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Abstract

We address the problem of reconstructing a random signal from samples of its filtered version using a
given interpolation kernel. In order to reduce the mean squared error (MSE) when using a non-optimal
interpolation kernel we propose using a scheme with reconstruction rate that is greater than the sampling
rate. A digital correction system that processes the samples prior to their multiplication with the shifts of the
interpolation kernel is developed. This system is constructed such that the reconstructed signal is the linear
minimum MSE estimate of the original signal given its samples. Simulations, as well as theoretical arguments,
confirm the reduction in MSE with respect to a system with equal rates of sampling and reconstruction. An
explicit condition is also derived such that the optimal MSE is achieved with the given kernel.

1. Introduction
The study of sampling random signals was initiated in the late 1950’s by Balakrishnan [1]. His well known
sampling theorem states that a bandlimited wide sense stationary (WSS) random signal x (t) can be perfectly
reconstructed in a mean squared-error (MSE) sense from its ideal samples whenever the sampling rate exceeds
twice the signal’s bandwidth. The reconstruction is achieved by using the sinc function as an interpolation kernel.
In practice, though, the signal is never perfectly bandlimited and the sampling device is not ideal, i.e. it does not
produce the exact values of the signal at a uniform set of locations. A common situation is that the sampling
device integrates the signal, usually over small neighborhoods around the sampling locations. Moreover, the use
of the sinc kernel for reconstruction is usually not feasible as it has a very slow decay.

Balakrishnan’s result was later extended by several authors to account for some of its practical limitations.
In [2] a sampling theorem for multiband WSS signals was developed. It was shown that under certain conditions
on the support of the signal’s spectrum Λxx (ω), perfect reconstruction in an MSE sense is achievable by using an
interpolation filter with the same support. This was a first departure from the bandlimited case to more general
types of random signals.

A more general setup was considered in [3], where no limitation on the signal’s spectrum is imposed and the
sampling device produces nonideal samples, i.e. samples of a filtered version of the signal. Clearly this setting
does not always allow for perfect reconstruction. The strategy developed in [3] was the minimization of the MSE
between the original and reconstructed signals. A similar setup was also treated in [4] where a random signal
x (t) is estimated from the samples of another random signal y (t). This result generalizes [3] in that one can set
y (t) to be the convolution of x (t) with the impulse response of the sampling device to obtain [3]. We refer to this
system as the hybrid Wiener filter as it operates on a discrete-time signal whereas its output is a continuous-time
signal. The reconstruction in the hybrid Wiener filter setup is obtained, as in the standard case, by modulating
the shifts of a properly designed interpolation kernel with the samples of the signal.

In many practical applications the interpolation kernel is either given in advance or there is limited ability to
shape its frequency response (e.g. in the case of analog filters). In these settings a more appropriate approach to
reconstruction of signals from their samples is to confine the system to use a predefined interpolation kernel. In
order to obtain a “good” reconstruction in this setup, one can employ a digital correction system that processes
the samples and produces the expansion coefficients, as depicted in Fig. 1. This scheme was first introduced in
[5] where the authors considered a stochastic setting. A rigorous treatment of this system from a deterministic
viewpoint was given in [6] and [7]. In [8] several approaches to the design of a digital correction filter were
developed and compared, including both deterministic and stochastic formulations.

The constraint to a predefined interpolation kernel may lead to severe degradation in the MSE of the recon-
struction. This emphasizes the fundamental trade-off between performance and implementation considerations.
An intriguing question that arises, then, is whether one can improve the MSE of such a sampling-reconstruction
system by modifying the reconstruction mechanism. In this paper we suggest compensating for the non-ideal
behavior of the given interpolation kernel by using a higher reconstruction rate. Specifically, we consider a re-
construction rate that is an integer multiple of the sampling rate. This new setting no longer allows the use of
a linear time-invariant (LTI) digital correction system but rather forces the use of a multirate system.
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Figure 1: Sampling and reconstruction setup.

