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Abstract—Extended target tracking arises in situations where
the resolution of the sensor is high enough to allow multiple
returns from the target of interest corresponding to its different
parts. Various formulations and solutions may be found in
the literature. We concentrate on the data association aspect
involved in the tracking problem and propose utilization of a
general framework that allows reformulation of many seemingly
unrelated problems in a similar way. Consequently, the extended
object tracking problem is stated as a single generalized dynam-
ical system with random coefficients and solved using a standard
IMM-like algorithm.

I. INTRODUCTION

Extended, as opposed to point, target tracking arises in

situations where the resolution of the sensor is sufficiently

high to admit multiple returns from the object of interest

corresponding to its various parts. This allows the tracking

system to gain valuable information, such as target shape,

orientation, and type. Hence, the objective of the system might

change from tracking a single point on the target (e.g., its

center of mass) to tracking several target features observed

by the sensor. However, such modification of the objective

introduces new difficulties in comparison to the standard ones

arising in point target tracking. These are due to the fact that,

despite the high sensor resolution, the returns are noisy and,

more importantly, unlabeled. In addition, due to imperfect

detection probability, some detections may be missing and

clutter returns may be present. In other words, one faces a data

association problem which has to be addressed in addition to

the actual tracking.

The problem of tracking an extended object has been exten-

sively treated in the literature. Earlier contributions include [1]

that was concerned with tracking the centroid of an extended

object or a cluster of targets, and [2] that combined a standard

multiple model algorithm with an explicit logic to deal with

the data association problem. Another method for tracking a

cluster of targets, without distinguishing between its members,

was proposed in [3]. More recent contributions include [4]

and [5], that were concerned with tracking the individual

features of an extended target and tackled the problem using

particle filtering techniques. The most recent work known to

the authors is [6], that deals with the estimation of the shape

of an extended object.

In the present work we focus on the data association

challenge involved with tracking the individual features of an

extended object. Unlike some previous approaches, we do not

pursue algorithmic improvement, but, rather, show how the

problem may be reformulated and cast into the framework

of a single state-space system with random coefficients. Con-

sequently, an approximation to the optimal solution may be

obtained using a standard, off-the-shelf IMM algorithm [7],

eliminating the need for separate treatment of tracking and

data association.

The unified approach to cast seemingly unrelated problems

into the same framework has been previously taken by the

authors in [8], [9], where we showed how the classical

problems of tracking a nonmaneuvering target in clutter and

multiple nonmaneuvering targets may be solved using a sin-

gle IMM-like algorithm after reformulating these problems

using a single, generalized dynamical system with random

coefficients. Consequently, in [10] we treated the problem of

tracking a splitting target in the same context. In the present

paper, we follow the same reasoning, and consider tracking

an extended maneuvering target. A noticeable difference with

regard to our previous work is that, in the present case, we

simultaneously address uncertainties in the target dynamics,

reflecting random maneuvers, as well as uncertainty in the

measurement origin due to the need to associate unlabeled

measurements with targets or clutter.

The remainder of the paper is organized as follows. In

Section II we give a formal formulation of the considered

problem. A brief review of the IMM algorithm is then given

in Section III. The IMM-based algorithm is described in

Section IV and its performance is demonstrated via a numer-

ical example in Section V. Concluding remarks are given in

Section VI.

II. PROBLEM FORMULATION

We consider a set of feature points i = 1, . . . , L each

described by a state vector xi
k. The object is assumed to

be rigid, hence all feature points are assumed to evolve in

accordance with the same dynamics. Thus, xi
k undergoes the

following evolution

xi
k+1 = Akx

i
k + Ckwk, i = 1, . . . , L. (1)

Here, the process noise {wk} is a zero-mean, unit-covariance

white Gaussian sequence, which is assumed to be identical

for all the features comprising the object. In addition, Ak



and Ck are random matrices that are assumed to be the

same for all features. In other words, in order to satisfy

the constraint of a rigidly moving target, we enforce all its

components to be driven by the same process noise with

the same dynamics. The rigid target model defined above

is somewhat simplistic to make the exposition simple and

concentrate on the solution methodology. Nevertheless, it does

not compromise the solution approach described in Section IV,

which may be adopted to more complex formulations as well.

