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Abstract—We address the problem of Bayesian estimation
where the statistical relation between the signal and measure-
ments is only partially known. We propose modeling partial
Bayesian knowledge by using an auxiliary random vector called
instrument. The statistical relations between the instrument and
the signal, and between the instrument and the measurements,
are known. However, the joint probability function of the
signal and measurements is unknown. Two types of statistical
relations are considered, corresponding to second-order moment
and complete distribution function knowledge. We propose two
approaches for estimation in partial knowledge scenarios. The
first is based on replacing the orthogonality principle by an
oblique counterpart, and is proven to coincide with the method
of instrumental variables from statistics, although developed in
a different context. The second is based on a worst-case design
strategy and is shown to be advantageous in many aspects. We
provide a thorough analysis showing in which situations each of
the methods is preferable and propose a non-parametric method
for approximating the estimators from a set of examples. Finally,
we demonstrate our approach in the context of enhancement of
facial images that have undergone unknown degradation and
image zooming.

Index Terms—Bayesian estimation, minimax regret, partial
knowledge, instrumental variables, nonparametric regression.

I. INTRODUCTION

A common problem in signal processing is that of esti-
mating an unknown random quantity x from a set of noisy
measurements y. Image denoising and debluring [1], speech
enhancement [2], and target tracking [3], are a few examples.
The Bayesian framework requires knowledge of the prior
distribution of the signal x to be estimated, as well as the
conditional probability of the measurements y given x [4].
The former can usually be learned from a set of examples
{xi} of “clean” signals. The latter, on the other hand, neces-
sitates either a paired set of examples {xi,yi} of signals and
measurements, or knowledge of the degradation mechanism
that yielded the measurements (e.g., additive white Gaussian
noise). In many applications, neither assumption is realistic.

In speech enhancement, for example, poor room acoustics
and background noise, such as other speakers, are part of
the degradation that needs to be overcome [5], [2]. These
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undesired effects typically vary in time and are very hard to
model statistically [6]. Furthermore, no paired examples of
clean and degraded signals are available in these scenarios.

Another example is that of enhancement of facial images
taken with a low-grade camera (e.g., a web-cam or a cellular-
phone camera). The distortion in this case includes blur
due to the lens, the nonlinear response of the CCD sensor
[7], and non-additive noise [8]. These processes vary with
lighting conditions, distance from the camera, etc., and are
therefore hard to model. Moreover, obtaining a paired set of
examples of clean and degraded images requires a complicated
experimental setup consisting of a high-quality camera co-
calibrated with the low-grade camera at hand.

A common practice in such scenarios is to resort to sim-
plified model assumptions, such as Gaussian blur and additive
white noise in image restoration (see e.g., [1], [9], [10]), and
stationary background noise in speech enhancement tasks [2].
These assumptions simplify the treatment but are often far
from loyal to the true physical setting. More complicated
likelihood models can be treated via approaches such as
approximate Bayesian computation [11]. These methods are
useful when evaluation of the likelihood is computationally
prohibitive. However, they rely on the assumption that data
can be simulated from the likelihood, which is not the case if
one does not have access to paired examples {xi,yi} of clean
signals and corrupted measurements.

An alternative approach is to make use of many examples
of degraded signals {yi}, which are typically easy to collect,
and only a small number of paired examples {xi,yi}, which
are hard to obtain. This strategy lies at the heart of the field of
semi-supervised learning in general [12] and semi-supervised
regression [13] in particular. However, there are situations in
which it is highly desired to avoid the need for any paired
example of signal and measurement.

Bayesian estimation cannot be carried out without knowl-
edge of the joint distribution of x and y. Nevertheless, in
many applications there is partial knowledge of this statistical
relation. Specifically, we may know the joint probability
function of x and some auxiliary random vector z as well
as that of y and z. For instance, to enhance a video sequence
y of a speaker without knowing the type of degradation it has
undergone, one may use the audio z associated with it. Clearly,
we can collect paired examples {yi, zi} of the noisy video
and its associated audio (taken with the given low-quality
camcorder), as well as paired examples {xi, zi} of clean video
sequences with their audio (taken from a high-grade video
camera). These two sets are unpaired, namely they correspond
to video sequences of different scenes. Consequently, they can
be used to learn the densities fXZ(x, z) and fY Z(y,z) but
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Fig. 1: An estimator x̂ = g(y) in a partial knowledge setting.

are generally insufficient to determine fXY (x,y).
During the last two decades, various approaches have been

proposed to enhancing audio or video based on joint audio-
visual measurements (see e.g., [14], [15], [16]). There is a
fundamental difference, though, from our problem setting. For
example, in the scenario described above, the input to the
estimator is only the noisy video sequence y, without the
associated audio. The audio data comes into play only in the
training sets {yi, zi} and {xi, zi} but does not constitute part
of the measurements, as schematically shown in Fig. 1. The
interesting question that arises, then, is whether audio can aid
in enhancing a silent video sequence (or vice versa), namely
one that was recorded without sound.

In this paper, we study two partial-knowledge models,
which differ in the type of statistical relation between the
instrument and the signal/measurements that is assumed to be
available. In the first, only the joint second order statistics of
x and z, as well as of y and z are known. In the second,
the entire density functions fXZ(x, z) and fY Z(y, z) are
available. In both scenarios, however, fXY (x,y) is unknown.

We propose two strategies for treating Bayesian estimation
with partial statistical knowledge. Our first approach is to
replace the orthogonality requirement, which characterizes the
minimal mean-squared error (MSE) estimator, by an oblique
counterpart. Specifically, we seek an estimator x̂ = g(y)
whose error is orthogonal to the instrument z rather than to the
measurements y. As we show, the resulting estimators coin-
cide with those encountered in instrumental variable regression
[17] from the fields of statistics and econometrics, which
explains our choice of terminology. The second strategy we
consider is based on a worst-case design approach. Here, the
estimator is designed to yield the best worst-case performance
(over the set of density functions fXY Z(x,y, z) consistent
with the available partial knowledge). We propose explicit
ways of approximating both solutions from sets of examples.

