCA is its restriction to lin-

ear mappings, since many real-world multi-view datasets

exhibit highly nonlinear relationships. To overcome this

limitation, several extensions of CCA have been pro-

posed for finding maximally correlated nonlinear projec-

tions. In kernel CCA (KCCA) (Akaho, 2001; Melzer et al.,

2001; Bach & Jordan, 2002; Hardoon et al., 2004), these

nonlinear mappings are chosen from two reproducing

kernel Hilbert spaces (RKHS). In deep CCA (DCCA)

(Andrew et al., 2013), the projections are obtained from

two deep neural networks that are trained to output max-

imally correlated vectors. Nonparametric CCA-type meth-

ods, which are not limited to specific function classes, in-

clude the alternating conditional expectations (ACE) al-

gorithm (Breiman & Friedman, 1985) and its extensions

(Balakrishnan et al., 2012; Makur et al., 2015). Nonlinear

CCAmethods are advantageous over linear CCA in a range

of applications (Hardoon et al., 2004; Melzer et al., 2001;

Wang et al., 2015b). However, existing nonlinear CCA ap-

proaches are very computationally demanding, and are of-

ten impractical to apply on large data.
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Interestingly, the problem of finding the most correlated

nonlinear functions of two random variables has been stud-

ied by Lancaster (1958) and Hannan (1961), long before

the derivation of KCCA, DCCA and ACE. They charac-

terized the solution in the population setting, without re-

stricting the functions to an RKHS or to have any particular

parametric form. However, these theoretical results have

not inspired practical algorithms.

In this paper, we revisit Lancaster’s theory, and use it to de-

vise a practical algorithm for nonparametric CCA (NCCA).

Specifically, we show that the solution to the nonlinear

CCA problem can be expressed in terms of the singular

value decomposition (SVD) of a certain operator, which

is defined via the population density. Therefore, to obtain

a practical method, we estimate the density from training

data and use the estimate in the solution. The resulting

algorithm reduces to solving an eigenvalue system with a

particular kernel that depends on the joint distribution be-

tween the views. While superficially similar to other eigen-

value methods, it is fundamentally different from them and

in particular has crucial advantages over KCCA. For ex-

ample, unlike KCCA, NCCA does not involve computing

the inverse of any matrix, making it computationally fea-

sible on large data where KCCA (even using approxima-

tion techniques) is impractical. We elucidate this and other

contrasts in Sec. 3 below. We show that NCCA achieves

state-of-the art performance, while being much more com-

putationally efficient than KCCA and DCCA.

In certain situations, nonlinearity is needed for one view but

not for the other. In such cases, it may be advantageous to

constrain the projection of the second view to be linear. An

additional contribution of this paper is the derivation of a

closed-form solution to this partially linear CCA (PLCCA)

problem in the population setting. We show that PLCCA

has essentially the same form as linear CCA, but with the

optimal linear predictor term in CCA replaced by an opti-

mal nonlinear predictor in PLCCA. Thus, moving from the

population setting to sample data entails simply using non-

linear regression to estimate this predictor. The resulting

algorithm is efficient and, as we demonstrate on realistic

data, sometimes matches DCCA and significantly outper-

forms CCA and KCCA.

2. Background

We start by reviewing the original CCA algorithm

(Hotelling, 1936). Let X ∈ R
Dx and Y ∈ R

Dy be two

random vectors (views). The goal in CCA is to find a pair

of L-dimensional projections W⊤
1 X , W⊤

2 Y that are max-

imally correlated, but where different dimensions within

each view are constrained to be uncorrelated. Assuming

for notational simplicity thatX and Y have zero mean, the

CCA problem can be written as1

max
W1,W2

E

[

(

W⊤
1 X

)⊤(
W⊤

2 Y
)

]

(1)

s.t. E
[

(

W⊤
1 X

)(

W⊤
1 X

)⊤]
= E

[

(

W⊤
2 Y

)(

W⊤
2 Y

)⊤]
= I,

where the maximization is over W1 ∈ R
Dx×L,W2 ∈

R
Dy×L. This objective has been extensively studied and

is known to be optimal in several senses: It maximizes

the mutual information for certain distributions (Borga,

2001), maximizes the likelihood for certain latent variable

models (Bach & Jordan, 2005), and is equivalent to the

information bottleneck method when p(x,y) is Gaussian
(Chechik et al., 2005).

The CCA solution can be expressed as (W1,W2) =

(Σ−1/2
xx U,Σ−1/2

yy V), where Σxx = E[XX⊤], Σyy =

E[Y Y ⊤], Σxy = E[XY ⊤], and U ∈ R
Dx×L and V ∈

R
Dy×L are the top L left and right singular vectors of the

matrix T = Σ−1/2
xx ΣxyΣ

−1/2
yy (see (Mardia et al., 1979)).

In practice, the population covariances are typically re-

placed by their empirical estimates,2 which are obtained

from a set of paired multi-view samples {(xi,yi)}Ni=1.