For example, it is possible to introduce additional process

noise for each feature to represent, e.g., the different velocities

of an aircraft wing-tip and its center of gravity.

The pair {A,C} is assumed to take discrete values,

corresponding to different motion regimes of the target

from a set of ℓ models. This set of feasible values,
{{

A1, C1
}

, . . . ,
{

Aℓ, Cℓ
}}

, is assumed to be known and may

include, e.g., the nearly-constant velocity motion model, or the

discrete Wiener process acceleration model [11]. Transitions

between different values are captured by a finite state Markov

chain with known transition probability matrix (TPM), (pij),
i, j = 1, . . . , ℓ, and a known initial distribution. The resulting

Markov Jump Linear System (MJLS) is commonly used to

model maneuvering targets [11].

We also assume that each feature point is measured through

the following measurement model

yik = Hxi
k +Gvik, i = 0, . . . , L, (2)

where
{

vik
}

are independent zero-mean, unit-covariance white

Gaussian sequences. It is assumed that these measurements are

unlabeled, such that it is a priori unknown which measurement

originates from what feature.

We consider two variants of the feature detection pro-

cess. First, we assume that each feature is detected with a

known probability Pd, independently of other features and

measurements at the present or other times. In the second

variant, at each time, a feature may go either undetected or

obscured. An unobscured feature is detected with a known

probability Pd as described above. Alternatively, the target

may perform a maneuver during which some of the features

are no longer in the field-of-view (FOV) of the sensor. In this

variant it is known, for each motion regime, which features

are obscured and which are in the sensor’s FOV. For example,

coordinated turns are usually performed by making appropriate

roll maneuvers, thus reducing the visibility of one of the wing-

tips from some directions.

In addition to the detections of the actual features, some of

the measurements may be false alarms or clutter. These do not

carry useful information about the features of interest and are

assumed to have uniform spatial distribution defined by Gcl,

the square-root of its covariance matrix. Clutter measurements

are independent of any other statistical quantity that was

previously defined.

The goal of this work is to develop an algorithm capable of

simultaneously associating and tracking all features of interest.

III. BACKGROUND ON IMM

The IMM method estimates the state of the following

system:

xk+1 = A(θk)xk + C(θk)wk (3)

yk = H(θk)xk +G(θk)vk. (4)

Here, {wk} and {vk} are independent, white, zero-mean,

unit-covariance Gaussian sequences, x0 is a Gaussian random

vector with known mean and covariance matrix, and {θk} is

a Markov chain on {1, . . . , r} with some known TPM, (pij),
and initial distribution vector.

At time k, the algorithm recursively estimates xk using

y0, . . . , yk providing an approximation of the MMSE solution.

The main idea underlying the IMM algorithm is to maintain a

bank of primitive Kalman filters, each matched to a different

model in the given model set (different value of θk). At step

k, the j-th filter produces a local estimate x̂k(j) with an

associated error covariance Pk(j) using its initial estimate

x̂init
k−1(j) and the associated covariance P init

k−1(j), which are

generated externally, and the current measurement yk, which

gets processed by all KFs in the bank. In addition, each

filter produces a current value of its own (model-matched)

likelihood function Λk(j). The key element of the IMM

scheme is the interaction block that generates, using all local

estimates, covariances, and likelihoods from the previous

cycle, individual initial conditions for each of the primitive

filters in the bank.

The steps of the algorithm are summarized as follows.

A. Mixing Probabilities

For i, j = 1, . . . , r compute

µk−1(i | j) , P {θk−1 = i | θk = j,Yk−1 }

=
1

cj
pijµk−1(i), (5)

where

µk(i) , P {θk = i | Yk } , i = 1, . . . , r

are the posterior mode probabilities that may be computed

according to (8) below, cj is a normalization constant, and

Yk , {y0, . . . , yk}.

B. Mixing Step

For j = 1, . . . , r compute the initial state estimate for the

filter matched to θk = j

x̂init
k−1(j) =

r
∑

i=1

x̂k−1(i)µk−1(i | j) (6)

and the corresponding covariances.



