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ABSTRACT

We address the problem of recovering a continuous-time (space) sig-
nal from several blurred and noisy sampled versions of it, a sce-
nario commonly encountered in super-resolution (SR) and array-
processing. We show that discretization, a key step in many SR algo-
rithms, inevitably leads to inaccurate modeling. Instead, we treat the
problem entirely in the continuous domain by modeling the signal as
a continuous-time random process and deriving its linear minimum
mean-squared error estimate given the samples. We also provide an
efficient implementation scheme, valid for 1D applications. Simu-
lation results on real-world data demonstrate the advantage of our
approach with respect to SR techniques that rely on discretization.

Index Terms— Super-resolution, nonuniform interpolation.

1. INTRODUCTION

In many applications, multiple noisy discrete-time (space) observa-
tions of a continuous-time (space) signal are available. These sce-
narios can often be regarded as multichannel sampling problems,
where each channel outputs uniformly-spaced samples of a filtered
version of the signal, as depicted in Fig. 1. The goal in these situ-
ations is to recover the original signal x(t) from the K sequences
{ck[n]}K

k=1. One extensively studied application of this type of
problem is super-resolution (SR) from image sequences [1]. Here,
several low-resolution noisy images of a scene are captured by a
camera, each with a different translation. An SR algorithm is tar-
geted at combining these images into one high-resolution image of
the same scene. In this case, the sampling filters in Fig. 1 are given
by sk(t) = s(t − tk), where t is a 2D coordinate vector, s(t)
is the point-spread-function (PSF) of the imaging device and tk is
the translation of the kth frame. One-dimensional versions of the
scheme in Fig. 1 arise in beamforming [2] and in temporal SR appli-
cations [3]. In the latter, several video sequences of the same scene
are processed to produce one video stream at a higher frame-rate. In
the sequel, we collectively refer to all problems of this type as SR.

In much of the recent literature, SR is modeled via the finite-
dimensional discrete-time (space) relations

ck = SkxHR + uk, k = 1, . . . , K. (1)

Here ck is a vector containing the available samples from the kth
channel, xHR is a vector comprised of the samples of x(t) on the
desired dense grid, uk is a noise vector, and Sk is a matrix which
accounts for the filtering and sampling operations in Fig. 1. As we
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Fig. 1: Multichannel sampling scheme.

show in this paper, there are many situations in which such a repre-
sentation is not possible. Thus, treatment in the continuous domain
is required, namely addressing the problem from an interpolation
viewpoint.

Prior SR work, falling into the interpolation category, include
[4, 5, 6, 7, 8]. These methods suffer from two major drawbacks.
First, the original signal x(t) is assumed to be bandlimited. It is well
known that this type of prior knowledge is not in agreement with
the typical behavior of natural images. Furthermore, no statistical
assumptions on x(t) are incorporated, which have been shown to
greatly improve SR performance when using the discrete model (1)
[1]. An exception in this regard is the work in [8], where prior knowl-
edge on x(t) is implicitly defined by a user-chosen “back-projection
kernel”. However, the effect of this kernel on the reconstruction is
not clear. A second drawback is that all these methods are iterative,
and thus are not well suited for real-time implementation.

In this paper we treat the SR interpolation problem without re-
sorting to the standard bandlimited assumption. Motivated by the
good single-channel image interpolation results recently reported in
[9], here we model x(t) as a wide-sense-stationary (WSS) random
signal with known power-spectral-density (PSD). We then derive the
linear minimum mean-squared error (MSE) estimator of x(t) given
the sequences {ck[n]}K

k=1. The resulting algorithm is highly effi-
cient: it merely consists of digital filtering of the sequences ck[n],
followed by simple interpolation. We present closed form expres-
sions for both stages and also an efficient digital filtering method,
valid for 1D scenarios.

2. THE NEED FOR CONTINUOUS-TIME TREATMENT

We begin by studying the situations in which the multichannel sam-
pling problem can be accurately treated using the discrete form (1).
For concreteness, we assume in this section that sk(t) = s(t − tk)



for a set of translations {tk}K
k=1. We wish to relate the sequences

{ck[n]}K
k=1 to a densely-sampled version of x(t), modeled as

xHR[n] = (s(∆t) ∗ x(t))|t=n/∆, (2)

where ∆ > 1 is the magnification factor.
Both xHR[n] and ck[n] can be expressed as inner products with

a set of functions:

ck[n] = 〈x(t), s(n− tk − t)〉 , xHR[n] = 〈x(t), s(n−∆t)〉 . (3)

