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Figure 1: An example of using our Non-Local Variations algorithm to automatically detect and visualize small deformations between repeat-
ing structures in a single image (a). Our method can be used to identify and correct these variations, thus producing an ‘idealized’ version of
the image (b). Alternatively, our method can be used to exaggerate these variations (c). In the corrected output, the variability in the shape of
the corn’s kernels is reduced, and the misalignment of rows is corrected. In the exaggerated output, the subtle differences between the kernels
and the row misalignment are highlighted. Photo courtesy of Giandomenico Pozz.

Abstract

We present an algorithm for automatically detecting and visualizing
small non-local variations between repeating structures in a single
image. Our method allows to automatically correct these variations,
thus producing an ‘idealized’ version of the image in which the re-
semblance between recurring structures is stronger. Alternatively, it
can be used to magnify these variations, thus producing an exagger-
ated image which highlights the various variations that are difficult
to spot in the input image. We formulate the estimation of devi-
ations from perfect recurrence as a general optimization problem,
and demonstrate it in the particular cases of geometric deformations
and color variations.
CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Geometric correction; deviations;

Keywords: Internal patch recurrence, irregularities, distortions,
deformations, defects.

1 Introduction

Our visual world is comprised of small structures that recur abun-
dantly. From cells under the microscope to the leaves of a tree or a
crowd of people in a stadium, recurrences dominate our visual envi-
ronment. However, even when the resemblance between repeating
structures is strong, it is often not perfect. For example, the hexag-
onal cells of a honey hive might slightly differ in their shape, and
the tomatoes in a super-market stand might slightly differ in their
color. In many situations, these deviations from ideal recurrence
may reveal interesting and useful information about the underlying
objects.

We propose a method for detecting and visualizing Non-Local Vari-
ations (NLV) between repeating structures in a single natural im-
age. For example, in Fig. 1(a), our algorithm automatically detects
the repetitions and estimates the nonparametric variations between
the corn’s kernels. Our method is then used to visually explore
these variations by rendering a new image in which these variations
are modified. Specifically, reducing these variations results in an
‘idealized’ version of the image in which the kernels are more sim-
ilar to one another and the rows are more aligned (see Fig. 1(b)).
By exaggerating these variations, our method reveals various subtle
differences between the kernels, which are hard to spot in the input
image, such as changes in their shape, size, alignment in rows (see
Fig. 1(c)).

Our approach is based on searching for repeated patches inside the
entire image, and estimating their deviations from ideal recurrence.
The redundancy of small patches in natural images has been used
in many low-level vision tasks. Examples include image compres-
sion [Barnsley and Sloan 1990], image summarization [Jojic et al.
2003; Simakov et al. 2008], texture synthesis [Efros and Freeman
2001], inpainting [Criminisi et al. 2004], denoising [Buades et al.
2005; Dabov et al. 2007], deblurring [Danielyan et al. 2012] and
super-resolution [Glasner et al. 2009; Freedman and Fattal 2011].
These methods often ignore slight deviations between the repeating
patches (i.e., treat them as noise) whereas our goal is to estimate
and visualize these variations.

Our key idea is that by applying some simple transformation on the
input image, we can make it closer to a model image in which the
resemblance between recurring patches is maximal. The choice of
type of transformation depends on the assumed underlying varia-
tions. In this paper, we focus on two types of variations: geometric
deformations for which the transformation is a dense flow field, and
color variations for which the transformation is a local color map-
ping. However, the framework we propose is more general and can
be easily adapted to other types of transformations. We formulate
an optimization problem, from which we derive an iterative algo-
rithm for estimating both the idealized version of the image and the
transformation which turns the image closest to its ideal version.

Our method allows each patch to find its nearest-neighbors at arbi-
trary locations in the image. This is in contrast to texture manipula-
tion methods (e.g., [Liu et al. 2004; Eisenacher et al. 2008; Liu et al.
2012; Hays et al. 2006; Park et al. 2009; Kim et al. 2012]), which
often assume a single texton repeating on a lattice. The combination



of non-local repetitions together with a nonparametric transforma-
tion, makes our technique applicable to unconstrained natural im-
ages in which both the arrangement of structures and the variations
between them are complex (e.g., see Fig. 2 and Fig. 5). Therefore,
our algorithm has a wide range of applications. In this paper, we
specifically demonstrate its use for: (i) Idealizing images (making
them more visually pleasing). (ii) Revealing properties of objects,
which are hard to visually perceive by the naked eye (e.g., which
tomatoes in a market stand are riper than others). (iii) Visualizing
defects in materials inspection. (iv) Generating humoristic/artistic
images.

The rest of the paper is organized as follows. We survey related
work in Sec. 2. We provide a mathematical formulation of the NLV
problem in Sec. 3. In Sec. 4, we give an overview of our algorithm
and in Sec. 5 we explain each of its steps in more detail. In Sec. 6,
we discuss the visualization of the algorithm’s output. Finally, we
present synthetic validation experiments as well as results on real-
world images in Sec. 7.

2 Related Work

Texture Manipulation Estimating geometric and photometric de-
formations has attracted attention mainly in the context of texture
images. Methods in this category are used for texture symmetriza-
tion [Liu et al. 2004; Kim et al. 2012], texture synthesis [Eisenacher
et al. 2008; Kim et al. 2012], texture replacement [Liu et al. 2004;
Eisenacher et al. 2008; Liu et al. 2012] and shape from texture [Ma-
lik and Rosenholtz 1997; Clerc and Mallat 2002]. In this paper,
however, we do not restrict ourselves to texture images but rather
consider unconstrained natural images.