C. Mode-Matched Filtering

For j = 1, . . . , r, using (6) and the corresponding covari-

ance, compute the mode-matched estimate x̂k(j) and Pk(j)
as well as the likelihood Λk(j), which is approximated as

Gaussian

Λk(j) = N (yk; ŷk(j), Sk(j)), (7)

where ŷk(j) and Sk(j) are the predicted measurement and

innovation covariance computed by the j-th filter using the

initial conditions (6).

D. Mode Probability Update

Compute

µk(j) =
1

c
Λk(j)

r
∑

i=1

pijµk−1(i), j = 1, . . . , r (8)

where c is a normalization factor.

E. Output Computation

At time k, the algorithm’s output is obtained as a fused

version of the local estimates:

x̂k =

r
∑

j=1

x̂k(j)µk(j). (9)

The associated covariance is computed in a similar manner.

IV. THE PROPOSED SOLUTION

Following the rationale proposed in [9], we show in this

section how to solve the problem of tracking an extended

maneuvering target using a single, IMM-like, algorithm. To

this end, we need to define the Markov mode sequence {θk}
and specify the matrices A(θk), C(θk), H(θk), and G(θk).

Recall that at each time instant k, there are L features that

evolve according to the dynamics defined in (1). In addition,

we assume that N measurements are collected, some of which

correspond to some of the features and others to clutter. The

proposed solution rests on defining a Markov chain {θk} such

that each state corresponds to a unique combination of a

motion model of the features, an obscuration/detection pattern,

and an association of measurements to features.

To simultaneously estimate the states of all features of

interest, we define an augmented state, xk, as a concatenation

(in some predefined order) of the individual feature (column)

states. Likewise, the augmented measurement is obtained by

concatenating all the measurements. The augmented measure-

ment noise is obtained in a similar manner. It remains to

describe the structure of the matrices A(θk), C(θk), H(θk),
and G(θk) of the augmented system.

Since all features evolve identically, the augmented dy-

namics matrix is a block-diagonal matrix, where each block

corresponds to a different feature. Since there are several

motion models, A(θk) takes the following values

A(θk) ∈
{

diag(A1, . . . , A1), . . . , diag(Aℓ, . . . , Aℓ)
}

,

where the number of blocks in diag(Ai, . . . , Ai), i = 1, . . . , ℓ
is the number of features, L. Since all features share the same

process noise, C(θk) takes the following values

C(θk) ∈

















C1

...

C1






, . . . ,







Cℓ

...

Cℓ

















.

We proceed with describing the structure and feasible values

for the matrices of the measurement equation, H(θk), and

G(θk). Recall that the augmented measurement noise is a

concatenation of the measurement noises of the individual

measurements, which may be true detections or clutter. Since

the measurement noises of different measurements are inde-

pendent, the matrix G(θk) is a block diagonal matrix with

elements along its main diagonal being C (defined in (2)) and

Gcl (defined at the end of Section II). The indices of the entries

with C and Gcl correspond, respectively, to the locations of

true and clutter measurements in the measurement vector. For

example, the realization

diag(G, . . . , G)

corresponds to the case where all features are detected; for

diag(C,Gcl, . . . , Gcl)

only the first measurement is a feature detection.

Recalling that the augmented state vector is a concatenation

of the state of the L features, the structure of the matrix H(θk)
follows from the following observations. The matrix comprises

N × L blocks. Each of the blocks has the dimensions of

the matrix H defined in (2). Every (block) row corresponds

to either true or clutter measurement. In the latter case the

row comprises only zero blocks. Rows corresponding to true

detections have a single nonzero block which is H . For

example, for the case with three features, all of which are

detected and without clutter, we have the following options

for H(θk)




H 0 0
0 H 0
0 0 H



 ,





0 H 0
H 0 0
0 0 H



 ,





H 0 0
0 0 H
0 H 0









0 0 H
H 0 0
0 H 0



 ,





0 H 0
0 0 H
H 0 0



 ,





0 0 H
0 H 0
H 0 0



 .