To facilitate the analogy with partially linear CCA

(Sec. 3.2), we note that the CCA solution can also be

expressed in terms of the optimal predictor (in the mean

squared error sense) of X from Y , given by X̂ =
ΣxyΣ

−1
yy Y , and its covariance Σx̂x̂ = ΣxyΣ

−1
yy Σyx.

Specifically, U corresponds to the eigenvectors of K =
TT⊤ = Σ−1/2

xx Σx̂x̂Σ
−1/2
xx , and, by algebraic manipula-

tion, the optimal projections can be written as

W⊤
1 X = U⊤Σ

− 1
2

xx X, W⊤
2 Y = D− 1

2U⊤Σ
− 1

2
xx X̂, (2)

whereD is a diagonal matrix with the top L eigenvalues of

K on its diagonal.

As the representation power of linear mappings is limited,

several nonlinear variants of problem (1) have been pro-

posed. These methods find maximally correlated nonlinear

projections f : RDx → R
L, g : RDy → R

L by solving

max
f∈A,g∈B

E
[

f(X)⊤g(Y )
]

(3)

s.t. E
[

f(X)f(X)⊤
]

= E
[

g(Y )g(Y )⊤
]

= I,

where A and B are two families of (possibly nonlinear)

measurable functions. Observe that if (f(x),g(y)) is a so-
lution to (3), then (Rf(x),Rg(y)) is also a solution, for

any orthogonal matrix R. This ambiguity can be removed

by adding the constraints E[fi(X)gj(Y )] = 0, ∀i 6= j (see,
e.g., Hardoon et al. (2004)). But here we simply focus on

one solution among this family of equivalent solutions.

1Here and throughout, expectations are with respect to the
joint distribution of all random variables (uppercase letters) ap-
pearing within the square brackets of the expectation operator E.

2Σxy ≈ 1

N

∑N

i=1
xiy

⊤
i and similarly forΣxx and Σyy .
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Alternating conditional expectations (ACE): The ACE

method (Breiman & Friedman, 1985) treats the case of a

single projection (L = 1), where B is the class of all zero-

mean scalar-valued functions g(Y ), and A is the class of

additive models f(X) =
∑Dx

ℓ=1 γℓφℓ(Xℓ) with zero-mean

scalar-valued functions φℓ(Xℓ). The ACE algorithm mini-

mizes the objective (3) by iteratively computing the condi-

tional expectation of each view given the other. Recently,

Makur et al. (2015) extended ACE to multiple dimensions

by whitening the vector-valued f(X) and g(Y ) during each
iteration. In practice, the conditional expectations are esti-

mated from training data using nonparametric regression.

Since this computationally demanding step has to be re-

peatedly applied until convergence, ACE and its extensions

are impractical to apply on large data.

Kernel CCA (KCCA): In KCCA (Lai & Fyfe, 2000;

Akaho, 2001; Melzer et al., 2001; Bach & Jordan, 2002;

Hardoon et al., 2004), A and B are two reproducing ker-

nel Hilbert spaces (RKHSs) associated with user-specified

kernels kx(·, ·) and ky(·, ·). By the representer the-

orem, the projections can be written in terms of the

training samples as fℓ(x) =
∑N

i=1 αi,ℓkx(x,xi) and

gℓ(y) =
∑N

i=1 βi,ℓkx(y,yi) with some coefficients {αi,ℓ}
and {βi,ℓ}. Letting Kx = [kx(xi,xj)] and Ky =
[ky(yi,yj)] denote the N × N kernel matrices, the opti-

mal coefficients can be computed from the top L eigen-

vectors of the matrix (Kx + rxI)
−1Ky(Ky + ryI)

−1Kx,

where rx and ry are positive regularization parameters.

Computation of the exact solution is intractable for large

datasets due to the memory cost of storing the kernel ma-

trices and the time complexity of solving dense eigen-

value systems. Several approximate techniques have been

proposed, largely based on low-rank kernel matrix ap-

proximations (Bach & Jordan, 2002; Hardoon et al., 2004;

Arora & Livescu, 2012; Lopez-Paz et al., 2014).

Deep CCA (DCCA): In the more recently proposed

DCCA approach (Andrew et al., 2013), A and B are the

families of functions that can be implemented using two

deep neural networks of predefined architecture. As a

parametric method, DCCA scales better than approximate

KCCA for large datasets (Wang et al., 2015b).

Population solutions: Lancaster (1958) studied a vari-

ant of problem (3), where A and B are the families of all

measurable functions. This setting may seem too unrestric-

tive. However, it turns out that in the population setting,

the optimal projections are well-defined even without im-

posing smoothness in any way. Lancaster characterized the

optimal mappings fi and gi for one-dimensional X and Y
(Dx = Dy = 1). In particular, he showed that if X,Y are

jointly Gaussian, then the optimal projections are Hermite

polynomials. Eagleson (1964) extended this analysis to the

Gamma, Poisson, binomial, negative binomial, and hyper-

geometric distributions. Hannan (1961) gave Lancaster’s

characterization a functional analysis interpretation, which

confirmed its validity also for multi-dimensional views.