In particular, our approach bears three fundamental differences
w.r.t. the texture manipulation line of work: (i) Most existing meth-
ods are designed for near-regular textures (i.e., a single texton recur-
ring on a lattice) and explicitly rely on the detection of a deformed
lattice (which is done either manually [Liu et al. 2004; Eisenacher
et al. 2008] or automatically [Hays et al. 2006; Park et al. 2009]).
In our setting, structures may repeat at arbitrary locations, where
no lattice can be defined (see e.g., Figs. 5 and 9). (ii) While some
methods treat “stochastic” textures without a well-defined lattice
[Kim et al. 2012], they still cannot handle images with multiple dif-
ferent textures (see e.g., Fig. 5(d)). (iii) Our method captures com-
plex deformations at multiple scales. Thus, even when operating on
near-regular textures, we recover not only the lattice deformation,
but also smaller-scale variations. These differences render texture
based methods inapplicable in our setting.

Motion Magnification The problem of revealing and magnifying
small variations, has also been addressed in the past in the context
of video-sequences [Liu et al. 2005; Wu et al. 2012; Wadhwa et al.
2013]. It has been shown that by temporally processing a video, it
is possible to amplify tiny movements between consecutive frames,
which are unnoticeable in the raw image sequence. The variations
we analyze in this paper, however, occur within a single image.
That is, rather than observing the same location at different frames
of a movie, we focus on revealing the non-local variations between
structures that occur at different general locations in a single image.

Deviations From Perfect Patch Recurrence Examining devia-
tions from ideal patch recurrences in a natural image has been
used to recover properties of the imaging device. Specifically, this
idea was used for recovering the camera’s blur kernel in the con-
text of blind deblurring [Michaeli and Irani 2014] and blind super-
resolution [Michaeli and Irani 2013], and for estimating the noise
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Figure 2: Dancers. Our algorithm reveals and corrects slight
differences in the poses, heights, and spacings between a line of
dancers performing the same high leg-kick routine (a). In our exag-
gerated output (b), these various differences clearly stand out. Our
corrected output (c) provides an idealized version of the image, in
which the non-local variations are reduced. Photo courtesy of Andy
Colwell, Penn State.

statistics in the context of blind denoising [Lebrun et al. 2014]. In
sharp contrast to these works, the deviations from ideal patch re-
currences in our case, are not caused by the imaging process and
are not related to degradations like noise or blur. Rather, these de-
viations are associated to inherent differences between the objects
in the scene, and thus occur also in clean sharp images. Moreover,
as opposed to the global models used by those methods, the vari-
ations we consider here are spatially varying and thus have many
more degrees of freedom. This makes our setting much more chal-
lenging. Finally, none of the aforementioned methods considers the
visualization of the variations between repeating structures.

Saliency Detecting irregularities in recurring structures is also used
for defect detection on semiconductor wafers [Shankar and Zhong
2005; Zontak and Cohen 2010], target detection in sonar and mul-
tispectral images [Mishne and Cohen 2013] and saliency detection
[Boiman and Irani 2007; Seo and Milanfar 2009; Goferman et al.
2012]. In these works, the main goal is to detect outliers, i.e., struc-
tures that significantly differ from their surrounding. Our goal is
different as we are interested in variations between structures that
are not necessarily salient, but rather very similar to one another.

Parametric Deformations A closely related work is [Wadhwa
et al. 2015], which presents a local parametric method for reveal-
ing tiny deformations. This is done by fitting a perfect parametric
model (e.g., a circle or a straight line) to an object of interest in
the image, and computing the local geometric deviations from that
parametric model. In contrast, our approach is non-parametric,
hence can handle a wide variety of complex geometric deforma-
tions which cannot be modeled parametrically (e.g., deviations in
pose between the different dancers in Fig. 2). Furthermore, our
algorithm does not assume a model, but rather implicitly infers it
automatically from the data.

3 Problem Formulation

The input to our method is a still image, I , which contains repeating
structures. Our key assumption is that the variations between these



repeating structures can be reduced by applying a transformation T
on the input image. That is,

T {I} = J +N, (1)

where J is an ‘ideal’ image, in which the repeating structures are
identical, and N is noise. This formulation is rather general and
can account for various types of variations. In this paper, we focus
on geometric variations and color variations.

In the case of geometric variations, T {I} backward warps the input
image I with a dense deformation field (u(x, y), v(x, y)):

T {I}(x, y) = I(x+ u(x, y), y + v(x, y)). (2)

For color variations, T is associated with a spatially-varying
3× 3 color-correction matrix C(x, y), so that T {I} is the color-
corrected image:

T {I}(x, y) = C(x, y)I(x, y). (3)

Our goal is to recover the idealized image J , as well as the transfor-
mation T . By doing so, we can visually modify the internal non-
local variations within the input image. Specifically, applying T
on the input image brings it closer to J , i.e., reduces the variations
between repeating structures. In this case, the transformed image
serves as a correction to the input image, which may be more visu-
ally pleasing. Alternatively, by inverting the transformation, we can
exaggerate those variations, thus highlighting and revealing subtle
differences which are hard to visually perceive in the input image.