Expressing ck[n] as a linear combination of {xHR[m]}m∈Z, we have

ck[n] =
∑

m∈Z
Sk[n, m]xHR[m]

=
∑

m∈Z
Sk[n, m] 〈x(t), s(m−∆t)〉

=

〈
x(t),

∑

m∈Z
Sk[n, m], s(m−∆t)

〉
. (4)

Therefore, from (3) we conclude that such a representation is possi-
ble only if for every n ∈ Z, there exists a sequence {Sk[n, m]}m∈Z
such that

s(t + n− tk) =
∑

m∈Z
Sk[n, m]s(∆t + m). (5)

If, for example, s(t) is a rectangular window of width 1, as fre-
quently happens in CCD cameras, then (5) cannot be satisfied unless
the magnification factor ∆ is an integer and the translation tk is an
integer multiple of 1/∆. In fact, these two last assumptions are com-
monly made in SR algorithms. However, they are not sufficient to
guarantee the satisfaction of (5) for other types of filters. The next
theorem provides a frequency-domain characterization of the filters
that satisfy (5) in this setting.

Theorem 1 Assume that ∆ is an integer and that tk is an integer
multiple of 1/∆. Then for every n, ck[n] of Fig. 1 can be expressed
as a linear combination of {xHR[m]}m∈Z of (2) only if there exists a
2π∆-periodic function A(ejω/∆) such that

S(ω) = S
( ω

∆

)
A

(
ej ω

∆

)
(6)

for every ω ∈ R. Here S(ω) denotes the Fourier transform of s(t).

As an example, it is easily verified that the widely used Gaussian
PSF model does not satisfy (6) and therefore cannot be treated via
the discrete model (1). We conclude that to be loyal to the physical
setting, SR must be addressed in the continuous domain.

3. THE VECTOR HYBRID WIENER FILTER

Although the sequences {ck[n]}K
k=1 cannot be expressed as linear

transformations of xHR[n], we can still derive an estimate of the latter
based on the former. To do so, we will first estimate the continuous-
time signal s(∆t) ∗ x(t) from the channel outputs, and then sample
it on a grid with 1/∆ spacings. Note that the linear minimum MSE
(LMMSE) estimate of s(∆t) ∗ x(t) is simply s(∆t) ∗ x̂(t), where
x̂(t) is the LMMSE estimate of x(t). Therefore, we now address the
recovery of the continuous-time signal x(t) from the discrete-time
channel outputs.

Our goal is to linearly estimate x(t) given the equidistant point-
wise samples of the K signals {yk(t)}K

k=1 such that the MSE

E[(x(t) − x̂(t)2] is minimized for every t. To make the derivation
general, all we assume in this section is that x(t) and {yk(t)}K

k=1

are jointly WSS. We denote their cross-correlation functions by
Rk

xy(τ) = E[x(t)yk(t − τ)] and Rk,`
yy (τ) = E[y`(t)yk(t − τ)].

The cross-spectra are given by the Fourier transforms Γk
xy(ω) =

F{Rk
xy} and Γk,`

yy (ω) = F{Rk,`
yy }.

We wish to construct an estimate of the form

x̂(t) =

K∑

k=1

∑

n∈Z
ck[n]wk(t− n). (7)

The case where only one measurement channel is available (i.e.,
K = 1) was treated in [10]. The resulting reconstruction formula
is referred to as the scalar hybrid Wiener filter since its input is the
(scalar) discrete-time signal y1(n), n ∈ Z, whereas its output is a
continuous-time signal x̂(t), t ∈ R. Consequently, we refer to our
multichannel setup (for K > 1) as the vector hybrid Wiener filter.

Theorem 2 (Vector hybrid Wiener filter) The reconstruction ker-
nels {wk(t)}K

k=1 in (7) that minimize the MSE are given in the fre-
quency domain by

W (ω) =

(∑

n∈Z
Γyy(ω − 2πn)

)−1

Γxy(ω), (8)

where W (ω) = (W1(ω), . . . , WK(ω))T , Γxy(ω) =
(Γ1

xy(ω), . . . , ΓK
xy(ω))T , and Γyy(ω) is a K × K matrix

whose (k, `) entry is Γk,`
yy (ω).

The proof of the theorem relies on the orthogonality principle, fol-
lowing similar lines to [10], and is omitted due to lack of space.

4. EFFICIENT IMPLEMENTATION SCHEME

We now specialize the hybrid Wiener filter to the SR setting and
provide an efficient implementation scheme for the case where both
the PSF and the signal’s autocorrelation are of finite support.