Our approach: Lancaster’s population solution has

never been used for devising a practical CCA algorithm

that works with sample data. Here, we revisit Lancaster’s

result, extend it to a semi-parametric setting, and devise

practical algorithms that work with sample data. Clearly, in

the finite-sample setting, it is necessary to impose smooth-

ness. Our approach to imposing smoothness is different

from KCCA, which formulates the problem as one of find-

ing the optimal smooth solution (in an RKHS) and then

approximates it from samples. Here, we first derive the op-

timal solution among all (not necessarily smooth) measur-

able functions, and then approximate it by using smoothed

versions of the true densities, which we estimate from data.

As we show, the resulting algorithm has significant advan-

tages over KCCA.

3. Nonparametric and partially linear CCA

We treat the following two variants of the nonlinear CCA

problem (3): (i) Nonparametric CCA in which bothA and

B are the sets of all (nonparametric) measurable functions;

(ii) Partially linear CCA (PLCCA), in which A is the set

of all linear functions f(x) = WTx, and B is the set of

all (nonparametric) measurable functions g(y). We start

by deriving closed-form solutions in the population setting,

and then plug in an empirical estimate of p(x,y).

3.1. Nonparametric CCA (NCCA)

Let A and B be the sets of all (nonparametric) measur-

able functions of X and Y , respectively. Note that the

coordinates of f(x) and g(y) are constrained to satisfy

E[f2i (X)] = E[g2i (Y )] = 1, so that we may write (3) as

an optimization problem over the Hilbert spaces

Hx =
{

q : RDx → R
∣

∣ E[q2(X)] <∞
}

,

Hy =
{

u : RDy → R
∣

∣ E[u2(Y )] <∞
}

,

which are endowed with the inner products 〈q, r〉Hx
=

E[q(X)r(X)] and 〈u, v〉Hy
= E[u(Y )v(Y )]. To do so,

we express the correlation between fi(X) and gi(Y ) as

E[fi(X)gi(Y )] =

∫

fi(x)

(
∫

gi(y)s(x,y)p(y)dy

)

p(x)dx

= 〈fi,Sgi〉Hx
, (4)

where3

s(x,y) =
p(x,y)

p(x)p(y)
(5)

3Formally, s(x,y) is the Radon-Nikodym derivative of the
joint probability measure w.r.t. the product of marginal measures,
assuming the former is absolutely continuous w.r.t. the latter.
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and S : Hy → Hx is the operator defined by4 (Su)(x) =
∫

u(y)s(x,y)p(y)dy. Thus, problem (3) can be written as

max
〈fi,fj〉Hx=δij
〈gi,gj〉Hy=δij

L
∑

i=1

〈Sgi, fi〉Hx
, (6)

where δij is Kronecker’s delta function.

When S is a compact operator, the solution to problem (6)

can be expressed in terms of its SVD (see e.g., (Bolla, 2013,

Proposition A.2.8)). Specifically, in this case S possesses

a discrete set of singular values σ1 ≥ σ2 ≥ . . . and corre-

sponding left and right singular functions ψi ∈ Hx, φi ∈
Hy , and the maximal value of the objective in (6) is pre-

cisely σ1 + . . .+ σL and is attained with

fi(x) = ψi(x), gi(y) = φi(y). (7)

That is, the optimal projections are the singular functions

of S and the canonical correlations are its singular values:

E[fi(X)gi(Y )] = σi.

The NCCA solution (7), has several interesting interpre-

tations. First, note that log s(x,y) is the pointwise mu-

tual information (PMI) betweenX and Y , which is a com-

mon measure of statistical dependence. Since the optimal

projections are the top singular functions of s(x,y), the
NCCA solution may be interpreted as an embedding which

preserves as much of the (exponentiation of the) PMI be-

tween X and Y as possible. Second, note that the operator

S corresponds to the optimal predictor (in mean square er-

ror sense) of one view based on the other, as (Sgi)(x) =
E[gi(Y )|X = x] and (S∗fi)(y) = E[fi(X)|Y = y].
Therefore, the NCCA projections can also be thought of

as approximating the best predictors of each view based

on the other. Finally, note that rather than using SVD,

the NCCA solution can be also expressed in terms of the

eigen-decomposition of a certain operator. Specifically,

the optimal view 1 projections are the eigenfunctions of

K = SS∗ (and the view 2 projections are eigenfunctions

of S∗S), which is the operator defined by (Kq)(x) =
∫

q(x′)k(x,x′)p(x′)dx′, with the kernel

k(x,x′) =

∫

s(x,y)s(x′,y)p(y)dy. (8)

This shows that NCCA resembles other spectral dimen-

sionality reduction algorithms, in that the projections are

the eigenfunctions of some kernel. However, in NCCA, the

kernel is not specified by the user. From (8), we see that

k(x,x′) corresponds to the inner product between s(x, ·)
and s(x′, ·) (equivalently p(y|x)/p(y) and p(y|x′)/p(y)).
Therefore, as visualized in Fig. 1, in NCCA x is consid-

ered similar to x′ if the conditional distribution of Y given

X = x is similar to that of Y given X = x′.