Clearly, determining both J and T is an ill posed problem (there
are various combinations of J and T that are consistent with the
input image). However, the desired internal recurrence of structures
provides us with a strong prior on J . We formulate the estimation
of nonlocal variations as the following optimization problem

arg min
J,T

Erec(J,DB)︸ ︷︷ ︸
recurrence

+λEdata(J, T {I})︸ ︷︷ ︸
data fidelity

+ αEreg(T )︸ ︷︷ ︸
regularization

, (4)

where DB denotes the database of all patches (with overlaps) ex-
tracted from J . The term Erec(J,DB) penalizes for dissimilarities
between each patch pj ∈ J and its nearest neighbors {qi} ∈ DB.
We define this term to be

Erec = −
∑
pj∈J

log

( ∑
qi∈DB

exp

{
− 1

2h2
‖pj − qi‖2

})
, (5)

where, h is a bandwidth parameter (see [Michaeli and Irani 2014]
for a similar prior and a Bayesian interpretation of this term). The
role of the fidelity term in (4) is to force the ideal image J and the
corrected image T {I} to be similar. We define it as

Edata =

∫∫
ψ
(
‖J(x, y)− T {I}(x, y)‖2

)
dxdy, (6)

where ψ(a2) =
√
a2 + ε2 with a small constant ε. This penalty

constitutes an approximation to the L1 distance, which is known to
be robust to outliers. The last term in (4) regularizes the transfor-
mation to be piecewise spatially smooth, and depends on the type
of transformation used. Its definition for geometric and color vari-
ations is given in Sections 5.2 and 5.3, respectively.

4 Overview of the NLV algorithm

The optimization problem (4) is non-convex (due to the recurrence
term (5)). To solve it, we use alternating minimization. That is, we

Input: Nonideal image I .
Output: Ideal image J , idealizing transformation T .

Initialize T to be the identity mapping and J to be I .
for t = 1, . . . , T do

1. Database Update:
Set DB to hold all overlapping patches in J .

2. Image Update:
Minimize (4) w.r.t. J , holding DB and T fixed.

3. Transformation Update:
Minimize (4) w.r.t. T , holding DB and J fixed.

end
Algorithm 1: Non-Local Variations (NLV).

iterate between minimizing the objective with respect to J (increas-
ing the internal recurrence within it) and updating T (determining
the T which maps I to the new J). Our method is summarized in
Algorithm 1 and is illustrated in Fig. 3.

We first explain the intuition behind the steps of Algorithm 1 in a
single iteration. Each of these steps is described in Sec. 5 in more
detail.

Image Update The goal of this step is to increase the internal
recurrence within J . Only the first two terms in (4) depend on J .
Therefore, this step constructs a new image J which, on one hand,
is close to the current transformed input T {I}, but at the same time,
the recurrence of patches within it is stronger. In practice, this is
done by assembling J from the database patches while constraining
it to be similar to T {I}. This step is described in more detail in
Sec. 5.1.

Transformation Update Having constructed a new J , the pur-
pose of this step is to update the transformation T (last two terms
in (4)), such that T {I} will be similar to J and the transformation
is piecewise spatially smooth. For example, for geometric defor-
mations, this step boils down to optical flow estimation between
the images I and J . This step is described in more detail in Sec-
tions 5.2 and 5.3.

Database Update In this step we update the database to contain
all patches (with overlaps) from the new J . By doing so, we reduce
the diversity (or entropy) of the patches in DB from iteration to it-
eration. This allows the patches in J at the next iteration to become
even more similar to one another.

To be able to capture variations between structures of various sizes,
we run our algorithm coarse-to-fine in a pyramid structure. That is,
at each pyramid level, we run Algorithm 1 and then upscale the re-
covered ‘ideal’ image J and the transformation T to constitute ini-
tializations for the next pyramid level. This speeds up the process,
and prevents the algorithm from getting stuck in a local minimum.

5 Detailed Description of the Algorithm

We now provide the mathematical details of our algorithm. To sim-
plify the notation, we denote the corrected image T {I} by Ic.

5.1 Image Update

Minimizing the objective (4) with respect to J requires setting the
gradient of Erec + λEdata with respect to J to zero. As we show in
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Figure 3: A single iteration of NLV (illustration for geometric mode). At each iteration, the ‘ideal’ image J and the flow field T from the
previous iteration (left) are updated using three steps: (i) Update the patch database by extracting all patches from the current J . (ii) Given
the new database and the warped input image T {I}, update the ‘ideal’ image J . This step encourages each patch in J to be as similar as
possible to its NNs in the database, while also keeping J similar to T {I}. (iii) Given the new J and the input I , update the transformation
T , by computing the optical flow between J and I .

Appendix A, this leads to the equation

J(x, y) = β(x, y)Z(x, y) + (1− β(x, y))Ic(x, y), (7)

where Z is an image obtained by replacing each patch in J by
a weighted combination of its Nearest Neighbors (NNs) from the
database. That is, J is a linear combination of Z and Ic, with a
spatially-varying weight β that determines to which of the two im-
ages J is closer. More concretely (see derivation in Appendix A),

β(x, y) =
Wdata(x, y)

Wdata(x, y) + h2

M2

, (8)

Wdata(x, y) =
1

λ
ψ
(
‖J(x, y)− Ic(x, y)‖2

)
, (9)

where M is the patch width and ψ is as in (6).

Since both the image Z and the weight map β are nonlinear func-
tions of the unknown J , Eq. (7) admits no closed form solution. To
solve it, we iterate between computingZ and β from our current es-
timate of J , and updating J according to Eq. (7). These two phases
can be viewed as the iteratively reweighted least-squares (IRLS)
method.