Our proposed framework can be viewed as a generalization of the widely practiced methods for sampling rate
conversion, known as first and second order approximation [9]. These methods correspond to a rectangular and
triangular interpolation filter respectively, and a correction system in the form of a polyphase filter structure.
However, besides extending the discussion to general interpolation filters, in this work we also relax the standard
assumption that the input signal is bandlimited. Furthermore, as stated above, we take a stochastic viewpoint
so that we design a correction system that is best adapted to the input signal’s spectrum. This is in contrast to
the common deterministic formulation [9].

The paper is organized as follows. In Section 2 we briefly present the hybrid Wiener filtering problem and
its solution. We also present the high interpolation rate scheme and discuss its differences with respect to the
hybrid Wiener filter approach. In Section 3 we discuss the problematic nature of the MSE as a measure to be
minimized in our framework. This motivates the use of an alternative error measure called the average MSE.
We further address the well known phenomena of artifacts in the reconstructed signal, caused as a side effect of
minimizing the MSE. This is done by studying the statistical properties of the reconstructed signal. In Section
4 an explicit expression for the digital correction system as a function of the sampling filter, the reconstruction
filter and the signal’s spectrum is derived. This section also includes an investigation of the special case K = 1,
in which our system is shown to become identical to that developed in [8]. An error analysis of our scheme is
presented in Section 5. As a special case we obtain expressions for the MSE in the standard sampling scheme
both with a predefined and with the optimal reconstruction kernel. This enables us to obtain necessary and
sufficient conditions for perfect recovery of a signal from its nonideal samples. We also show in this section in
what cases our system completely compensates for the nonideal interpolation kernel and produces the optimal
solution. Finally, in Section 6 we confirm the efficiency of our approach with simulations.

Proofs and detailed derivations are omitted throughout the paper due to lack of space. They can be found
in [12].

2. The Hybrid Wiener Filter and the High Rate Interpolation Scheme

2.1 The Hybrid Wiener Filter
We begin by reviewing the hybrid Wiener solution and discuss its application to the recovery of a random signal
from its nonideal samples. The hybrid Wiener filtering problem, in its most general form, is the following. We
wish to linearly estimate the WSS random signal x (t) given the equidistant samples of another random signal
y (t) such that the MSE E[|x (t)− x̂ (t)|2] is minimized for every t. The spectrum of y (t) and the cross spectrum
of x (t) and y (t) are assumed to be known and are denoted by Λyy (ω) and Λxy (ω) respectively. The term
“hybrid” refers to the fact that the input to the estimator is the discrete-time signal y (nT ) , n ∈ Z, whereas the
output is a continuous-time signal x̂(t), t ∈ R. Throughout the paper we use a normalized interpolation period
of T = 1 to simplify the exposition.

Interestingly, the solution to this problem highly resembles the standard Wiener filter [10] and is given by [4]

x̂(t) =
∑

n∈Z
y(n)w (t− n) , (1)

where w (t) is an analog filter whose frequency response is

W (ω) =
Λxy (ω)∑

l∈Z
Λyy (ωl)

(2)
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assuming the denominator is nonzero,and
ωl = ω + 2πl. (3)

As can be seen in (1), the hybrid Wiener solution amounts to a shift-invariant interpolation inbetween the
samples of y (t) using the kernel (2).

In our setup, a signal x (t) is sampled after pre-filtering by a filter s (−t), which corresponds to the impulse
response of the nonideal sampling device. This is described by setting y (t) = x (t) ∗ s (−t). Substituting the
appropriate expressions for Λxy (ω) and Λyy (ω) in (2), the optimal reconstruction kernel corresponding to our
setup is

W (ω) =
S (ω) Λxx (ω)∑

l∈Z
|S (ωl)|2 Λxx (ωl)

. (4)