We show that each of the proposed methods is optimal in
different settings. The performance of the oblique approach,
however, can become arbitrarily poor as the statistical de-
pendency between the instrument and measurements weakens.
In contrast, the estimation error of the worst-case strategy is
guaranteed to be bounded. This property is of great value in
practical scenarios, however it comes at the cost of a modest
performance at a rather wide variety of settings. Nevertheless,
since in typical applications the instrument is often weak, our
worst-case design approach is commonly preferable.

We demonstrate the usefulness of our approach in two
image processing applications. The first is enhancement of
facial images that have undergone unknown degradation. This
scenario is highly relevant to face recognition systems working

in uncontrolled conditions [18]. There, no paired examples of
clean and degraded images can be obtained, thus calling for a
partial knowledge treatment. The second application is image
zooming. Specifically, many recent works treat this problem
by learning the relation between image patches and their
down-scaled versions [19]. However, this strategy becomes
problematic when the original image is very small, since there
are very few training patches left after down-sampling the
image. Using our approach, we show how this limitation can
be overcome.

The paper is organized as follows. In Section II we provide
a concise mathematical formulation of the partial-knowledge
Bayesian estimation problem. In Sections III and IV we
develop estimators for the second-order moment model which
rely on the obliqueness principle and the worst-case design
strategy, respectively. We show the relation of these estima-
tors to instrumental variable regression in linear models, and
determine in which cases each is preferable. Sections V and
VI treat the density-function model via obliqueness and worst-
case design respectively. We also discuss the relation of our
problem to nonparametric instrumental variable regression in
nonlinear models [20] and provide best-case and worst-case
analyses for each of the approaches. Section VII is devoted
to a quantitative simulation study, which unveils the strengths
and weaknesses of the different methods in a wide variety
of situations. Finally, in Section VIII, we demonstrate our
technique in the context of enhancement of facial images that
have undergone unknown distortion, and in Section IX we
develop an image zooming algorithm based on our approach.

II. PROBLEM FORMULATION

We denote random variables (RVs) by capital letters (e.g.,
X,Y, Z) and the values that they take by bold lower-case
letters (e.g., x,y, z). The pseudo-inverse of a matrix A is
denoted by A†. The mean vector and covariance matrix of an
RV X are defined as µX = E[X] and ΓXX = Cov[X] =
E[(X − µX)(X − µX)T ] respectively. Similarly, the cross-
covariance matrix of two RVs X and Y is denoted by
ΓXY = Cov[X,Y ] = E[(X − µX)(Y − µY )

T ]. In our
setting, X is the quantity to be estimated, also termed “signal”,
Y is the measurements, and Z is an auxiliary RV, which
we call “instrument”. The RVs X , Y , and Z take values in
RM , RN , and RQ, respectively. We denote by YL and ZL

the sets of all RVs that are affine functions of Y and Z
respectively. Specifically, every RV X̂ ∈ YL can be expressed
as X̂ = AY + b for some matrix A and vector b. Similarly,
Y denotes the set of RVs that are arbitrary (Borel measurable)
functions of Y .

We assume that the joint density function fXY (x,y) of the
signal and measurements is unknown. Nevertheless, we have
some knowledge regarding the statistical relation between X
and Z and between Y and Z. Specifically, we consider the
following two types of partial knowledge models.
M1: Only the first- and second-order moments of (XT , ZT )T

and (Y T , ZT )T are known, as depicted in Fig. 2(a).
Specifically, we know the mean vectors µX , µY , µZ ,
as well as the covariance matrices ΓXX , ΓY Y , ΓZZ ,
ΓXZ , ΓY Z , but we do not know ΓXY .
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Fig. 2: Two partial knowledge scenarios. (a) Knowledge of
moments up to second order. (b) Knowledge of joint density
functions.
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Fig. 3: The two unpaired sets of examples {xi, z
x
i }Pi=1 and

{yi, z
y
i }Li=1 can be used to learn one of the models in Fig. 2.

M2: The joint density functions fXZ(x,z) and fY Z(y,z)
are known, as schematically shown in Fig. 2(b). This,
of course, implies that the marginal densities fX(x),
fY (y) and fZ(z) are known as well.

In practice, both types of information may be unavailable
in closed form. Instead, we may only have access to two
sets of paired examples {xi, z

x
i }Pi=1 and {yi, z

y
i }Li=1, drawn

independently from the densities fXZ(x, z) and fY Z(y,z)
respectively, as shown in Fig. 3. These training sets can
be used to estimate the relevant moments and also the en-
tire density functions. The choice of which of the partial-
knowledge models to use, then, depends on the cardinalities
of the training sets. If the number of training examples is
small, then we may only be able to estimate the second-order
moments to reasonable accuracy. On the other hand, for large
sets, the density functions can be estimated accurately e.g., by
nonparametric density estimation methods [21], making the
second model relevant.

Since the statistical relation between the signal and the
instrument is known, one could theoretically estimate x based
on a realization z of Z. However, in our setting we do not
observe any realization of the instrument. Thus, the only way
Z can be of help is by employing our knowledge of its
statistical relation with X and with Y , in order to estimate x
from the realization y of Y . In other words, there is a certain
symmetry between the instrument Z and the measurements Y ,
as shown in Table I. The RV Y is measured, but its statistical
relation with X is unknown. In contrast, the relation between
Z and X is known, but Z is not measured.

TABLE I: Measurement vs. instrument.

Measured Known statistical relation with X

Y X ×
Z × X

A. Objectives

Ideally, we would like to design an estimator x̂ = g(y) of
the signal x based on the measurements y, such that the MSE

MSE = E
[∥∥∥X − X̂

∥∥∥2] (1)

is minimized. Unfortunately, the MSE depends on fXY (x,y)
(since X̂ is a function of Y ), which is unknown, so that it
cannot be computed in our setting.