The intuition here is simple. Constructing Z amounts to applying
nonlocal means “denoising” on J [Buades et al. 2005]. That is, re-
placing each patch by a weighted average of all its NNs, where the
NNs can be found in any location in the image. This step essen-
tially creates an image with strong patch recurrences. However, Z
may not necessarily be close to Ic, as required by our data-term.
Therefore, it is blended with Ic according to (7). Since this blend-
ing might reduce the internal recurrences in Z, the entire process
is repeated (applying nonlocal means “denoising” on the new J ,
blending with Ic, and so on). This process converges to an image J
that has strong recurrences, yet is still similar to Ic.

The effect of λ The parameter λ controls the relative weight of
the data fidelity term w.r.t. the recurrence term in Eq. (4). That is,
the smaller λ is, the stronger the patch recurrence in J will become.
To understand how this is achieved, note that regions in J that are

not repetitive (i.e., do not have good NNs), are altered by the non-
local means method more than repetitive regions. Thus, at some
point, they may start to significantly deviate from the corrected im-
age Ic. When λ is small, this will increase the weights β(x, y)
towards 1 (Eq. (8),(9)). Hence, the image J will be almost entirely
copied from Z at those locations, so that J will exhibit an ‘inpaint-
ing’ effect. That is, these non-repetitive regions will be filled-in
with some structure that does recur at other parts of the image (see
Fig. 7).

5.2 Transformation Update: Geometric Deformations

For geometric deformations, the transformation T is given by (2)
and we define the regularization term Ereg to be the robust penalty

Ereg =

∫∫
ψ
(
‖∇u(x, y)‖2 + ‖∇v(x, y)‖2

)
dxdy, (10)

where ∇ = ( ∂
∂x
, ∂
∂y

) and ψ is as in (6). This term is used in the
optical flow literature [Brox et al. 2004], and is known to promote
piecewise smooth flow fields.

Minimizing the objective (4) with respect to the flow (u, v), boils
down to minimizing λEdata + αEreg (Eqs. (6),(10)). This corre-
sponds to estimating the optical flow1 between the images J and I .
To solve this problem, we use the IRLS method of [Liu 2009].

5.3 Transformation Update: Color Deformations

Recall that in the case of color variations, J is an ‘ideal’ image
in which the repeating structures have the same color and T cor-
responds to a local color correction matrix C(x, y), which maps
the color of each pixel in I to the color of the corresponding pixel
in J (Eq. (3)). The only change in the objective with respect to the
geometric case is the regularization term, which we now define as

Ereg =

∫∫
ψ
(
‖Cx(x, y)‖2F + ‖Cy(x, y)‖2F

)
dxdy. (11)

1Note that the relative weight of the smoothness term in our optical flow
estimation is α/λ.



Here ‖ · ‖F denotes the Frobenius norm, ψ is as in (6), and Cx and
Cy are the x and y derivatives of the color mappingC(x, y).

As in Sec. 5.2, determining the color transformation requires mini-
mizing λEdata +αEreg (now given by Eqs. (6) and (11)). This min-
imization can be solved using the Euler-Lagrange equations, which
lead to the condition (see Appendix B for full derivations):

C(x, y) =C̄(x, y)+

γ(x, y)
(
J(x, y)− C̄(x, y)I(x, y)

)
I(x, y)T , (12)

where C̄(x, y) is a smoothed version ofC(x, y) and

γ(x, y) =
Wreg(x, y)

Wdata(x, y) +Wreg(x, y)‖I(x, y)‖2 , (13)

Wreg(x, y) =
1

α
ψ
(
‖Cx(x, y)‖2F + ‖Cy(x, y)‖2F

)
, (14)

with Wdata of (9).

Here too, there is no closed form solution to Eq. (12). We thus
follow again an iterative approach. That is, in each iteration we
compute C̄ and γ based on the current C, and then use them to
updateC according to (12).

This update step, which was derived analytically, has a simple in-
tuitive explanation. Recall that we want that J ≈ CI (Eqs. (1)
and (3)). We also want the transformation C(x, y) to be smooth
(Eq. (11)). Thus, in each iteration we compute the “error” J − C̄I ,
and add this difference to the smoothed mapping C̄ from the pre-
vious iteration. This back-propagation step reduces the error at the
next iteration. The procedure converges once C̄ maps I into J .

Note that the trivial solution to (4) is the black image J(x, y) = 0
and a transformation T which maps all pixels to black (namely,
C(x, y) = 0, which is also a smooth transformation). To avoid this
undesired trivial solution, we constrain the intensity of the ‘ideal’
image J to be equal to the intensity of the input image I , and allow
only the two chromatic values to change. Namely, C is a 2 × 2
matrix. We solve for this in the YCbCr color space.

6 Visualization and User Interaction

Once the idealizing transformation T is determined, it can be used
to visualize the non-local variations in the input image. Specifically,
we generate a new image by

Iout = T µ{I}, (15)

where T µ denotes the µ-th power of T . The sign of µ determines
whether to apply the transformation or its inverse, and the absolute
value of µ determines the extent of magnification (µ = 0 leaves
the input image unchanged). For example, for µ= 1, the image is
corrected and Iout becomes similar to the ideal image J , whereas
µ=−1 exaggerates the variations by a factor of one. For µ > 1,
the nonlocal variations are inverted (e.g., the tall dancers in Fig. 2
will become shorter than the rest, and vice versa).

In the case of geometric deformations, we warp the input image
with the scaled flow field (ũ, ṽ) = µ · (u, v). In the case of color
variations, applying T µ amounts to applying the matrix Cµ(x, y)
on each of the pixels of the input image.