The denominator of (4) is the spectrum Λcc

(
eiω

)
of the sequence of samples c [n] = (x (t) ∗ s (−t)) |t=n. Thus it

can be shown that W (ω) can be chosen arbitrarily for frequencies where the denominator vanishes.
Note that the hybrid Wiener interpolation scheme possesses the same structure as the system depicted in

Fig. 1, only without the digital correction system. Nevertheless, it can also be represented as a digital correction
filter followed by an analog interpolator, as done in [11]. The optimal interpolation filter used in [11] is

Wopt (ω) = S (ω) Λxx (ω) (5)

and the digital filter has frequency response

Hopt

(
eiω

)
=

1∑
l∈Z

|S (ωl)|2 Λxx (ωl)
, (6)

where, again, Hopt

(
eiω

)
can be chosen arbitrarily for frequencies at which the denominator is zero. The notation

H
(
eiω

)
denotes the discrete time Fourier transform (DTFT) of a sequence h [n], which is 2π–periodic in ω.

This representation is not unique because the continuous time Fourier transform of x̂ (t) is related to the
DTFT of the sequence c [n] through X̂ (ω) = C

(
eiω

)
H

(
eiω

)
W (ω). Therefore a multiplication of W (ω) by any

non vanishing 2π–periodic function can be compensated for by dividing H
(
eiω

)
by the same function. It is thus

apparent that by inserting the digital correction filter block to the sampling scheme, we effectively create a set
of optimal interpolation kernels, instead of just one. Formally stated, an interpolation filter W (ω) is optimal if
there exists a non vanishing 2π–periodic function α

(
eiω

)
such that

W (ω) = α
(
eiω

)
S (ω) Λxx (ω) , ∀ω ∈ Ωc, (7)

where Ωc is defined by

Ωc ,
{

ω :
∑

l∈Z
|S (ωl)|2 Λxx (ωl) 6= 0

}
. (8)

If this requirement is not fulfilled then either there are frequencies of the input x (t) that are not reproducible
by the system, or the reconstructed signal contains frequency components that are not present in x (t).

We emphasize that (7) describes the set of optimal interpolation filters for a system with a digital correction
filter. However, it can be shown that even if the restriction that the correction system be LTI is removed then
(7) is still a necessary condition [12]. In Section 3 we show that when using a high interpolation rate, condition
(7) is relaxed, meaning that the set of optimal interpolation kernels is enlarged.

2.2 High Rate Interpolation Scheme
As opposed to the hybrid Wiener filtering problem, where no constraint is imposed on the linear interpolation
system, we wish to reconstruct the signal x (t) from its nonideal samples c [n] using a predefined interpolation
kernel w (t). Thus our only freedom is in designing the digital correction system that processes the samples c [n]
prior to their modulation of the shifts of the interpolation kernel. Since the filter w (t) is not guaranteed to be
of the form (7), it is generally not possible to attain the optimal MSE with a system of this type. In order to
compensate for the use of a nonideal interpolation filter we use an interpolation rate which is higher than the
sampling rate.
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Figure 2: High rate reconstruction setup.
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Figure 3: Multi-rate digital correction system.

In our generalization of the standard sampling setup, we cannot impose that the digital correction system be
time invariant, as done in [8]. Instead, we are forced to use a multi-rate system. Our sampling-reconstruction
setup is depicted in Fig. 2. Note that the rate of the sequence d [n] at the output of the correction system is K
times larger than the rate of the sequence c [n] at its input. We seek a linear correction system in the form of a
filter bank, as shown in Fig. 3. For every input sample, the commutator in Fig. 3 goes through all K positions,
generating K output samples.

3. Definition of an Error Measure
As a first step towards deriving a solution to the K–rate reconstruction problem, we first study the statistical
properties of the interpolated signal in the standard case of K = 1. This step is crucial in order to pose a proper
definition of the error to be minimized. Interestingly, the constraint to a predefined interpolation kernel renders
the problem much more challenging than the unconstrained setup. Specifically, it was shown in [8] that it is
generally impossible to minimize the pointwise MSE for every t in this setup.