Had fXY (x,y) been known, it would be possible to com-
pute the minimum MSE (MMSE) estimator

g(y) = E[X|Y = y], (2)

which depends on fX|Y (x|y) = fXY (x,y)/fY (y). There-
fore, in the scenario of model M2, our goal is to design an
estimator which comes as close as possible to the MMSE
method, in some sense.

Under model M1, even if ΓXY was available, we still could
not have computed the MMSE estimator (2), as it requires
knowledge of the entire density function fXY (x,y). Thus, in
this setting our goal is to design an estimator that comes as
close as possible to the estimator that is optimal among all
methods that have access only to the joint first- and second-
order moments of X and Y .

A common technique for estimating x from y, which relies
only on first- and second-order statistics, is the linear MMSE
(LMMSE) estimator, given by [4]

X̂LMMSE = ΓXY Γ
†
Y Y (Y − µY ) + µX . (3)

It is important to note, however, that the fact that the LMMSE
estimate happens to be a function of the first- and second order
moments, still does not imply that it is optimal in any sense
among estimators that solely depend on these quantities. The
following theorem shows that the LMMSE estimate is indeed
optimal in the sense that its worst-case MSE over all joint
distributions fXY (x,y) with the given second-order moments,
is minimal.

Theorem 1: The LMMSE estimator (3) is the solution to

min
X̂∈Y

max
fXY ∈A

E
[∥∥∥X − X̂

∥∥∥2] , (4)

where A is the set of densities fXY satisfying E[X] = µX ,
E[Y ] = µY , Cov[X,Y ] = ΓXY , Cov[X] = ΓXX and
Cov[Y ] = ΓY Y .

Proof: See Appendix A.
As a consequence of Theorem 1, in the setting of model M1,
our goal is to construct a linear estimator whose performance
comes close to that of the LMMSE method.

In the next sections, we propose two strategies to estimation
in the partial knowledge models M1 and M2, which are based
on an obliqueness principle and a worst-case design strategy.
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III. ESTIMATION WITH MOMENT KNOWLEDGE VIA THE
OBLIQUENESS PRINCIPLE

A. Estimation via Obliqueness

We begin by assuming model M1 and rely on an obliqueness
principle. To develop our approach, we note that if ΓXY

were known, then it would have been possible to compute the
LMMSE estimator (3). This solution can be interpreted as the
orthogonal projection of X onto the set YL, which implies that
its error X− X̂LMMSE is uncorrelated with Y . This principle,
which is known as the orthogonality criterion, implies that
X̂LMMSE is the (almost surely) unique affine method whose
mean and cross-covariance with Y coincide with those of X
and Y , namely

µX̂ = µX , ΓX̂Y = ΓXY . (5)

In our setting, we do not know ΓXY and thus cannot
compute X̂LMMSE. Instead, relying on our knowledge of µX

and ΓXZ , our approach here is to design an affine estimator

x̂ = Ay + b, (6)

whose error X − X̂ is uncorrelated with Z rather than with
Y . In other words, we require that

µX̂ = µX , ΓX̂Z = ΓXZ (7)

in order to determine A and b of (6). We term this requirement
the obliqueness principle as it results in an estimate X̂ that
is the oblique projection [22] of X onto YL perpendicular to
ZL. Intuitively, this approach will lead to satisfactory results
if Y and Z are “close” in some sense. In Sections III-C and
III-D, we quantify this observation in detail.

Taking the expectation of both sides of (6), and equating
µX̂ = µX , we find that A and b must satisfy

µX = AµY + b. (8)

Similarly, (6) implies that ΓX̂Z is given by

ΓX̂Z = E
[
(AY + b− (AµY + b))(Z − µZ)

T
]
= AΓY Z ,

(9)

where we used (8).
If Q = N and ΓY Z is invertible, then (9) implies that

A = ΓXZΓ
−1
Y Z . The vector b can then be computed from (8),

resulting in b = µX − ΓXZΓ
−1
Y ZµY .

If Q > N then (9) is over-determined. In this case, a
solution will typically not exist. To overcome this obstacle, we
may seek an affine estimator which comes closest to fulfilling
(7). This can be done by minimizing the Frobenius norm
∥ΓXZ − ΓX̂Z∥2F = ∥ΓXZ − AΓY Z∥2F. Assuming that ΓY Z

has full column rank, the solution is given by A = ΓXZΓ
†
Y Z ,

resulting in b = µX − ΓXZΓ
†
Y ZµY .

When Q < N , there are typically infinitely many matrices
A satisfying (9). In this case, our knowledge is insufficient
for determining a unique oblique linear estimator. One of the
solutions is given by A = ΓXZΓ

†
Y Z . Among all solutions,

this matrix has the minimal Frobenius norm. Note, however,
that there is no reason to believe that this solution is preferable
to others in any sense.

To conclude, assuming that ΓY Z has full column rank, the
obliqueness requirement leads to the estimate

X̂M1
OB = ΓXZΓ

†
Y Z(Y − µY ) + µX . (10)

This estimator can be approximated from sets of examples of
the type shown in Fig. 3, by replacing ΓXZ , ΓY Z , µY and
µX by their associated sample-mean and sample-covariance.

Interestingly, (10) possesses the same structure encountered
in the method of linear regression with instrumental variables.
This fact can be used to obtain further insight into the
obliqueness approach, as we discuss next.

B. Relation to Regression with Instrumental Variables
Assume that x is approximately linearly related to y as

x = Ay + b+ v, (11)

where v is an error term, which is the realization of some
zero-mean RV V . To determine A and b based on a set of re-
alizations {(xn,yn)}Nn=1 drawn independently from the model
(11), one can use ordinary least-squares (OLS) regression [17]

ÂOLS = Γ̂XY Γ̂
−1

Y Y , (12)

b̂OLS = µ̂X − Γ̂XY Γ̂
−1

Y Y µ̂Y . (13)

Here Γ̂XY is the sample cross-covariance of X and Y , Γ̂Y Y

is the sample covariance of Y , and µ̂X and µ̂Y are the sample
means of X and Y respectively. If the error V is uncorrelated
with Y , and the covariance matrix ΓY Y is nonsingular, then
ÂOLS and b̂OLS are known to constitute consistent estimates
of A and b respectively1 [17].