4Su ∈ Hx, ∀u ∈ Hy , since (Su)(x) = E[u(Y )|X = x] and
so ‖Su‖2Hx

= E[(E[u(Y )|X])2] ≤ E[u2(Y )] = ‖u‖2Hy
< ∞.

Figure 1. In NCCA, the similarity k(x,x′) between x and x′

in view 1 is given by the inner product between the functions

p(y|x)/p(y) and p(y|x′)/p(y) over the domain of view 2.

A sufficient condition for S to be compact is

that it be a Hilbert-Schmidt operator, i.e., that
∫∫

|s(x, y)|2p(x)dx p(y)dy < ∞. Substituting (5), this

condition can be equivalently written as E[s(X,Y )] < ∞.

This can be thought of as a requirement that the statistical

dependence between X and Y should not be too strong. In

this case, the singular values σi tend to zero as i tends to
∞. Furthermore, the largest singular value of S is always

σ1 = 1 and is associated with the constant functions

ψ1(x) = φ1(y) = 1. To see this, note that for any pair

of unit-norm functions ψ ∈ Hx, φ ∈ Hy , we have that

〈ψ,Sφ〉Hx
= E[ψ(X)φ(Y )] ≤

√

E[ψ2(X)]E[φ2(Y )] = 1
and this bound is clearly attained with ψ(x) = φ(y) = 1.
Thus, we see that the first nonlinear CCA projections are

always constant functions f1(x) = g1(y) = 1. These

projections are perfectly correlated, but carry no useful

information on the common variability in X and Y .

Therefore, in practice, we discard them. The rest of the

projections are orthogonal to the first and therefore have

zero mean: E[fℓ(X)] = E[gℓ(Y )] = 0 for ℓ ≥ 2.

3.2. Partially linear CCA (PLCCA)

The above derivation of NCCA can be easily adapted to

cases in whichA and B are different families of functions.

As an example, we next derive PLCCA, in which A is the

set of all linear functions ofX while B is still the set of all

(nonparametric) measurable functions of Y .

Let f(x) = W⊤x, where W ∈ R
Dx×L. In this case,

the constraint that E[f(X)f(X)⊤] = I corresponds to the

restriction that W⊤ΣxxW = I. By changing variables to

W̃ = Σ1/2
xx W and denoting the ith column of W̃ by w̃i,

the constraint simplifies to w̃⊤
i w̃j = δij . Furthermore, we

can write the objective (3) as

L
∑

i=1

E

[

w̃⊤
i Σ

− 1
2

xx Xgi(Y )
]

=

L
∑

i=1

w̃⊤
i E

[

Σ
− 1

2
xx E[X|Y ] gi(Y )

]

=

L
∑

i=1

w̃⊤
i SPLgi, (9)

where SPL : Hy → R
Dx is the operator defined by

SPLu = Σ−1/2
xx

∫

E[X|Y = y]u(y)p(y)dy. Therefore,
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Problem (3) now takes the form

max
w̃⊤

i w̃j=δij
〈gi,gj〉Hy=δij

L
∑

i=1

w̃⊤
i SPLgi, (10)

which is very similar to (6). Note that here the domain of

the operator SPL is infinite dimensional (the spaceHy), but

its range is finite-dimensional (the Euclidian space R
Dx ).

Therefore, SPL is guaranteed to be compact without any re-

strictions on the joint probability p(x,y). The optimal w̃i’s

are thus the top L singular vectors of SPL and the optimal

gi’s are the top L right singular functions of SPL.
The PLCCA solution can be expressed in more convenient

form by noting that the optimal w̃i’s are also the top L
eigenvectors of the matrixKPL = SPLS∗PL, given by

KPL = E

[

(

Σ
− 1

2
xx E[X|Y ]

)(

Σ
− 1

2
xx E[X|Y ]

)⊤]

= Σ
− 1

2
xx Σx̂x̂Σ

− 1
2

xx . (11)

Here, Σx̂x̂ = E[E[X|Y ]E[X|Y ]⊤] denotes the covariance
of X̂ = E[X|Y ], the optimal predictor of X from Y . De-

noting the top L eigenvectors of KPL by U, and reverting

the change of variables, we get that W = Σ−1/2
xx U.

Having determined the optimal f(x) = W⊤x, we can

compute the optimal g(y) using the following lemma5.