3.1 Average MSE Criterion
The signal x (t) is assumed to be WSS and, as a consequence, the sequence c [n] in Fig. 1 is a discrete WSS

random process. Therefore, if the correction system is a digital filter, as used in [5], [8], then d [n] is also WSS.
The reconstructed signal in our system is

x̂ (t) =
∑

n∈Z
d [n] w (t− n) . (9)

Signals of this type have been studied extensively in the communication literature in the context of pulse ampli-
tude modulation (PAM). It is a known fact that if the sequence d [n] is a WSS process then x̂ (t) is generally not
WSS but rather wide sense cyclostationary with period 1 [13]. The non stationary behavior of x̂ (t) is the reason
why the pointwise MSE generally cannot be minimized for every t. To overcome this obstacle we can average
the pointwise MSE over one sampling period, as done in [14]. Our error measure is thus the sampling-period-
average-MSE, which is defined as

MSE = E




t0+1∫

t0

|x (t)− x̂ (t)|2 dt


 . (10)
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Figure 4: A stationary 2D random process (left) was downsampled by a factor of 3 and then reconstructed using
a rectangular kernel (middle) and the sinc kernel (right). The MSE of both reconstructions is the same, however
the rectangular kernel introduces block-artifacts.

An important property of the above definition is that in situations where the pointwise MSE can be minimized
for every t, the minimization of the average MSE (10) leads to the same solution. This follows from the fact
that the pointwise MSE is nonnegative for every t. In Section 4 we show that the minimization of (10) leads to
a correction system independent of t0.

We note that when the signals of interest are natural images or audio signals, there is no one-to-one corre-
spondence between the MSE of the reconstruction and its quality, as subjectively perceived by the human visual
or auditory system. Despite the fact that natural signals are rarely stationary to begin with, it is still relevant
to study how an interpolation algorithm reacts to stationary signals. In fact, if an interpolation scheme outputs
a cyclostationary signal when fed with a stationary input, then it will commonly produce reconstructions with
degraded subjective quality also when applied to real world signals. We illustrate this in Fig. 4, where a station-
ary 2D function is downsampled by a factor of 3 and then reconstructed using a rectangular kernel and the sinc
kernel. Both interpolation methods lead to the exact same MSE, however the rectangular interpolation filter
introduces block structure in the reconstructed image, an artifact which is unpleasant to the human observer.
We stress that it is not the scope of this paper to battle these undesired effects. We are merely concerned with
the minimization of the MSE. However, it is of interest to study when such artifacts occur. Specifically, we wish
to obtain necessary and sufficient conditions on the interpolation kernel and the correction system such that x̂ (t)
in (9) is WSS.

3.2 Stationarity of the Reconstruction
One example for construction of a WSS PAM signal (9) is when d [n] is a WSS sequence and w (t) is the
bandlimited filter w (t) = sinc (t) [13]. An important question is whether this is the only case. Specifically,
one may suspect that it is possible to counter-balance the periodic correlation induced by the shifts of w (t) by
using a non stationary sequence d [n]. This would shed doubt on the virtue of using a digital correction filter, as
done in [5], [8], as to produce a non stationary sequence d [n] one would have to employ a time-varying digital
correction system.

The following theorem gives a necessary and sufficient condition on the random sequence d [n] and on the
filter w (t) such that x̂ (t) in (9) is WSS.

Theorem 1 Consider the signal x̂ (t) in (9). Then x̂ (t) is a continuous time WSS process if and only if

1. the sequence d [n] can be written as dS [n] + dN [n] where dS [n] is a WSS sequence whose passband is
contained in supp {W (ω)} and dN [n] is an arbitrary random sequence (not necessarily WSS) with zero
energy in supp {W (ω)}, and

2. the support of the reconstruction filter W (ω) is contained in the set [−2π + B, 2π −B]∪Ωc
d, where B ≤ π

is the bandwidth of d [n] and Ωc
d is the complementary of the set Ωd , supp

{
ΛdSdS

(
eiω

)}
.