In many situations in statistics, the error V is correlated
with Y . In these settings, ÂOLS and b̂OLS will not converge
to A and b. One approach to overcome this difficulty, is to
employ an auxiliary RV, Z, referred to as an instrument, which
is known to be correlated with Y but not with V . Assuming
that Q ≥ N , estimates of A and b can be constructed based
on two sets of examples {xn, z

x
n}Pn=1 and {yn, z

y
n}Ln=1 drawn

from the densities fXZ(x,z) and fY Z(y,z) respectively. This
method is known as instrumental variable regression, and is
given by [17]

ÂIV = Γ̂XZΓ̂
†
Y Z (14)

b̂IV = µ̂X − Γ̂XZΓ̂
−1

Y Zµ̂Y , (15)

where Γ̂XZ , Γ̂Y Z , µ̂X and µ̂Y are the associated sample
covariances and sample means. It can be shown that ÂIV and
b̂IV tend to A and b in probability as P and L tend to infinity.
If Q < N then A and b are unidentifiable [17].

The weak law of large numbers implies that, as the sample
sizes increase, ÂIV and b̂IV tend to A and b of (10). Therefore,
the oblique estimator can also be interpreted as emerging
from the assumption that X and Y are related through the
linear model (11) with a noise component V uncorrelated with
Z. Specifically, once A and b are estimated in this setting,
we construct the estimate x̂ = ÂIVy + bIV by applying the
model (11) on y, while disregarding v. The resulting estimate
coincides with our oblique method (10).

1Namely, ÂOLS and b̂OLS tend to A and b respectively in probability as
the sample size N tends to infinity.



MICHAELI AND ELDAR 5

C. Best Case Analysis

We now address the question under which situations the
oblique method is optimal.

The obliqueness approach relies on the demand that the
estimation error be uncorrelated with the instrument Z rather
than with the measurements Y . Therefore, in cases where
the former implies the latter, this strategy coincides with the
LMMSE estimate (3). Comparing (3) and (10), it can be seen
that the oblique and LMMSE estimators coincide if

ΓXZΓ
†
Y Z = ΓXY Γ

†
Y Y . (16)

To gain insight into when this occurs, it is instructive to
examine the case in which the RVs X , Y and Z are jointly
Gaussian. In this situation, the LMMSE method (3) is also
optimal among all nonlinear techniques, namely it coincides
with the MMSE estimate. For simplicity, we focus on the
case in which the dimensions of the measurement and the
instrument vectors are equal.

Theorem 2: Suppose that X , Y and Z are jointly Gaussian
RVs that take values in RM , RN and RN respectively. Let A ,
(Y T , ZT )T and assume that the matrices ΓAA, ΓY Y , ΓY Z

and ΓZZ − ΓZY Γ
−1
Y Y ΓY Z are invertible. Then the oblique

estimate (10) coincides with the MMSE estimate of X given
Y if and only if

fX|Y Z(x|y, z) = fX|Y (x|y). (17)

Proof: See Appendix B.
Theorem 2 states that in the Gaussian setting, the oblique

method is optimal if and only if X and Z are independent
given Y . To understand this condition, consider the hypothet-
ical scenario in which all cells of Table I are checked. Specif-
ically, assume that we knew the statistical relation between X
and Y and we could also measure Z. If in this situation, the
MMSE estimate of x given y and z would be only a function
of y, then the obliqueness approach is optimal.

Unfortunately, in practice, the instrument may carry infor-
mation on the signal that is not present in the measurements.
The larger the amount of this information, the poorer the
performance of the oblique estimator will be. For instance,
consider the example presented in Section I, where audio
constitutes an instrument for enhancing a video sequence from
its degraded version. It has been demonstrated by various
researchers that joint audio-visual measurements often lead to
improved video processing tasks [14], [16]. In other words,
in this situation estimation based on Y and Z is preferable
to using Y alone. Consequently, the obliqueness approach is
expected to be inferior to the MMSE method in this case.

D. Worst Case Analysis

The main disadvantage of the oblique estimator is that
its performance becomes arbitrarily poor as the correlation
between Y and Z decreases. Indeed, when Q = N , direct

computation shows that the estimation error is given by

E
[∥∥∥X − X̂M1

OB

∥∥∥2] =

Tr
{
Cov

[
X − X̂LMMSE

]
+ Cov

[
X̂LMMSE − X̂M1

OB

]}
=

Tr
{
ΓXX − ΓXY Γ

†
Y Y ΓY X

}
+Tr

{
DΓ†

Y Y D
T
}
, (18)

where we substituted (3) and denoted D = ΓXZΓ
−1
Y ZΓY Y −

ΓXY . The first term in this expression is the MSE of the
LMMSE estimate of X , which could be achieved only by
a method that knows ΓXY . Since the elements of Γ−1

Y Z

can be arbitrarily large, the second term is unbounded and
consequently the MSE can become arbitrarily large.

IV. ESTIMATION WITH MOMENT KNOWLEDGE VIA
WORST CASE DESIGN

As we have seen, one of the major drawbacks of the
obliqueness approach is that, if the instrument Z is weakly
correlated with the measurements Y , then the estimation error
can become arbitrarily large. This phenomenon is rooted in
the fact that equating the first and second-order moments of
(X̂T , ZT )T and (XT , ZT )T does not necessarily lead to an
estimate X̂ close to X in an MSE sense. Indeed, as we have
seen, this approach is only optimal when all information that
Z carries about X , is also present in Y . To overcome this
limitation, we now propose an alternative approach, which
is based on a worst-case design strategy. As we show, the
resulting estimation error is guaranteed to be bounded.