Lemma 3.1. Assume that E[E[f(X)|Y ]E[f(X)|Y ]⊤] is a
non-singular matrix. Then the function g optimizing (3) for

a fixed f is given by

g(Y )=
(

E
[

E[f(X)|Y ]E[f(X)|Y ]⊤
])− 1

2E[f(X)|Y ]. (12)

Substituting f(x) = W⊤x = U⊤Σ−1/2
xx x into (12), we

obtain that the partially linear CCA projections are

W⊤X = U⊤Σ
− 1

2
xx X, g(Y ) = D− 1

2U⊤Σ
− 1

2
xx X̂, (13)

where D is the diagonal L × L matrix that has the top L
eigenvalues of KPL on its diagonal.

Comparing (13) with (2), we see that PLCCA has the exact

same form as CCA. The only difference is that here X̂ is

the optimal nonlinear predictor of X from Y (a nonlinear

function of Y ), whereas in CCA, X̂ corresponded to the

best linear predictor of X from Y (a linear function of Y ).

3.3. Practical implementations

The NCCA and PLCCA solutions require knowing the

joint probability density p(x,y) of the views. Given a set

5A simpler version of this lemma, in which f(x) = y and g
is linear, appeared in (Eldar & Oppenheim, 2003). The proof of
Lemma 3.1 is provided in the Supplemntary Material and follows
closely that of (Eldar & Oppenheim, 2003, Theorem 1).

of training data {(xi,yi)}Ni=1 drawn independently from

p(x,y), we can estimate p(x,y) and plug it into our for-

mulas. There are many ways of estimating this density. We

next present the algorithms resulting from using one partic-

ular choice, namely the kernel density estimates (KDEs)

p̂(x) = 1
N

∑N

i=1
w
(

‖x− xi‖2/σ2
x

)

, (14)

p̂(y) = 1
N

∑N

i=1
w
(

‖y − yi‖2/σ2
y

)

,

p̂(x,y) = 1
N

∑N

i=1
w
(

‖x− xi‖2/σ2
x + ‖y − yi‖2/σ2

y

)

,

where w(t) ∝ e−t/2 is the Gaussian kernel, and σx and σy
are the kernel widths of the two views.

We note that nonparametric density estimation suffers from

the curse of dimensionality, and use of parametric meth-

ods is certainly possible. However, we make two important

observations. First, real-world data sets often have low-

dimensional manifold structure, and the KDE accuracy is

affected only by the intrinsic dimensionality. As shown in

(Ozakin & Gray, 2009), if the data lies on an r-dimensional

manifold, then the KDE converges to the true density at a

rate of6 O(n− 4
r+4 ) (with the bandwidth taken to 0 at the op-

timal rate). Indeed, KDEs have been shown to work well

in practice in high dimensions (Georgescu et al., 2003), as

is also confirmed in our experiments. Second, if we settle

for estimating a smoothed version of the density, then we

may keep the bandwidth fixed (not tending to 0), and ob-

tain a rate of convergence that is independent of the dimen-

sionality (Giné & Guillou, 2002) (no curse of dimension-

ality). Note that this setting is the only regime in which

KCCA has been studied. Namely, KCCA has been shown

to converge to the optimal RKHS projections when the ker-

nel bandwidths are fixed (Fukumizu et al., 2007) (but not

to the population solution (7) for bandwidths tending to 0).

PLCCA Using the above KDEs, the conditional expec-

tation x̂(y) = E[X|Y = y] needed for the PLCCA so-

lution (13) reduces to the Nadaraya-Watson nonparametric

regression (Nadaraya, 1964; Watson, 1964)

x̂(y) =

∑N
i=1 w

(

‖y − yi‖2/σ2
y

)

xi
∑N

i=1 w
(

‖y − yi‖2/σ2
y

)
. (15)

The population moments Σx̂x̂ = E[X̂X̂⊤] and Σxx =
E[XX⊤] can then be replaced by the empirical moments

of {x̂(yi)} and {xi}.
NCCA The quadratic form 〈Sgi, fi〉Hx

is given by

E[(Sgi)(X)fi(X)] and thus can be approximated by
1
N

∑N
ℓ=1(Sgi)(xℓ)f(xℓ). Furthermore, (Sgi)(xℓ) is

equal to E[s(xℓ, Y )gi(Y )] and thus can be approxi-

mated by 1
N

∑N
m=1 s(xℓ,ym)g(ym), where s(xℓ,ym) =

6This requires normalizing the KDE differently, but the scal-
ing cancels out in s(x,y) = p(x,y)/p(x)p(y).
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p(xℓ,ym)
p(xℓ)p(ym) . Therefore, defining the N × N matrix S =

[s(xℓ,ym)], and stacking the projections of the data points

into theN×1 vectors fi =
1√
N
(fi(x1), . . . , fi(xN ))⊤ and

gi =
1√
N
(gi(y1), . . . , gi(yN ))⊤, the NCCA objective can

be approximated by 1
N

∑L
i=1 f

⊤
i Sgi. Similarly, the NCCA

constraints become f⊤i fj = g⊤
i gj = δij . This implies

that the optimal fi and gi are the top L singular vectors of

S. Recall that in the continuous formulation, the first pair

of singular functions are constant functions. Therefore, in

practice, we compute the top L + 1 singular vectors of S

and discard the first one. To construct the matrix S we use

the kernel density estimates (14).