Using the relation F{∑ c[n]h(t − n)} = C(ejω)H(ω), it can
be shown that the reconstruction formula (7) can be implemented in
two stages. First, the vector process c[n] = (c1[n], . . . , cK [n])T is
digitally filtered by the K ×K MIMO digital filter

H
(
ejω

)
=

(∑

n∈Z
Γyy(ω − 2πn)

)−1

(9)

to obtain a “corrected” process d[n] = (d1[n], . . . , dK [n])T . Then,
x̂(t) is formed using

x̂(t) =

K∑

k=1

∑

n∈Z
dk[n]vk(t− n), (10)

with the kernels vk(t) = Rk
xy(t). This scheme is depicted in Fig. 2.

In order to specialize this scheme to the SR setting, we now
make the following assumptions:

1. sk(t) = s(t − tk) for a set of translations {tk}K
k=1 in the

range1 [−0.5, 0.5],

2. {uk(t)}K
k=1 are independent of x(t) and are characterized by

Rk,`
uu (τ) = E[uk(t)u`(t− τ)] = σ2

uδk,`sinc(τ),

1A shift |tk| > 0.5 can be handled by pre-introducing an integer shift of
−btk + 0.5c samples to ck[n].
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Fig. 2: Multichannel reconstruction scheme.

3. supp{s(t)} ⊆ [−Ls, Ls], and

4. supp{Rxx(t)} ⊆ [−Lx, Lx].

Assumption 2 is equivalent to replacing the analog noise signals
{uk(t)}K

k=1 by digital white noise processes {uk[n]}K
k=1, which are

added after the sampling occurs. Assumptions 3 and 4 are required
in order to make the recovery algorithm practical, as we detail next.

We first examine the interpolation stage in Fig. 2. It can be
shown that under assumptions 1 and 2,

vk(t) = Rk
xy(t) = (s̄ ∗Rxx)(t + tk), (11)

where we denoted s̄(t) = s(−t). Furthermore, assumptions 3 and 4
imply that the supports of the kernels {vk(t)}K

k=1 are finite, making
the interpolation practical. Specifically, for any t0, the computation
of x̂(t0) involves only b2(Ls + Lx)c multiplications in each of the
K branches. Note that to estimate s(∆t) ∗ x(t), we need to use the
interpolation kernels {s(∆t) ∗ vk(t)}K

k=1, which are also compactly
supported. If ∆ is large, this modification can be neglected.

Next, we show that the MIMO digital filtering stage can also be
implemented efficiently. Indeed, the filter H(ejω) of (9) is the con-
volutional inverse of the matrix sequence Q[n], whose (k, `) entry
is Rk,`

yy (n). In our setting, Rk,`
yy (t) is given by

Rk,`
yy (t) = (s̄ ∗ s ∗Rxx)(t + tk − t`) + Rk,`

uu (t), (12)

and therefore Qk,`[n] = (s̄ ∗ s ∗ Rxx)(n + tk − t`) + σ2
uδk,`δ[n].

Assumptions 3 and 4 imply that Rk,`
yy (t) is compactly supported and

thus Q[n] is a finite sequence whose Z-transform can be written as

Q(z) = AT
p z−p + . . .+AT

1 z−1 +A0 +A1z+ . . .+Apzp, (13)

where p = d2Ls + Lxe. The key observation is that if Q(z) is
positive definite on the unit circle |z| = 1, then it can be factored as

Q(z) = B(z)BT (z−1), (14)

where
B(z) = B0 + B1z + . . . + Bpzp (15)

is a matrix whose determinant does not vanish inside the unit circle
|z| ≤ 1. Such a factorization can be obtained e.g., by any one of
the methods surveyed in [11]. Armed with (14), we can now carry
out the filtering by H(ejω) of (9) in two stages. First, we form an
auxiliary sequence c′[n] using the stable recursive formula

c′[n] = B−1
0

(
c[n]−B1c

′[n + 1]− . . .−Bpc′[n + p]
)

(16)

running from right to left. Then, we form d[n] using the stable filter

d[n] = B−T
0

(
c′[n]−BT

1 d[n− 1]− . . .−BT
p d[n− p]

)
(17)

running from left to right.
The technique outlined above follows similar lines to the direct

B-spline transform introduced in [12], which is used for spline inter-
polation from uniformly spaced samples. There are, however, two
major differences a practitioner must be aware of, which are caused
by the fact that the SR setting is more complicated. First, in con-
trast to the scalar interpolation scenario, here the order in which (16)
and (17) are performed is important. Second, our scheme cannot be
extended to multiple dimensions by operating along each dimension
separately, as done in the scalar case. Specifically, even if the PSF
s(t) and the autocorrelation Rxx(t) are separable functions of the
coordinates t, the digital filtering by H(ejω) of (9) is generally not
equivalent to applying (16) and (17) sequentially on each dimension.
Algorithm 1 summarizes the SR interpolation scheme devised above
for 1D signals.