A. Minimax Regret Estimation

Ultimately, we would like to design an estimator X̂ = AY+
b that achieves the same MSE as that attained by the LMMSE
estimator (3). In practice, though, this is impossible since we
do not know the covariance matrix ΓXY = Cov[X,Y ]. The
regret of an estimator is defined as the difference between the
MSE it attains and the MSE of the LMMSE method, which
could be achieved if ΓXY was known [23], [24], [25], namely

E
[∥∥∥X − X̂

∥∥∥2]− E
[∥∥∥X − X̂LMMSE

∥∥∥2] . (19)

The regret of any estimator is a function of the unknown
covariance ΓXY . This implies that one estimator can have
a lower regret than another for certain choices of ΓXY and
a higher regret for others. Our approach here is to design an
estimator whose worst-case regret is minimal.

Any RV X can be expressed as X = X̂LMMSE +U , where
U is a zero-mean RV uncorrelated with Y . Substituting this
expression into (19), the regret becomes

E
[∥∥∥X̂LMMSE + U − X̂

∥∥∥2]− E
[
∥U∥2

]
=

= E
[∥∥∥X̂LMMSE − X̂

∥∥∥2]+ E
[
∥U∥2

]
− E

[
∥U∥2

]
= E

[∥∥∥X̂LMMSE − X̂
∥∥∥2] , (20)
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where we used the fact that U is uncorrelated with X̂ as it is
an affine function of Y . In other words, the regret equals the
MSE between X̂ and the LMMSE solution (3). Substituting
(3), the minimax regret problem can be cast as

min
X̂∈YL

max
fXY Z∈A

E
[∥∥∥Cov[X,Y ]Γ†

Y Y (Y − µY ) + µX − X̂
∥∥∥2] ,
(21)

where A is the set of density functions fXY Z consistent
with our moment knowledge, namely for which E[X] = µX ,
E[Y ] = µY , E[Z] = µZ , Cov[X] = ΓXX , Cov[Y ] = ΓY Y ,
Cov[Z] = ΓZZ , Cov[X,Z] = ΓXZ and Cov[Y, Z] = ΓY Z .

The optimization problem (21) is challenging because the
inner maximization is over a convex function rather than
a concave one. This difficulty is typical of minimax regret
problems and is encountered in sampling applications [25],
[22], deterministic parameter estimation [23], [26] and random
parameter estimation [24], [27] to name a few. Nevertheless,
as is the case in all these application areas, the minimix-regret
problem (21) has a simple closed form solution.

Theorem 3: The solution to problem (21) is given by

X̂M1
MX = ΓXZΓ

†
ZZΓZY Γ

†
Y Y (Y − µY ) + µX . (22)

Proof: See Appendix C.
We note that in contrast with the obliqueness approach, this
method does not require inversion of the cross-covariance
matrix ΓY Z and therefore is especially advantageous over
(10) when Y and Z are weakly correlated. In practice, the
minimax regret estimator can be approximated from sets of
examples, by replacing the means and covariances with their
sample counterparts.

B. Equivalence with the Obliqueness Approach
Comparing (22) with (10), we see that the minimax regret

and the oblique estimators are equal if

ΓXZΓ
†
ZZΓZY Γ

†
Y Y = ΓXZΓ

†
Y Z . (23)

To understand this condition, assume for simplicity that M =
N = Q and that the matrices ΓXZ , ΓY Z , ΓZZ are invertible.
Then condition (23) becomes

Γ−1
ZZΓZY Γ

†
Y Y = Γ−1

Y Z . (24)

Multiplying both sides by ΓZZ from the left and by ΓY Z from
the right, yields ΓZY Γ

†
Y Y ΓY Z = ΓZZ , or equivalently

ΓZZ − ΓZY Γ
†
Y Y ΓY Z = 0. (25)

One may readily recognize this expression as being the co-
variance of the error of the LMMSE estimate of Z from Y .
We thus arrive at the following conclusion.

Corollary 4: Assume that the covariance matrices ΓXZ , ΓY Z

and ΓZZ are invertible. Then the minimax regret estimator
(22) coincides with the oblique estimator (10) if and only if
Z can be perfectly linearly estimated from Y .

The equivalence of the two approaches in the case where
Z can be perfectly recovered from Y , is not surprising as
the known relation between X and Z can be immediately
translated into a relation between X and Y . Thus, this is, in
effect, not truly a partial knowledge scenario.

C. Best Case Analysis

The minimax regret estimator (22) was derived from a
worst-case perspective. We now take a best-case viewpoint
and study in what cases it is optimal. Comparing (22) with
(3), we see that the minimax-regret method coincides with the
LMMSE estimator if and only if

ΓXZΓ
†
ZZΓZY Γ

†
Y Y = ΓXY Γ

†
Y Y . (26)

A simple interpretation of this condition can be obtained, as
in Section III-C, by examining the case in which the RVs X ,
Y and Z are jointly Gaussian.

Theorem 5: Suppose that the RVs X , Y and Z are jointly
Gaussian. Let A , (Y T , ZT )T and assume that the matrices
ΓAA, ΓY Y , ΓZZ and ΓY Y − ΓY ZΓ

−1
ZZΓZY are invertible.

Then the minimax regret estimate (22) coincides with the
MMSE estimate of X given Y if and only if

fX|Y Z(x|y, z) = fX|Z(x|z). (27)

Proof: See Appendix D.
Theorem 5 implies that the minimax regret solution is

optimal if X and Y are independent given Z. In other words, if
the MMSE estimate of x given y and z is only a function of z,
then the minimax regret estimator coincides with the MMSE
solution. Thus, as opposed to the obliqueness approach, here
we can benefit from an instrument that tells us more about X
than Y does. This is particularly true when the information
that Y carries about X is contained in the information that Z
encompasses about X .