The NCCA implementation, with the specific choice of

Gaussian KDEs, is given in Algorithm 1. If the input di-

mensionality is too high, we first perform PCA on the in-

puts for more robust density estimates. To make our al-

gorithm computationally efficient, we truncate the Gauss-

ian affinities Wx
ij to zero if xi is not within the k-nearest

neighbors of xj (similarly for view 2). This leads to a

sparse matrix S, whose SVD can be computed efficiently.

To obtain out-of-sample mapping for a new view 1 test

sample x, we use the Nyströmmethod (Williams & Seeger,

2001), which avoids recomputing SVD. Specifically, recall

that the view 1 projections are the eigenfunctions of the

positive definite kernel k(x,x′) of (8). Computing this ker-

nel function between x and the training samples leads to

(notice the corresponding view 2 input of x is not needed)

k(x,xi) =

N
∑

m=1

s(x,ym)s(xi,ym). (16)

Thus, applying the Nyström method, the projections of x

can be approximated as

fi(x) =
1

σ2
i

N
∑

n=1

k(x,xn)fi(xn) =
1

σi

N
∑

n=1

s(x,yn)gi(yn)

for i = 1, . . . , L + 1, where σi is the ith singular value of

S. The second equality follows from substituting (16) and

using the fact that fi and gi are singular vectors of S. Note

again that since the affinity matrices are sparse, the map-

pings are computed via fast sparse matrix multiplication.

Relationship with KCCA Notice that NCCA is not

equivalent to KCCA with any kernel. KCCA requires two

kernels, each of which only sees one view; the NCCA ker-

nel (8) depends on both views through their joint distribu-

tion. In terms of practical implementation, our KDE-based

NCCA solves a different eigenproblem and does not in-

volve any full matrix inverses. Indeed, both methods com-

pute the SVD of the matrix Q−1
x WxWyQ−1

y . However,

in NCCA, Qx,Qy are diagonal matrices containing the

sums of rows/columns of Wx/Wy , whereas in KCCA,

Algorithm 1 Nonparametric CCA with Gaussian KDE

Input: Training data {(xi,yi)}Ni=1, test sample x.

1: Construct affinity matrices for each view

Wx
ij ← exp

{

−‖xi−xj‖2

2σ2
x

}

, Wy
ij ← exp

{

−‖yi−yj‖2

2σ2
y

}

.

2: NormalizeWx to be right stochastic andWy to be left

stochastic, i.e.,

Wx
ij ←Wx

ij/
∑N

l=1 W
x
il, W

y
ij ←W

y
ij/

∑N
l=1 W

y
lj .

3: Form the matrix S←WxWy .

4: Compute U ∈ R
N×(L+1),V ∈ R

N×(L+1), the first

L + 1 left and right singular vectors of S, with corre-

sponding singular values σ1, . . . , σL+1.

Output: At train time, compute the projections i =
1, . . . , L+ 1 of the training samples as

fi(xn)←
√
NUn,i, gi(yn)←

√
NVn,i.

At test time, calculate a new row of Wx for x as

Wx
N+1,j ← exp

{

−‖x−xj‖2

2σ2
x

}

,

Wx
N+1,j ←Wx

N+1,j/
∑N

l=1 W
x
N+1,l

and a new row of S as SN+1 ←Wx
N+1W

y , and com-

pute the projections of x as

fi(x)←
1

σi

N
∑

n=1

SN+1,n gi(yn), i = 1, . . . , L+ 1.

Qx = Wx+rxI,Qy = Wy+ryI, for some positive regu-

larization parameters rx, ry . Moreover, in NCCA this fac-

torization gives the projections, whereas in KCCA it gives

the coefficients in the RKHS.

An additional key distinction is that NCCA does not re-

quire regularization in order to be well defined. In contrast,

KCCA must use regularization, as otherwise the matrix it

factorizes collapses to the identity matrix, and the result-

ing projections are meaningless. This is due to the fact

that KCCA attempts to estimate covariances in the infinite-

dimensional feature space, whereas NCCA is based on es-

timating probability densities in the primal space.

The resulting computational differences are striking. The

number of training samplesN is often such that theN×N
matrices in either NCCA or KCCA cannot even be stored

in memory. However, these matrices are sparse, with only

kN entries if we retain k neighbors. Therefore, in NCCA

the storage problem is alleviated and matrix multiplication

and eigendecomposition are O(kN2) operations instead of
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(a) View 1 (b) View 2 (c) NKCCA (d) DCCA (e) PLCCA (f) NCCA
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Figure 2. Dimensionality reduction obtained by nonlinear CCAs on a synthetic dataset.