These correspond to all possible associations of the three

measurements to the three features.

Each state of the mode sequence {θk} corresponds to a

feasible combination of the values of the above matrices. For

example, in the second variant of the feature detection process

(Section II), the values of A(θk) for which some of the features

are obscured are not compatible with the values of H(θk) for

which all the features are detected. The transition probabilities

between different mode values are defined by the known

transitions between different maneuvering regimes and the

reasonable assumption that any association of measurements

to features or clutter is equiprobable. To demonstrate the



latter statement, assume that there are L = 2 features, two

measurements and a single motion model (e.g., the target does

not maneuver). Then the states of the resulting Markov chain

{θk} are specified by the feasible values of H(θk) as follows

1 2 3 4 5 6 7
(H 0

0 H ) ( 0 H
H 0

) (H 0
0 0

) ( 0 H
0 0

) ( 0 0
H 0

) ( 0 0
0 H ) ( 0 0

0 0 )

and the corresponding TPM has the structure shown in Eq. (10)

where 17×1 is a 7 × 1 vector comprising all ones and the

symbol ⊗ stands for the Kronecker matrix product.

We note in passing that the described method makes full

enumeration of all possible association events, and thus may

be inefficient when many features are chosen, or at high

clutter rates. However, since the focus of the paper is the

unified modeling, we do not directly address herein this com-

putational drawback. In addition, such a drawback is typical

of multitarget data association problems. For example, in

the Joint Probabilistic Data Association (JPDA) method [12],

direct computation of the association probabilities is related

to computing the permanent of a binary matrix [13] which is

known to be a #P-complete [14] rendering JPDA an NP-hard

problem. To overcome this obstacle additional approximations

must be utilized. These are mainly based on gating, hypotheses

pruning and merging, as discussed in, e.g., [15]. Applying

similar approximations within the proposed framework of a

unified modeling of data association problems may be an

interesting research question by itself and is needed to allow

computational feasibility of the approach.

V. NUMERICAL EXAMPLE

To demonstrate the proposed approach, we consider an

aircraft with 3 feature points to be tracked. The chosen feature

points are the center of the fuselage (marked as feature “1”)

and the left and right wing-tips (marked as features “2”

and “3”, respectively). The distance between the wing-tips

(features ”2” and ”3”) and feature ”1” is 3 meters. The target

flies at straight and level flight for 20 seconds and then

performs an S-maneuver by making a 30 seconds long left

coordinated turn, followed by a 40 seconds long straight and

level leg and a 30 seconds long right coordinated turn. The

final 20 seconds of the trajectory are another straight and level

leg. The left and right coordinated turns are accomplished by

performing an appropriate roll maneuver during which one

of the wing-tips becomes obscured from the sensor’s field

of view. For the present example, we consider the second

variant of the feature detection process described in Section II.

Namely, the features get obscured (and thus undetected) for

some maneuvers. In our example, features “2” and “3” go

undetected when performing left and right turns, respectively.

In addition, at each sampling time, each of the visible

features is detected with probability Pd = 0.95 and goes

undetected with probability 1− Pd.

For simplicity of the exposition, we assume that in the

detection process some raw sensor data (which may be radar

signals or grey levels of a digital camera) are thresholded and

the three strongest returns are declared as measurements to be

processed by the algorithm at the current time step. This is

due to the possibility of obtaining clutter returns which occur

due to, e.g., thermal noise in the sensor. Hence, whenever

a feature is undetected (or obscured) a clutter measurement

is obtained. This measurement is assumed to have uniform

spatial distribution and does not carry valuable information

about the features of interest.

The trajectory and a typical realization of the measurements

is presented on the left of Fig. 1.

The IMM algorithm was designed using standard motion

models – a nearly constant velocity (CV) model in two dimen-

sions for the nonmaneuvering sections, and two coordinated

turns (CT) models with known turn rates for the maneuvering

sections (see [16]). The CV model is characterized by the

following matrices for each feature in each of the two cartesian

directions

ACV,1D =

(

1 T
0 1

)

, CCV,1D =

(

T 2/2
T

)

,

where T is the sampling interval.