To emphasize the situations in which each of the methods
is preferable, consider the following toy example. Suppose
we wish to predict whether an individual will become sick
with lung cancer based on the subject’s smoking habits. In
this case, X is a binary variable indicating the illness status,
and Y is the average number of cigarettes the subject smokes
per day. Now, assume we let Z denote the amount of tobacco
accumulated in the subject’s lungs. It is reasonable to assume
that this instrument tells us about X everything that Y does,
and perhaps more (as it is also affected by passive smoking).
Thus, in this case the minimax-regret approach is preferable.
Suppose, on the other hand, that we use the price of cigarettes
as an instrument. In this case Z can affect X only through
its effect on Y . Therefore, in this situation the obliqueness
approach is preferable.

D. Worst Case Analysis

One of the main advantages of the minimax-regret approach
is rooted in its worst-case performance. Specifically, we saw
in Section III-D that the MSE of the oblique solution is not
bounded from above, unless the correlation between Y and Z
is not too weak. As we now show, the MSE of the minimax-
regret estimator is guaranteed to be bounded, even if Y and
Z are completely uncorrelated.

Theorem 6: The regret (19) of X̂M1
MX is not larger than

Tr{ΓXX −ΓXZΓ
†
ZZΓZX}, the MSE of the LMMSE estimate

of X given Z.
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Proof: See Appendix E.
Theorem 6 implies that the better X can be linearly recov-

ered from Z, the closer the performance of the minimax regret
estimator is to that of the LMMSE method. Therefore, as a
rule of thumb, when the instrument is highly correlated with
the signal, the minimax-regret method is effective.

V. ESTIMATION WITH DENSITY KNOWLEDGE VIA
OBLIQUENESS

Next, we address the problem of estimating x from y in the
partial knowledge model M2. As in Section III, we start with a
design strategy which is based on the obliqueness requirement.

Had fXY (x,y) been known, it would be possible to use
the MMSE method x̂ = E[X|Y = y], which is the unique
estimator whose error X − X̂ is orthogonal to every function
of Y . This orthogonality principle implies that the MMSE
solution is the unique estimator satisfying

E
[
X̂|Y

]
= E[X|Y ] . (28)

In our setting, all that is known regarding X is its statistical
relation with Z. We therefore propose to replace the orthogo-
nality principle with the demand that the estimation error be
orthogonal to every function of Z, leading to the requirement
that

E
[
X̂M2

OB|Z
]
= E[X|Z] . (29)

Similarly to Section III, we expect this obliqueness principle
to result in satisfactory performance if the instrument Z is
close to Y in some sense.

Writing X̂M2
OB = g(Y ) and denoting ϕ(z) = E[X|Z = z],

(29) reduces to an integral equation2 in g(y):∫
RN

g(y)fY |Z(y|z)dy = ϕ(z), ∀z ∈ RQ. (30)

The functions fX|Z(x|z) and ϕ(z) in this equation are known
by the assumptions of model M2. A unique oblique estimator
exists if and only if (30) has a unique solution.

Like the oblique method under model M1, the approach
taken here is also related to instrumental variable regression.
Specifically, an equation very similar to (30) was studied in the
context of instrumental variable estimation in nonparametric
models [20]. In particular, it was shown that uniqueness of the
solution to (30) requires Q ≥ N when the distribution of Y |Z
belongs to the exponential family. It was conjectured that this
necessary condition also holds more generally.

A drawback of the obliqueness approach in the present
setting, which did not exist in model M1, is that there is
generally no closed form solution to (30). Nevertheless, it is
possible to approximate the oblique estimator based on sets of
examples of the type shown in Fig. 3. One such nonparametric
approach was derived in [20]. Furthermore, despite the lack
of a closed form expression, it is possible to draw qualitative
conclusions regarding the best- and worst-case scenarios for
the oblique estimator, as we discuss next.

2If Y and Z are discrete RVs, then the equation becomes∑
y g(y)pY |Z(y|z) = ϕ(z), ∀z.

Intuitively, if changes in z lead to small changes in
fY |Z(y, z), then the variance of the solution X̂M2

OB = g(Y )
to (30) is large. In the extreme situation in which Y and
Z are independent, fY |Z(y, z) is not a function of z at all,
and consequently there exists no solution to (30). We thus
conclude that as the statistical dependence between Y and Z
decreases, the variance of X̂M2

OB increases without bound. This
also implies that the error E[∥X − X̂M2

OB∥2] is unbounded.

A. Best Case Analysis

An interesting question concerning the obliqueness ap-
proach, is under what conditions it is optimal. As opposed to
the analysis in Sections III-C and IV-C, which focused on the
Gaussian case, here we make no assumptions on the structure
of the density fXY Z . The next theorem provides a sufficient
condition for optimality.

Theorem 7: Suppose that

fX|Y Z(x|y, z) = fX|Y (x|y). (31)

Then the MMSE estimate of X given Y is an oblique solution.
Proof: Substituting g(y) = E[X|Y = y], the left-hand

side of (30) becomes∫
g(y)fY |Z(y|z)dy =

∫∫
xfX|Y (x|y)fY |Z(y|z)dxdy.

(32)

Using (31), this expression reduces to∫∫
xfX|Y Z(x|y, z)fY |Z(y|z)dxdy

=

∫
xfX|Z(x|z)dx = E[X|Z = z] (33)

so that the MMSE estimator satisfies (30).
Note that Theorem 7 does not address the question of

uniqueness of the oblique estimator. It merely states that
when (31) holds, at least one of the solutions satisfying the
obliqueness requirement (30), is the MMSE estimator.

Condition (31) is the same as that of Theorem 2. Therefore,
we see that, as in model M1, the obliqueness approach is
beneficial if the instrument does not carry any additional in-
formation about the signal, beyond that embedded in the mea-
surements. In such a situation, if we knew fXY Z completely,
then measuring Z in addition to Y would be superfluous.

VI. ESTIMATION WITH DENSITY KNOWLEDGE VIA
WORST-CASE DESIGN

Last, we address estimating x from y in the partial knowl-
edge model M2 via a worst-case design.