Algorithm 1 Fast 1D hybrid Wiener super-resolution.

Input: Samples {ck[n]}K
k=1, noise variance σ2

u, shifts {tk}K
k=1 in

the range [−0.5, 0.5], PSF s(t) supported on [−Ls, Ls], signal’s
autocorrelation Rxx(t) supported on [−Lx, Lx].

Output: Recovery x̂(t).
1: PSD computation: Set (A0)k,` = (s̄∗s∗Rxx)(tk−t`)+σ2

uδk,`

and (An)k,` = (s̄∗s∗Rxx)(n+ tk− t`), n = 1, . . . , p, where
p = d2Ls + Lxe.

2: Spectral factorization: Given {Ak}p
k=0, compute matrices

{Bk}p
k=0 satisfying (14) using any matrix spectral factorization

algorithm e.g., one of the methods in [11].
3: Noncausal filtering: Apply (16) on the vector process c[n] =

(c1[n], . . . , cK [n])T to obtain c′[n].
4: Causal filtering: Apply (17) on c′[n] to obtain the vector pro-

cess d[n] = (d1[n], . . . , dK [n])T .
5: Interpolation: Compute x̂(t) using (10) with {vk(t)} of (11).

4.1. Spline super-resolution

In practical scenarios, the PSD Γxx(ω) should be chosen to roughly
match the typical frequency content of the signals encountered in a
specific application. On the other hand, it is desired from a compu-
tational perspective, that the autocorrelation function Rxx(t) have
a small support. An attractive choice, which has been shown to be
well suited for natural images, is to let Rxx(t) be a B-spline of de-
gree Dx, say 2 or 3. A B-spline of degree N , denoted βN (t) is
the function obtained by the (N + 1)-fold convolution of the unit
square β0(t) = 1[−0.5,0.5](t). If we also model the PSF s(t) as a
B-spline of some degree, say Ds, then from (11) we see that the in-
terpolation kernels {vk(t)}K

k=1 are shifted versions of B-splines of
degree Dx + Ds + 1. These functions are compactly supported and
require only Dx + Ds + 2 multiplications per branch in Fig. 2 to
compute x̂(t) for any given t. We term the resulting scheme spline
super-resolution (SSP).

5. SIMULATIONS

5.1. 2D Example

Figure 3 shows an example of SR from an image sequence. In
this experiment, we used the first K = 20 frames from the se-
quence Disk taken from [13] to produce an image whose resolu-
tion is ∆ = 4 times higher. The PSF was modeled as a Gaussian
window with variance 1. The 2D PSD was chosen as Γxx(ω) =



(a) One frame from low-resolution sequence. (b) Super-resolved image using [14]. (c) Hybrid Wiener super-resolved image.

Fig. 3: 2D super-resolution from an image sequence.
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Fig. 4: 1D interpolation using the SSP algorithm.

(‖ω‖2+(0.05π)2)−1.5, to account for the typical polynomial falloff
of the frequency content in natural images. The noise variance was
tuned to yield input SNR of 7dB. In this 2D experiment we applied
the digital filtering stage using the discrete-time Fourier transform
(DTFT) by computing H(ω) of (9) for a discrete set of frequencies.
To appreciate the importance of correct modeling, we compared our
result to the `1-regularized robust SR algorithm of [14], which is
among the prominent SR techniques that rely on discrete formula-
tion. We used the same estimate for the translations in both algo-
rithms. As can be seen in Fig. 3, our approach better reconstructs
the text (note in particular the letters ‘R’ ‘E’ and ‘F’).

5.2. 1D Example

Figure 4 depicts two 1D interpolation examples produced by the
SSP algorithm. Here, the PSF s(t) is the rectangular window β0(t),
Rxx(t) = β2(t), and the shifts are (t1, t2, t3) = (−0.1, 0, 0.1). The
solid curve is the recovery x̂(t) obtained when setting σ2

u = 0. This
reconstruction is consistent, namely its samples coincide with the
sequences {ck[n]}K

k=1. The dashed curve is the estimate obtained
when setting σ2

u = 1. It can be seen that in this case, x̂(t) tends to
be smoother at the cost of deviating from the measured samples.
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