When exaggerating geometric deformations, care must be taken in
order to produce visually pleasing results. In particular, the exag-
gerated field may fold the image onto itself at certain locations. This
effect occurs wherever the determinant of the Jacobian of the trans-
formation, which is given by |J(T µ)| = 1+ũx+ṽy+ũxṽy−ũy ṽx,
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Figure 4: Synthetic Evaluation. A ground truth ideal image
consisting of 25 identical tiles (a), was distorted geometrically
(b), and photometrically (c). On the right, plots show the root
mean square error (RMSE) of the transformation recovered by our
method (green) and of the transformation recovered by using the
ground truth ideal image, which is not available to our method
(blue). Both errors are plotted as a function of the average defor-
mation magnitude (see text for more details). Note that the errors of
our method are very close to those obtained using the ground truth.

is negative. To prevent this undesired phenomenon, we smooth the
flow at the locations in which the folding occurs and their surround-
ings. We repeatedly apply this smoothing and recompute the Jaco-
bian, until |J(T µ)| > 0 everywhere in the image.

To aid the visualization and grant the user more control over the
final result, we incorporated the following options (see Supplemen-
tary Material for demonstrations):

1. User Interaction: The user can interactively adjust the amount
of exaggeration/correction with a knob (controlling µ). In ad-
dition, the user can control the spatial scale of the explored
variations. This is done by filtering the flow field (u, v). In
particular, removing the low frequencies (coarse scales) of the
flow leaves only the small-scale variations (e.g., the dancers in
Fig. 2 become more similar but the spacings between them are
not corrected).

2. Regions of interest: The user can apply exaggera-
tion/correction only on regions of interest (ROI). Different ex-
aggerations can be applied to different ROIs.

3. Animation: A video clip can be generated, in which the exag-
geration is gradually increased or decreased (by applying the
transformation T µ with varying µ).

7 Results

We evaluated our method both for color and for geometric varia-
tions, using synthetic and real data. We use a pyramid with 0.75
scale gaps, and apply 20 iterations of NLV (Alg. 1) at the coars-
est level, and 5 iterations at the rest of the levels. In each such
iteration, the image update step (7) is iterated 5 times, using 20
nearest-neighbors. For geometric deformations, we use the optical
flow implementation of [Liu 2009]. For color variations, the trans-
formation update step (12) is iterated 300 times.

The overall computation time is mostly (75%) spent on the near-
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Figure 5: Revealing and correcting non-local geometric variations. (a) Input images for Zebra, Bricks, Opt Art, Fruit, and Bottles. (b)
Our exaggeration results (by a factor of µ), reveal the variety of geometric variations hiding in the input images. (c) The corrected version
of (a) obtained by our method. In each of the examples, the internal variability between the repeating structures is reduced. The insets depict
zoomed-in versions of the regions marked in (a). (d) The correction of the input images in (a) obtained by the texture symmetrization method
of [Kim et al. 2012], which is designed for images containing a single texture. Photos courtesy of Angela Sevin (Zebra), and Betty Londergan
(Fruit).

est neighbor search (using PatchMatch [Barnes et al. 2010]). The
entire run takes between 3-8 minutes for a 500 × 500 image, de-
pending on the number of pyramid levels and the size of the image
at the finest pyramid level. The performance was measured using
our non-optimized MATLAB code2 on a quad-core machine with
16GB RAM.

7.1 Synthetic Validation

To quantitatively evaluate our method, we performed the follow-
ing experiments. A ground-truth ideal image JGT was generated by
placing the same 32 × 32 pixel tile in a 5 × 5 arrangement (see
Fig. 4(a)). This image was once geometrically distorted and once
color distorted to obtain an ‘imperfect’ image I . For the geomet-
ric experiment, we randomly generated a ground-truth smooth de-
formation field by low-pass filtering white Gaussian noise. For the
color experiment, we randomly generated a smoothly-varying color
deformation matrix by adding filtered noise to the identity matrix.
Examples of such distorted images are shown in Figs. 4(b),(c), for
geometric and color deformations, respectively.

2The code and data are publicly available at the project webpage:
http://people.csail.mit.edu/taildekel/NonLocalVariations.

We applied our algorithm on the distorted image I and measured
the error between the estimated and the ground truth transforma-
tions. As a baseline, we also directly estimated the transformation
between JGT and I (note that our algorithm does not have access
to JGT). Figure 4 shows the root mean square errors (RMSEs) ob-
tained by both approaches as a function of the amount of deforma-
tion3. As expected, the error increases with the amount of deforma-
tion. Yet, the errors of our method are very close to those obtained
by using the ground truth ideal image.

7.2 Real Data

We tested our method on a variety of challenging natural images,
which contain multiple textures of different sorts, as well as non-
repetitive regions. In all the experiments below, we ran the algo-
rithm on the entire image, without any ROI.