As opposed to the obliqueness requirement that E[X̂|Z] =
E[X|Z], we now seek a solution that minimizes the worst
case regret over all RVs (X,Y, Z) with the given conditional
expectation E[X|Z] and the given joint density fY Z . Here we
consider the regret

E
[∥∥∥X − X̂

∥∥∥2]− E
[
∥X − E[X|Y ]∥2

]
(34)
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with respect to the MMSE solution rather than the LMMSE
method, as in Section IV. Expressing X as X = E[X|Y ]+U ,
where U is an RV uncorrelated with every function of Y ,
and using the fact that U is in particular uncorrelated with
E[X|Y ]− X̂ (as X̂ is a function of Y ), the regret becomes

E

[∥∥∥E[X|Y ] + U − X̂
∥∥∥2]− E

[
∥U∥2

]
=

= E
[∥∥∥E[X|Y ]− X̂

∥∥∥2]+ E
[
∥U∥2

]
− E

[
∥U∥2

]
= E

[∥∥∥E[X|Y ]− X̂
∥∥∥2] . (35)

Thus, the regret in the setting of model M2 equals the MSE
between the estimator X̂ and the MMSE solution.

Letting ϕ(Z) = E[X|Z] and ρ2 = E[∥X∥2], which are both
known in our setting, our problem is

min
X̂∈Y

max
fXY Z∈A

E
[∥∥∥E[X|Y ]− X̂

∥∥∥2] , (36)

where A is the set of density functions fXY Z satisfying
E[X|Z] = ϕ(Z), E[∥X∥2] = ρ2 and

∫
RM fXY Z(x,y, z)dx =

fY Z(y,z). Note that besides the inner maximization being
non-convex, as in model M1, problem (36) is also infinite-
dimensional since the outer minimization is now over the set
of all functions of Y . Interestingly, though, it has a simple
solution, as presented in the next theorem.

Theorem 8: The solution to problem (36) is given by

X̂M2
MX = g(Y ) = E[E[X|Z]|Y ]. (37)

Proof: See Appendix F.
We note that (37) can be computed explicitly. This is

because the inner and outer expectations are functions of
fX|Z(x|z) and fZ|Y (z|y) respectively, which are both known
in our setting.

The partial-knowledge minimax-regret estimator has a sim-
ple interpretation. We do not know the statistical relation be-
tween X and Y , rendering direct estimation of the signal given
the measurements impossible. However, we can calculate the
MMSE estimate ϕ(Z) = E[X|Z] of X given Z, as fXZ(x,z)
is available to us. This function cannot be used as an estimator,
because we do not observe Z but rather Y . Nevertheless,
the statistical relation between ϕ(Z) and Y is known, since
fY Z(y, z) is known. Therefore, we can estimate this quantity
given the measurements Y in an MMSE sense, leading to
X̂ = E[ϕ(Z)|Y ] = E[E[X|Z]|Y ].

A. Equivalence with the Obliqueness Approach

We now examine when the minimax regret solution (37)
coincides with the oblique method. Although there is no closed
form expression for the oblique estimator under model M2, a
sufficient condition may easily be obtained from (29) such that
the minimax regret estimator (37) is oblique.

Corollary 9: Assume that Z = h(Y ) for some deterministic
function h(·). Then the minimax regret estimator (37) satisfies
the obliqueness principle.

Proof: Denoting ϕ(Z) = E[X|Z] and substituting Z =
h(Y ) into (37), we have that

E
[
X̂M2

MX|Z
]
= E[E[ϕ(Z)|Y ]|Z]

= E[E[ϕ(h(Y ))|Y ]|Z]

= E[ϕ(h(Y ))|Z]

= E[ϕ(Z)|Z]

= ϕ(Z), (38)

so that the obliqueness condition (29) is satisfied by X̂M2
MX.

Evidently, as in model M1, the minimax-regret and oblique-
ness approaches result in the same estimator if Z can be
perfectly determined from Y . The difference with respect to
model M1, is that in Corollary 4 the instrument Z was required
to be a linear function of Y , whereas here h(·) is arbitrary.

B. Best-Case Analysis

Next, we analyze which distributions fXY Z are “best” for
the minimax regret approach under model M2.

Theorem 10: Suppose that

fX|Y Z(x|y, z) = fX|Z(x|z). (39)

Then the minimax regret method (37) coincides with the
MMSE estimate of X given Y .

Proof: Using condition (39), the estimator (37) becomes

E[E[X|Z]|Y ] =

∫∫
xfX|Z(x|z)fZ|Y (z|y)dxdz

=

∫∫
xfX|Y Z(x|y,z)fZ|Y (z|y)dxdz

=

∫∫
xfXZ|Y (x, z|y)dxdz

=

∫
xfX|Y (x|y)dx = E[X|Y ], (40)

proving the theorem.
Condition (39) is the same as that encountered in Theorem 5

in the context of minimax-regret estimation under model M1.
The main difference is that Theorem 10 is relevant for arbitrary
distributions, and does not require the normality assumption
of Theorem 5.

We see that minimax regret estimation is optimal in sit-
uations where the information about X carried by the mea-
surements Y is contained in that carried by the instrument
Z. In such scenarios, if fXY Z is completely known, then
measuring Y in addition to Z does not help in estimating X .
Therefore, the situations in which the oblique and minimax-
regret methods are preferable to one another are similar to
those of model M1 (see discussion in Section IV-C).

C. Worst-Case Analysis

The minimax-regret solution is especially advantageous over
the obliqueness approach because of the fact that its worst-case
MSE is finite, as we now show.
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Theorem 11: The regret (34) of X̂M2
MX is no larger than

E[∥X − E[X|Z]∥2], the MSE of the MMSE estimate of X
given Z.