The CT model, which is inherently defined in two dimen-

sions, is characterized by the following dynamics matrix

ACT =









1 sin(ωT )/ω 0 −(1− cos(ωT ))/ω
0 cos(ωT ) 0 − sin(ωT )
0 (1− cos(ωT ))/ω 1 sin(ωT )/ω
0 sin(ωT ) 0 cos(ωT )









,

where ω is the known turn rate. The matrix CCT is constructed

similarly to the CV model:

CCT =









T 2/2 0
T 0
0 T 2/2
0 T









.

The chosen process noise levels were 0.3 m/s2 for the

nonmaneuvering regime and 0.6 m/s2 for the maneuvering

ones. The transitions between motion regimes were described

by a Markov chain with transition probabilities




0.8 0.1 0.1
0.3 0.7 0
0.3 0 0.7





and the initial distribution was taken to be uniform over those

states that correspond to the CV motion model.

The standard deviation of the measurement noises was 0.5
meters and the clutter was taken to be uniform with standard

deviation of 35 meters.

The resulting estimates, obtained by a single IMM, are

presented on the right of Fig. 1. It is readily seen that

the algorithm is capable of maintaining tracks of reasonable

quality for all the features of interest.

For better visualization, we present in Fig. 2 the trajec-

tories along with the corresponding estimates and the raw

measurements, for two selected time intervals in each of the

two directions separately.

For further illustration we present in Fig. 3 the probabilities

of the different motion regimes of the target as computed by



17×1 ⊗
(

1

2
P 2
d

1

2
P 2
d

1

4
Pd(1− Pd)

1

4
Pd(1− Pd)

1

4
Pd(1− Pd)

1

4
Pd(1− Pd) (1− Pd)

2
)

(10)
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Fig. 1: The trajectories of the three features and sensor measurements (left). During maneuvering portions of the trajectory

one of the features is obscured. The thick lines on the right are the resulting estimates obtained by a single IMM.
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Fig. 2: The trajectories (solid lines) and the corresponding estimates (dashed lines) in the X direction (left) and in the Y

direction (right) during selected time intervals.
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Fig. 3: The IMM probabilities of the different motion regimes. Single run (left), averaged over 20 Monte Carlo runs (right).

the algorithm. These are computed by summing the posterior

probabilities of all modes corresponding to the same motion

model. It is readily seen that all motion regimes are success-

fully identified.

We next perform a short sensitivity analysis in which the

algorithm is tested in a series of experiments. For simplicity,

we consider the maximal position error (in either direction)

among all features as the performance measure.

TABLE I: Maximal Position Error vs. Measurement Noise

G (m) 0.5 1 1.5 2

Max. Error (m) 1.09 2.04 2.57 2.97

In Table I we summarize the maximal error versus mea-

surement noise standard deviation. Recalling that the physical

separation between adjacent features is 3 meter, we conclude

that the algorithm is not capable of dealing with measurement

noises higher than G = 1.5(m) which introduce practical

impossible ambiguity with respect to the locations of the

features.

In Table II we test the performance for several detection

probabilities. It is readily seen that the degradation in perfor-

mance is graceful with error of 1.5 meters maintained at 80%
detection rate.

TABLE II: Maximal Position Error vs. Detection Probability

Pd 0.95 0.9 0.85 0.8

Max. Error (m) 1.09 1.15 1.42 1.59

VI. CONCLUSION

We considered the problem of tracking an extended object

and showed how it may be formulated within the framework

of a single dynamical system with random coefficients. Conse-

quently, the states of the features of interest may be estimated,

in a straightforward manner, using a standard IMM algorithm.

We demonstrated the utility of the method on a simple problem

of tracking the features of a maneuvering target. It should

be noted that this problem can serve as an example of the

general approach originally presented by the authors in [9].

A simple example of the methodology may be found in [8],

and for a more sophisticated one the reader is referred to [10].

Finally, focusing on the unified modeling, we did not address

the inherent computational obstacles typical of multitarget data

association problems. These need to be addressed by carefully

incorporating additional approximations before the approach

may be applied to real-life problems.
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