We see that the use of a non-stationary sequence d [n] does not aid in imposing that x̂ (t) be stationary. The
non-stationary component dN [n] can contain only frequencies that are suppressed by W (ω) and thus has no
effect on x̂ (t). Furthermore, condition 2 implies that x̂ (t) is B–bandlimited, which means that a PAM signal
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cannot be both stationary and nonbandlimited simultaneously. Figure 5 demonstrates a concrete example of a
pair W (ω), ΛdSdS

(
eiω

)
that forms a WSS signal.

The optimal reconstruction kernel Wopt (ω) of the hybrid Wiener solution (5) generally does not satisfy
condition 2. Therefore x̂ (t) is not guaranteed to be stationary when using it. As demonstrated in Fig 4, this
can cause undesired effects in the recovered signal.

4. Digital Correction System
In the following theorem we give an analytic expression for the digital correction system that minimizes the MSE
in our high rate interpolation scheme.

Theorem 2 Consider the sampling-reconstruction setup depicted in Fig. 2 with the multirate digital correction
system of Fig. 3. Then the correction filters that minimize the average MSE (10) are independent of t0 and are
given by

Hn

(
eiω

)
=

K−1∑
m=0

∑
l∈Z

S (ωm+lK) Λxx (ωm+lK)W ∗ (ωm+lK)

K
∑
l∈Z

|S (ωl)|2 Λxx (ωl)
∑
l∈Z

|W (ωm+lK)|2 e
inωm

K , (11)

where the fraction should be replaced by 0 for frequencies at which the denominator vanishes. Here Hn

(
eiω

)
denotes the frequency response of the n’th filter for n = 0, . . . ,K − 1.

We note that there may be frequencies at which there are infinitely many choices of (H0

(
eiω

)
, . . . ,HK−1

(
eiω

)
)

that lead to the same minimal MSE. Among all possible solutions, the above expression corresponds to the set
of filters whose sum of L2 norms, i.e.

∑
m

∫ π

−π

∣∣Hm

(
eiω

)∣∣2 dω, is minimal.

4.1 Equal-Rates of Sampling and Reconstruction
The special case of reconstruction rate that equals the sampling rate can be easily obtained from (11) by setting
K = 1. In this case, the (single) correction filter is given by

H
(
eiω

)
=

∑
l∈Z

S (ωl) Λxx (ωl) W ∗ (ωl)

∑
l∈Z

|S (ωl)|2 Λxx (ωl)
∑
l∈Z

|W (ωl)|2
. (12)

This filter coincides with the one developed in [8], which minimizes an error measure called the projected MSE.

5. Error Analysis
The average MSE of the reconstruction in our high interpolation rate scheme is given in the next theorem.
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Theorem 3 Consider the setup of Theorem 2 with the digital correction filters given by (11). Then the average
MSE (10) of the reconstruction is given by

MSE = Rxx (0)− 1
2π

π∫

−π

K−1∑
m=0

∣∣∣∣
∑
l∈Z

S (ωm+lK) Λxx (ωm+lK) W ∗ (ωm+lK)
∣∣∣∣
2

∑
l∈Z

|S (ωl)|2 Λxx (ωl)
∑
l∈Z

|W (ωm+lK)|2 dω, (13)

where Rxx (t) is the autocorrelation function of the signal x (t). The fraction in (13) should be replaced by 0 for
frequencies at which the denominator vanishes.

We now study how the interpolation rate K and reconstruction filter W (ω) affect the MSE. We do so by
looking at various special cases.