Geometry In geometry mode, we empirically found that our al-
gorithm works well using 3-4 pyramid levels, where the image size

3Averages were computed by repeating the experiment five times for
each deformation level (each time randomly generating a different ground-
truth deformation).

http://people.csail.mit.edu/taildekel/NonLocalVariations


(a) Input (b) Highlighted Input Defects

(d) Exaggrated x3(c) Corrected

Figure 6: Raft. An image of a bubble-raft (a), which is an ar-
ray of bubbles assembled on a surface, used for studying atomic
crystalline structures. Some of the various defects are marked in
(b), including point-defects (blue, red, and yellow), and line de-
fects (green); see text for more details. (c) The ideal image es-
timated by our method in which the various irregularities are cor-
rected. (d) Our exaggerated image reveals lattice deformations that
are hard to perceive in the input, such as tension and compression.
Color markings are for illustration only. Photo courtesy of DoIT-
PoMS [DoI ].

at the finest level is typically half the size of the input image (the es-
timated flow is up-sampled to the full resolution). We use patches
of size 15 × 15, which remains fixed at all pyramid levels. The
choice of patch size stems from our desire that at the coarsest pyra-
mid level, a patch would cover a substantial portion of the largest
repeating structure. At this level, the variability between the repeat-
ing structures should be still meaningful (the variability is reduced
by the down-sampling), which is the reason we work with relatively
large patches. This parameter can be modified by the user.

Figure 2(a) shows a line of dancers, performing the same leg-kick.
At a first glance, the dancers look very similar. A closer look can
reveal some differences between them, such as the pose of the hand
shown by the red arrow. Yet, finer geometric variations, such as
the spacing between the dancers, their exact poses, and the thick-
ness of their legs, are harder to spot. By using our method, we can
exaggerate these variations and make them much more visible, as
shown in Fig. 2(b). Alternately, we can correct the variations, thus
producing an image in which the dancers are more similar to one
another, as shown in Fig. 2(c). These subtle variations become very
pronounced when viewing the images of Figs. 2(a),(b),(c) in movie
mode (please see the Supplementary Material).

Figures 5(a)–(c) show several additional examples of geometric
correction and exaggeration. In the Zebra and the Optical Art
images, our algorithm captures the subtle variability between the
stripes. By correcting these variations, we produce stripes with
more uniform widths and curvatures, while by exaggerating them
we highlight the deviations from equal widths and curvatures. Note
that the grass in the Zebra image is not modified, as its recurrence is

quite strong to begin with. In the Bricks, Fruit and Bottles images,
the effect of our multi-scale framework can be clearly seen. Our
method captures variations at fine scales, such as the differences
between the shapes of the bricks, the fruits and the bottles’ corks.
At the same time, it captures variations at coarser scales, such as
irregularities in the global arrangement of the bricks and the fruit
crates, as well as irregularities in the bottles’ widths and heights.

Figure 6(a) shows an image of a bubble-raft, which is an ar-
ray of soap bubbles assembled on a surface. Bubble rafts are
used for modelling and studying the atomic structure of crystalline
solids. Crystalline materials have a distinctive highly ordered inter-
nal structure. However, in reality, most crystalline materials have a
variety of defects that can have a tremendous effect on their behav-
ior. Some of these defects are marked in color over the input image
in Fig. 6(b), and include line defects marked in green and point de-
fects such as the absence of an atom (red), the presence of an extra
atom (blue), or the replacement of one atom by a different type of
atom (yellow). These defects cause global deformations of the lat-
tice (e.g., tension and compression), which are hard to see in the
input image. Our method successfully detects, corrects and magni-
fies these various irregularities, as can be seen in Figs. 6(b),(d). An
animation of this result is included in the supplementary materials.

Effect of Parameters In Fig. 7 we demonstrate the effect of the
parameter λ in Eq. (4) on a Honey Hive image. This image contains
a repetitive structure that is partly obscured by the bees on the right.
When λ is large the ‘ideal’ image J is constrained to be similar to
the deformed input image T {I}, which comes at the cost of less
repetitiveness in J . Thus, although the bees do not have good NNs,
they remain intact when λ is large (e.g., λ = 30), as can be seen
in Fig. 7(b). As λ is decreased, the fidelity to the input image is
reduced and the repetitiveness of J is increased. This causes the
bees to be washed out (λ = 5), or even to be completely inpainted
by the surrounding repetitive structure (at λ = 1). Typically, we use
λ = 30 in our experiments in order to avoid the inpainting effect.

In Fig. 8, we demonstrate the effect of the pyramid level on our
results. We fixed the patch size to 16 × 16, and ran our algorithm
on a single scale. We then up-sampled the deformation field to
produce an exaggerated image at the original resolution. The results
obtained for different scales are shown in Fig. 8(b). For each result,
we also show the relative size of the 16×16 patch with respect to the
pyramid scale (i.e., the size of the recurring structures). At coarse
scales, our algorithm captures the deviations of the corn kernels and
the bricks from a global regular arrangement. At finer scales, the
algorithm captures variations between smaller structures, such as
the spacing between corn kernels and the bumps on the bricks.

Comparison to Texture Manipulation Methods Near-regular
texture manipulation methods rely on a preliminary lattice detection
step [Liu et al. 2004; Eisenacher et al. 2008]. Figure 9 depicts the
results of the state-of-art deformed lattice detection method of [Park
et al. 2009]. As can be seen, this method fails to detect a global
lattice even in images with a clear repetitive pattern. Stochastic tex-
ture manipulation methods, such as [Kim et al. 2012], are somewhat
less constrained, but still require a single texture throughout the im-
age. Figure 5(d) shows the results attained by the stochastic texture
‘symmetrization’ algorithm of [Kim et al. 2012]. This method aims
to increase the symmetry of the image by ‘sharpening’ the peaks
in its auto-correlation function. As can be seen, this method is not
suitable for natural images which contain a variety of textures with
complex deformations.