O(N3). In KCCA, one cannot take advantage of truncated

kernel affinities, because of the need to compute the in-

verses of kernel matrices, which are in general not sparse,

so direct computation is often infeasible in terms of both

memory and time. Low-rank KCCA approximations (as

used in our experiments below) with rank M have a time

complexityO(M3+M2N), which is still challenging with
typical ranks in the thousands or tens of thousands.

4. Related work

Several recent multi-view learning algorithms use prod-

ucts or sums of single-view affinity matrices, diffusion

matrices, or Markov transition matrices. The combined

kernels constructed in these methods resemble our ma-

trix S = WxWy. Such an approach has been used,

for example, for multi-view spectral clustering (de Sa,

2005; Zhou & Burges, 2007; Kumar et al., 2011), met-

ric fusion (Wang et al., 2012), common manifold learn-

ing (Lederman & Talmon, 2014), and multi-view nonlinear

system identification (Boots & Gordon, 2012). Note, how-

ever, that in NCCA the matrix S corresponds to the product

WxWy only when using a separable Gaussian kernel for

estimating the joint density p(x,y). If a non-separable den-
sity estimate is used, then the matrix S no longer resembles

the previously proposed multi-view kernels. Furthermore,

although algorithmically similar, NCCA arises from a com-

pletely different motivation: It maximizes the correlation

between the views, whereas these other methods do not.

5. Experiments

In the following experiments, we compare PLCCA/NCCA

with linear CCA, two kernel CCA approximations using

random Fourier features (FKCCA, (Lopez-Paz et al.,

2014)) and Nyström approximation (NKCCA,

(Williams & Seeger, 2001)) as described in (Wang et al.,

2015b), and deep CCA (DCCA, (Andrew et al., 2013)).

Illustrative example We begin with the 2D synthetic

dataset (1000 training samples) in Fig. 2(a,b), where sam-

ples of the two input manifolds are colored according to

their common degree of freedom. Clearly, a linear map-

ping in view 1 cannot unfold the manifold to align the two

views, and linear CCA indeed fails (results not shown).

We extract a one-dimensional projection for each view us-

ing different nonlinear CCAs, and plot the projection g(y)
vs. f(x) of test data (a different set of 1000 random sam-

ples from the same distribution) in Fig. 2(c-f). Since the

second view is essentially a linear manifold (plus noise),

for NKCCA we use a linear kernel in view 2 and a Gauss-

ian kernel in view 1, and for DCCA we use a linear net-

work for view 2 and two hidden layers of 512 ReLU units

for view 1. Overall, NCCA achieves better alignment of

the views while compressing the noise (variations not de-

scribed by the common degree of freedom). While DCCA

also succeeds in unfolding the view 1 manifold, it fails to

compress the noise.

X-RayMicrobeam Speech Data The University of Wis-

consin X-Ray Micro-Beam (XRMB) corpus (Westbury,

1994) consists of simultaneously recorded speech and ar-

ticulatory measurements. Following Andrew et al. (2013)

and Lopez-Paz et al. (2014), the acoustic view inputs are

39D Mel-frequencey cepstral coefficients and the articu-

latory view inputs are horizontal/vertical displacement of

8 pellets attached to different parts of the vocal tract,

each then concatenated over a 7-frame context window,

for speaker ’JW11’. As in (Lopez-Paz et al., 2014),

we randomly shuffle the frames and generate splits of

30K/10K/11K frames for training/tuning/testing, and we

refer to the result as the ’JW11-s’ setup (random splits

better satisfy the i.i.d. assumption of train/tune/test data

than splits by utterances as in (Andrew et al., 2013)). We

extract 112D projections with each algorithm and mea-

sure the total correlation between the two views of the

test set, after an additional 112D linear CCA. As in

prior work, for both FKCCA and NKCCA we use rank-

6000 approximations for the kernel matrices; for DCCA

we use two ReLU (Nair & Hinton, 2010) hidden layers

of width 1800/1200 for view 1/2 respectively and run

stochastic optimization with minibatch size 750 as in

(Wang et al., 2015a) for 100 epochs. Kernel widths for

FKCCA/NKCCA, learning rate and momentum for DCCA,

kernel widths and neighborhood sizes for NCCA/PLCCA

are selected by grid search based on total tuning set corre-

lation. Sensitivity to their values is mild over a large range;

e.g., setting the kernel widths to 30-60% of the sample L2

norm gives similarly good results. For NCCA/PLCCA, in-

put dimensionalities are first reduced by PCA to 20% of

the original ones (except that PLCCA does not apply PCA

for view 2 in order to extract a 112D projection). The to-

tal correlation achieved by each algorithm is given in Ta-

ble 1. We also report the running time (in seconds) of the
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Table 1. Total canonical correlation on the XRMB ’JW11-s’ test set and run time of each algorithm. The maximum possible canonical

correlation is 112 (the view 2 input dimensionality). PLCCA/NCCA run time is given as neighbor search time + optimization time.