5.1 The Standard Sampling Setup with a Predefined Kernel
The standard sampling setup corresponding to K = 1 was considered in [8] however no explicit formula was
given for the resulting MSE. Setting K = 1 in (13), the MSE is given by

MSE = Rxx (0)− 1
2π

π∫

−π

∣∣∣∣
∑
l∈Z

S (ωl) Λxx (ωl)W ∗ (ωl)
∣∣∣∣
2

∑
l∈Z

|S (ωl)|2 Λxx (ωl)
∑
l∈Z

|W (ωl)|2
dω. (14)

In [14, theorem 3] the average MSE of a scheme with equal rates of sampling and interpolation is analyzed. This
scheme comprises given sampling and interpolation filters but, unlike our setup, no digital correction system.
Formula (14) can be shown to coincide with [14, theorem 3] if we incorporate the effect of the correction filter
into the interpolation kernel and define an effective reconstruction filter as Weff (ω) = H

(
ejω

)
W (ω).

5.2 The Hybrid Wiener Filter and Perfect Reconstruction
The MSE of the hybrid Wiener filter can be calculated from (14) by substituting the optimal reconstruction
kernel (5) for W (ω), resulting in

MSEopt = Rxx (0)− 1
2π

π∫

−π

∑
l∈Z

|S (ωl)|2 Λ2
xx (ωl)

∑
l∈Z

|S (ωl)|2 Λxx (ωl)
dω. (15)

It should be noted that in [4] an expression for the pointwise MSE E[|x (t)− x̂ (t)|2] of the hybrid Wiener filter
is derived. The formula given in [4] is different than (15) for two reasons. First, recall that (15) gives the
average MSE and not the pointwise MSE. Second, the expression given in [4] is wrong. This is because in the
derivations of the MSE the author made the implicit assumption that the pointwise MSE is time independent
and substituted t = 0. Practically, the formula in [4] gives the pointwise MSE at integer times but not for the
entire continuum, i.e. E[|x (n)− x̂ (n)|2], n ∈ Z.

Equation (15) can be used to obtain necessary and sufficient conditions on the sampling filter S (ω) and on
the spectrum Λxx (ω) such that the signal x (t) can be perfectly reconstructed from its nonideal samples. This
is done by studying in what cases MSEopt = 0. Not surprisingly, this gives rise to a condition on the passband
of x (t), as described in the following corollary.

Corollary 1 A WSS signal x (t) with spectrum Λxx (ω) can be linearly perfectly reconstructed from samples of
its filtered version (x (t) ∗ s (−t)) |t=n if and only if

1. S (ω) 6= 0 for every ω ∈ supp {Λxx (ω)} and

2. distinct 2π–shifted replicas of Λxx (ω) do not overlap, i.e.
∑
l 6=0

Λxx (ωl) = 0, for every ω ∈ supp {Λxx (ω)}.
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A necessary and sufficient condition that allows to perfectly recover a WSS signal from its ideal samples was
given in [2]. This condition can be obtained as a special case of Corollary 1 by regarding S (ω) as an all-pass
filter, i.e. S (ω) ≡ 1. In this case the only condition is that 2π–translates of the spectrum Λxx (ω) are disjoint.
When the sampling is not ideal we have the additional requirement that the sampling filter does not zero out
any frequency components contained in x (t).

5.3 Optimal Reconstruction Using High Interpolation Rate
An interesting question is when our high rate interpolation scheme (with a pre-specified interpolation filter

W (ω)) attains the optimal MSE. In such cases, our scheme allows to bypass the need for designing the analog
interpolation filter without any increase in MSE. Clearly, our scheme is optimal when MSE of (13) is equal to
MSEopt of (15). The next theorem specifies the property that the interpolation filter W (ω) must possess in
order for that to happen.

Theorem 4 The high rate interpolation scheme depicted in Fig. 2 and Fig. 3 with the correction filters given in
(11) attains the minimal average MSE attainable by any linear system if and only if there exists a non vanishing
2πK–periodic function α

(
eiω/K

)
such that

W (ω) = α
(
eiω/K

)
S (ω) Λxx (ω) , ∀ω ∈ Ωc, (16)

where Ωc is defined by (8).