Color When running in color mode, we use small patches (5× 5
or 7 × 7) and operate only on the full resolution image (without



(a) Input Image (d) ‘Ideal’ Image, λ=1 (c) ‘Ideal’ Image,  λ=5 (b) ‘Ideal’ Image, λ=30 

Figure 7: The effect of λ. (a) Input image. (b),(c),(d) The recovered ‘ideal’ image J with λ = 30, 5, 1, respectively. When λ is large, J is
constrained to be similar to the transformed input image. Thus, the bees (which do not have good NNs) remain intact in (b). Decreasing the
value of λ lowers the weight of the fidelity term with respect to the recurrence term. This causes the bees to be washed out (c) or even to be
completely inpainted by the surrounding repetitive structure (d).

(a) Input Image

(b) Exaggeration Using Different Pyramid Levels

Figure 8: The effect of pyramid level. (a) Input images. (b) Exag-
gerated images, each obtained by applying NLV to a different sin-
gle individual scale. For all scales, the same patch size (16 × 16)
was used; the relative size of the patch w.r.t. pyramid scale, is
marked on the output image (at the original image resolution).
Coarser scales capture global deformations in the arrangement of
the corn kernels and the bricks. Finer scales capture the variabil-
ity in the shapes of the individual corn kernels and the bricks (e.g.,
highlighting small bumps on the bricks’ contours).

using a pyramid). We performed the following controlled exper-
iment, shown in Fig. 10. We took a picture of 9 tomatoes, 3 of
which were bought the same day, and 6 were bought four days ear-
lier (all from the same supermarket). While it is impossible to see
the color differences between the tomatoes in the input image, when
we exaggerate the color variations by a factor of 35, the three newer
tomatoes become more greenish and the 6 older (riper) tomatoes
turn purplish (see Fig. 10(b)). The reason for that is that patches
find their NNs non-locally across different tomatoes. An example

of a reference patch and the spatial distribution of its NNs is shown
in Fig. 10(c).

In the Lizard image shown in Fig. 11(a), the lizard and the back-
ground contain small repetitive structures that are very similar to
one another. Thus, many of the small patches that belong to
the lizard find their neighbors in the background, as shown in
Fig. 11(c). A close look at these patches reveals slight color differ-
ences between the lizard and the background. Our method is able
to capture those differences. Then, by magnifying them, we can
highlight the camouflaged lizard, revealing that it is more blueish
than the background (see Fig. 11(b)). Moreover, the subtle color
variations in the background are revealed as well. In the corrected
image shown in Fig. 11(d), the color variations between the lizard
and the background are reduced.

Note that our color mapping is spatially varying and structure de-
pendent. That is, two patches that have the same color may undergo
different color mappings, if their structure is different. Such results
could not be obtained by off-the-shelf image processing methods.
In particular, we checked techniques such as histogram stretching,
histogram equalization, increasing saturation or contrast, increas-
ing deviations from global color-mean, increasing deviations from
local color-mean. None of these methods could highlight the color
variations spotted by our method.

8 Discussion and Conclusions

We presented a method for revealing and exploring small variations
between recurring structures within a single image. Our algorithm
recovers a transformation which maximizes the patch recurrences.
Once this idealizing transformation is recovered, it can be used to
either reduce or exaggerate the nonlocal variations in the image.
We specifically focused on recovering geometric deformations and
color variations.

Our approach has several limitations. First, since our method is
not provided with semantic information, in some cases the ‘exag-
gerated’ image may not be visually pleasing. As an example, in

Figure 9: Lattice detection. The results (marked in blue) obtained
by applying the deformed lattice detection method of [Park et al.
2009]. In all the examples, the detected lattice covers only a small
portion of the image.
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Figure 10: Tomatoes ripening– a controlled experiment. (a)
The input image contains nine tomatoes, a few of which are riper
than the others. (b) Color magnification ×35 using our method.
Can you group the tomatoes into two groups based on color? The
answer is shown below (upsidedown). (c) Example of the non-local
nearest neighbors (marked in blue) of one reference patch (marked

in yellow).

Old- 1,2,3,4,8,9. New - 5,6,7

Fig. 2(b), some of the dancers are distorted in an unrealistic way.
Therefore, our exaggerated images might be of limited use in appli-
cations which require photorealistic results. An additional limita-
tion is that our geometric NLV approach requires strong recurrence
of large structures (typically 10 × 10 to 20 × 20). While small
patches (e.g., 5× 5) were shown to recur abundantly in almost any
natural image [Glasner et al. 2009], these recurrences relate to tiny
structures (e.g., edges, corners) and not to the kind of structural re-
currences we are interested in. In the absence of repetitions of large
structures, our method may produce meaningless results. Specifi-
cally, when a patch is very distinct and has no good NNs other than
itself, it remains unchanged (e.g., the bees in Fig. 7(b)). But when a
patch does have a few not-very-good NNs, it may deform in an un-
desired way. This happens for example in the lower-right hexagon
in Fig. 7(b), which is stretched to the right because its color is more
similar to the bees than to the rest of the hexagons.