CCA FKCCA NKCCA DCCA PLCCA NCCA

Total Correlation 21.7 99.2 105.6 107.6 79.4 107.9

Run Time (sec) 2.3 510.7 1449.8 10044.0 40.7 + 0.8 69.4 + 79.0

Table 2. Clustering accuracy, SVM error rate, and run times (same format as in Table 1) on the noisy MNIST projected test set.

Baseline CCA FKCCA NKCCA DCCA PLCCA NCCA

Clustering Accuracy (%) 47.1 72.3 95.6 96.7 99.1 98.4 99.2

Classification Error (%) 13.3 18.9 3.9 3.1 0.9 1.3 0.7

Run Time (sec) 0 161.9 1270.1 5890.3 16212.7 4932.1 + 5.7 9052.6 + 38.3

NKCCA DCCA PLCCA NCCA
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4

5

6

7

8
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Figure 3. 2D t-SNE visualization of the noisy MNIST test set.

algorithms (measured with a single thread on a workstation

with a 3.2GHz CPU and 56G main memory), each using

its optimal hyperparameters, and including the time for ex-

act 15-nearest neighbor search for NCCA/PLCCA. Over-

all, NCCA achieves the best canonical correlation while

being much faster than the other nonlinear methods.

Noisy MNIST handwritten digits dataset We now

demonstrate the algorithms on a noisyMNIST dataset, gen-

erated identically to that of Wang et al. (2015b) but with

a larger training set. View 1 inputs are randomly rotated

images (28 × 28, gray scale) from the original MNIST

dataset (LeCun et al., 1998), and the corresponding view 2

inputs are randomly chosen images with the same iden-

tity plus additive uniform pixel noise. We generate

450K/10K/10K pairs of images for training/tuning/testing

(Wang et al. (2015b) uses a 50K-pair training set). This

dataset satisfies the multi-view assumption that given the

label, the views are uncorrelated, so that the most cor-

related subspaces should retain class information and ex-

clude the noise. Following Wang et al. (2015b), we ex-

tract a low-dimensional projection of the view 1 images

with each algorithm, run spectral clustering to partition the

splits into 10 classes (with clustering parameters tuned as

in (Wang et al., 2015b)), and compare the clustering with

ground-truth labels and report the clustering accuracy. We

also train a one-vs.-one linear SVM (Chang & Lin, 2011)

on the projections with highest cluster accuracy for each

algorithm (we reveal labels of 10% of the training set

for fast SVM training) and report the classification error

rates. The tuning procedure is as for XRMB except that we

now select the projection dimensionality from {10, 20, 30}.
For NCCA/PLCCA we first reduce dimensionality to 100
by PCA for density estimation and exact nearest neigh-

bor search, and use a randomized algorithm (Halko et al.,

2011) to compute the SVD of the 450K × 450K ma-

trix S; for RKCCA/NKCCA we use an approximation

rank of 5000; for DCCA we use 3 ReLU hidden layers

of 1500 units in each view and train with stochastic op-

timization of minibatch size 4500. Clustering and clas-

sification results on the original 784D view 1 inputs are

recorded as the baseline. Table 2 shows the clustering

accuracy and classification error rates on the test set, as

well as training run times, and Figure 3 shows t-SNE em-

beddings (van der Maaten & Hinton, 2008) of several al-

gorithms with their optimal hyper-parameters. NCCA and

DCCA achieve near perfect class separation.

Discussion Several points are worth noting regarding

the experiments. First, the computation for NCCA and

PLCCA is dominated by the exact kNN search; approx-

imate search (Arya et al., 1998; Andoni & Indyk, 2006)

should make NCCA/PLCCA much more efficient. Sec-

ond, we have not explored the space of choices for

density estimates; alternative choices, such as adaptive

KDE (Terrell & Scott, 1992), could also further improve

performance. Our current choice of KDEwould seem to re-

quire large training sets for high-dimensional problems. In-

deed, with less training data we do observe a drop in perfor-

mance, but NCCA still outperforms KCCA; for example,

using a 50K subset of the MNIST training set—an order of

magnitude less data—the classification error rates when us-

ing FKCCA/NKCCA/DCCA/NCCA are 5.9/5.2/2.9/4.7%.

6. Conclusion

We have presented closed-form solutions to the nonpara-

metric CCA (NCCA) and partially linear CCA (PLCCA)

problems. As opposed to kernel CCA, which restricts the

nonparametric projections to lie in a predefined RKHS, we

have addressed the unconstrained setting. We have shown

that the optimal nonparametric projections can be obtained

from the SVD of a kernel defined via the pointwise mutual

information between the views. This leads to a simple algo-

rithm that outperforms KCCA and matches deep CCA on

multiple datasets, while being more computationally effi-

cient than either for moderate-sized data sets. Future work

includes leveraging approximate nearest neighbor search

and alternative density estimates.
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