Condition (16) is a generalization of (7), which was developed for K = 1. This requirement provides the
essential justification for using the high rate reconstruction scheme. Specifically, it states that the set of optimal
kernels becomes larger as the interpolation rate is increased. In practice, for a large enough rate one may use
almost any reasonable interpolation kernel and attain an MSE which is very close to MSEopt. We also remark
that when the reconstruction filter W (ω) satisfies condition (16), the high rate interpolation scheme not only
minimizes the average MSE but also the pointwise MSE.

To illustrate the strength of our method, let us consider the case where the input signal x (t) is B–bandlimited,
i.e. Λxx (ω) = 0 for |ω| > B, where B may be greater than π. In this case the optimal interpolation kernel
Wopt (ω) of the hybrid Wiener filter is a lowpass filter with cutoff frequency B. Now, suppose that Wopt (ω)
is hard to implement. From (16) we see that any B–bandlimited reconstruction filter W (ω) can be used to
attain the minimal MSE given that it does not vanish in the support of S (ω) Λxx (ω) and that the interpolation
rate satisfies K ≥ B /π . This is because in this case 2πK ≥ 2B and thus any such W (ω) can be written as a
multiplication of S (ω) Λxx (ω) and a non vanishing 2πK periodic function. We conclude that for bandlimited
input signals it is possible to attain the minimal MSE with any bandlimited reconstruction kernel that does not
vanish in the support of Wopt (ω), simply by increasing the reconstruction rate.

6. Simulations
In order to confirm the efficiency of our proposed scheme, we generated a discrete time Gaussian random

process x [n], filtered it with a pre-filter s [−n] and then down sampled it with sampling period T = 24 to
obtain a sequence of samples c [n]. Our purpose was to reconstruct the original signal using the pre-specified
interpolation kernel w [n] shown in Fig. 6(a). This interpolation kernel corresponds to linear interpolation when
using a reconstruction period of T . The filter w [n] has a fast decay with respect to the optimal interpolation
kernel, which is depicted in Fig. 6(b). Figure 7(a) shows the MMSE reconstruction with an interpolation period
that equals the sampling period T (i.e. K = 1) and with the correction filter (7), as proposed in [8]. Graphs
(b) and (c) in Fig. 7 depict the reconstructions obtained by the high rate interpolation scheme proposed in this
paper for K = 3 and K = 24 respectively. It can be seen that for low reconstruction rates, the interpolated
signal exhibits artifacts in the form of non-continuity of its derivative. As the reconstruction rate increases, these
undesired effects become less dominant. The result in Figure 7(c) is exactly identical to the reconstruction that
is obtained using the optimal interpolation kernel (with a reconstruction period of T ).

Figure 8(a) shows the average MSE attained by the high-rate interpolation scheme as a function of K. The
dashed line is MSEopt of the hybrid Wiener filter. The MSE of the standard sampling scheme (K = 1) is roughly
5% higher than MSEopt. However, an increase of the interpolation rate by a factor of K = 4 is enough to close
most of the gap in this case.
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Figure 6: (a) Given interpolation kernel; (b) Optimal interpolation kernel.
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Figure 7: (a) Reconstruction with K = 1; (b) Reconstruction with K = 3; (c) Reconstruction with K = 24.
This result is identical to the one obtained with the optimal interpolation kernel shown in Fig. 6(b).

Figure 8(b) shows the pointwise MSE of the hybrid Wiener filter as a function of time. This figure illustrates
that even when using the optimal interpolation kernel, the reconstructed signal may be highly non-stationary.
In this case the pointwise MSE at times {lT}l∈Z is lower than the pointwise MSE at times {(l + 1/2) T}l∈Z by a
factor of 6. As explained in Section 3, this can cause undesired artifacts in images or audio signals. One could
eliminate this effect by using an interpolation kernel that is π–bandlimited. Nevertheless, while suppressing
non-stationarity, this would result in a higher MSE.
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