Despite its limitations, our technique has many potential applica-
tions. In particular, we demonstrated its use for idealizing images
(turning them into more visually pleasing), as well as for revealing
interesting properties of the objects in the scene, which often cannot
be visually perceived by the naked eye.
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Appendix A: Derivation of (7)

To compute the gradient of Erec + λEdata (Eqs. (5) and (6)) with
respect to J , we use vector notations. Specifically, let Ic and J now
denote the column-vector representations of the images Ic(x, y)
and J(x, y), respectively. LetQj denote the matrix which extracts
the j-th M ×M patch from J , and letRk denote the matrix which
extracts the k-th pixel (all three RGB coordinates) from J . Then,
writing the data term Edata in discrete coordinates (sums instead of
integrals), our objective becomes

−
∑
j

log

(∑
i

exp

{
− 1

2h2
‖QjJ − qi‖

2

})
+ λ

∑
k

ψ
(
‖Rk(Ic − J)‖2

)
,

(a) Input Image (b) Color Exaggeration

(d) Color Correction(c) Reference Patch & NNs

Figure 11: Correcting and magnifying nonlocal color varia-
tions. (a) Input image. (b) The result magnifying the recovered
color deviations ×25. Our method captures the reputation in small
structures between the lizard and background. (c) example of a ref-
erence patch (green) and its NNs (red). (d) The result correcting
the color variations; the color of lizard and background is more
similar.

where i runs over all patches qi in the database. Setting the gradient
w.r.t. J of this objective to zero, leads to the requirement that(

1

h2

∑
j

QT
j Qj +

∑
k

RT
kRk

wdata
k

)
J =

M2

h2
Z +

∑
k

RT
kRk

wdata
k

Ic,

(16)
where wdata

k = 1
λ

√
‖Rk(Ic − J)‖2 + ε2, and

Z =
1

M2

∑
j

QT
j zj

with
zj =

∑
i

wijqi

and

wij =
exp

{
− 1

2h2 ‖QjJ − qi‖2
}∑

i exp
{
− 1

2h2 ‖QjJ − qi‖2
} .

Up to border effects, 1
M2

∑
jQ

T
j Qj equals the identity matrix.

Therefore, writing (16) in spatial coordinates again, gives(
M2

h2
+

1

Wdata(x, y)

)
J(x, y) =

M2

h2
Z(x, y) +

Ic(x, y)

Wdata(x, y)
,

where Wdata is as in (9). Isolating J(x, y), leads to (7).

Note that the image Z is a denoised version of J (using nonlocal
means denoising). Indeed, Z is constructed from the patches {zj},
while averaging overlaps. Now, each patch zj is obtained as a com-
bination of all patches in the database, weighted according to their
similarity4 to QjJ . Since the database patches are extracted from
J itself, this is precisely the nonlocal means denoising of J .

4In fact, most of the weights are typically close to zero, so that zj is
actually a combination of only the nearest-neighbors of QjJ . In practice,
we typically work with 30 NNs.



Appendix B: Derivation of (12)

We now derive the minimization of λEdata+αEreg, given in Eqs. (6)
and (11), with respect to the color correction matrix C(x, y). This
objective can be explicitly written as∫∫ [

λψ
(
‖C(x, y)I(x, y)− J(x, y)‖2

)
+ αψ

(
‖Cx(x, y)‖2F + ‖Cy(x, y)‖2F

) ]
dxdy, (17)

The optimalC must satisfy the Euler-Lagrange equations

∂L

∂Cij
− ∂

∂x

∂L

∂(Cx)ij
− ∂

∂y

∂L

∂(Cy)ij
= 0

for all entries i, j of C, where L denotes the integrand in (17).
Writing the derivatives explicitly leads to the system of partial dif-
ferential equations (written in matrix form)

(C(x, y)I(x, y)− J(x, y)) I(x, y)T

Wdata(x, y)
− 4C(x, y)

Wreg(x, y)
= 0,

with Wdata and Wreg of Eqs. (9) and (14). Omitting, for notational
convenience, the coordinates (x, y), the Euler-Lagrange equations
take the form

CIIT − Wdata

Wreg
4C = JIT .

The Laplace operator 4 is implemented in discrete coordinates as
4C(x, y) = C̄(x, y) − C(x, y), where C̄ is a filtered version5

ofC. Therefore,

CIIT +
Wdata

Wreg
C = JIT +

Wdata

Wreg
C̄.

IsolatingC, this equation can be solved iteratively:

Ck+1 =

(
JIT +

Wdata

Wreg
C̄
k

)(
IIT +

Wdata

Wreg
Id

)−1

,

where Id is the identity matrix and C̄k is the smoothed version of
C from the previous iteration. Using the matrix inversion lemma,
this update step can be equivalently written as

Ck+1 =
Wreg

Wdata

(
JIT +

Wdata

Wreg
C̄
k

)(
Id− 1

Wdata
Wreg

+ IT I
IIT

)

= C̄
k

+
Wreg

Wdata +Wreg‖I‖2
(
J − C̄k

I
)
IT ,

proving (12).

References

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized patchmatch correspondence
algorithm. In ECCV. Springer, 29–43.

BARNSLEY, M. F., AND SLOAN, A. D., 1990. Methods and ap-
paratus for image compression by iterated function system. US
Patent 4,941,193.

BOIMAN, O., AND IRANI, M. 2007. Detecting irregularities in
images and in video. International Journal of Computer Vision
74, 1, 17–31.

5We use C̄(x, y) = 1
4

(C(x+ 1, y) + C(x− 1, y) + C(x, y + 1) +
C(x, y − 1)).

BROX, T., BRUHN, A., PAPENBERG, N., AND WEICKERT, J.
2004. High accuracy optical flow estimation based on a theory
for warping. In ECCV. Springer, 25–36.

BUADES, A., COLL, B., AND MOREL, J.-M. 2005. A non-local
algorithm for image denoising. In CVPR, vol. 2, IEEE, 60–65.

CLERC, M., AND MALLAT, S. 2002. The texture gradient equation
for recovering shape from texture. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24, 4, 536–549.
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