Proof: The estimation error E[∥X − X̂M2
MX∥2] is given by

E
[
∥X − E[X|Y ]∥2

]
+ E

[
∥E[X|Y ]− E[E[X|Z]|Y ]∥2

]
= E

[
∥X − E[X|Y ]∥2

]
+ E

[
∥E[X − E[X|Z]|Y ]∥2

]
≤ E

[
∥X − E[X|Y ]∥2

]
+ E

[
∥X − E[X|Z]∥2

]
, (41)

where the first line is a consequence of the fact that X −
E[X|Y ] is uncorrelated with every function of Y and, in
particular, with E[X|Y ]−E[E[X|Z]|Y ], completing the proof.

As a consequence of Theorem 11, the minimax regret ap-
proach yields good results if the signal X could be accurately
recovered by observing a realization of Z.

D. Nonparametric Regression

We now propose a nonparametric method for approximating
the minimax-regret estimator (37) from two sets of examples
{xi, z

x
i }Pi=1 and {yi, z

y
i }Li=1, drawn independently from the

densities fXZ(x, z) and fY Z(y, z) respectively.
We begin by estimating ϕ(z) = E[X|Z = z] based on

{xi, z
x
i }Pi=1. The Nadaraya-Watson nonparametric estimator

of ϕ(z) is given by [28], [29], [30]

ϕ̂(z) =

∑P
i=1 xiKZ

(
h−1
Z (z − zx

i )
)∑P

i=1 KZ

(
h−1
Z (z − zx

i )
) , (42)

where KZ(z) is a density function called kernel and hZ is a
positive scalar called bandwidth. Under mild conditions on
KZ(z), various converges properties of ϕ̂(z) to ϕ(z) are
known when P → ∞ and h → 0 at an appropriate rate
[28], [29], [30]. The Nadaraya-Watson estimator, which is
chosen here merely for concreteness, is a member of the
family of local polynomial regression techniques. For these
methods, there exist algorithms for automatically selecting the
bandwidth parameter hZ as a function of the sample-size P
and possibly also as a function of the data itself [31].

The same nonparametric method could also be used to
estimate g(y) = E[ϕ(Z)|Y = y] = E[E[X|Z]|Y = y],
had we had a set of examples {yi, ϕ(z

y
i )}. Such a set is, of

course, unavailable since there is no analytic expression for the
function ϕ(z). However, recall that ϕ̂(z) approximates ϕ(z)
arbitrary well as the sample size P increases. We can thus use
the set {yi, ϕ̂(z

y
i )}Li=1 to construct a Nadaraya-Watson-like

nonparametric estimator of g(y), as follows

ĝ(y) =

∑L
j=1 ϕ̂(z

y
j )KY

(
h−1
Y (y − yj)

)∑L
j=1 KY

(
h−1
Y (y − yj)

) . (43)

Here KY (y) and hY are the kernel and bandwidth associated
with the training set {yi, ϕ̂(z

y
i )}Li=1 with ϕ̂(z) of (42).

VII. SIMULATIONS

We now compare the oblique and minimax-regret estimators
via simulations.

A. Partial Knowledge of Second-Order Moments

Suppose that X , Y and Z are scalar RVs distributed asX
Y
Z

 ∼ N

0
0
0

 ,

 1 0.85 σXZ

0.85 1.4 σY Z

σXZ σY Z 1

 . (44)

In this case, the LMMSE estimate of X from Y , which is
given by X̂LMMSE = (σXY /σY Y )Y ≈ 0.61Y , attains an MSE
of σXX − σ2

XY /σY Y ≈ 0.48. Assume, however, one does
not know the values of the entries (1, 2) and (2, 1) of the
covariance matrix of (X,Y, Z)T . Thus, the fact that σXY =
0.85 cannot be used to design an estimator. A naive approach
in this situation is to use the estimator X̂NAIVE = µX =
0, whose MSE is given by σXX = 1. An alternative is to
make use of σXZ and σY Z via the obliqueness approach of
Section III or the minimax-regret method of Section IV.

The MSE attained by the oblique estimator (10), which
is given by X̂M1

OB = (σXZ/σY Z)Y , can be computed
explicitly via (18). The minimax-regret estimator (22) is
given in our case by X̂M1

MX = (σXZσZY /(σZZσY Y ))Y =
(σXZσZY /1.4)Y and its MSE can be computed using equa-
tion (66) in Appendix E. The performance of both estimators
depends on σY Z and σXZ . Figure 4 compares MSEOB and
MSEMX with MSELMMSE and MSENAIVE as a function
of σY Z for various values of σXZ . As can be seen, the
performance of the oblique method becomes arbitrarily poor
as σY Z is decreased. When σY Z is significantly smaller than
σXZ , MSEOB is even higher than the MSE of the naive
measurement-blind estimator. On the other hand, the MSE of
the minimax-regret method, which was designed to yield the
best worst-case performance, never exceeds MSENAIVE. This
behavior is obtained, though, at the expense of a rather modest
performance for a wide range of values of σXZ and σY Z .

While the MSE of the minimax-regret estimator decreases
as σY Z increases, its performance fails to surpass that of the
oblique method at large values of σY Z when σXZ is small.
This can be seen in Fig. 5, which shows the regions at which
each of the estimators is preferable. We conclude that, as a rule
of thumb, the oblique estimator should be used when σY Z is
large and σXZ is small, while the minimax-regret solution
is more effective when σY Z is small and σXZ is large. This
simple test does not depend on σXY and thus can be performed
based on the available partial knowledge.

B. Partial Knowledge of Probablity Functions

Suppose that X , Y and Z are binary RVs distributed as

pXY Z(v) =
1

28



10 + α+ β v = (0, 0, 0)

2− α− β v = (0, 0, 1)

1− α v = (0, 1, 0)

1 + α v = (0, 1, 1)

1− β v = (1, 0, 0)

1 + β v = (1, 0, 1)

2 v = (1, 1, 0)

10 v = (1, 1, 1),

(45)
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(a) σXZ = 0.1.
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(b) σXZ = 0.35.
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(c) σXZ = 0.6.

Fig. 4: MSE as a function of σY Z of the LMMSE, naive, minimax and oblique methods of model M1 in the setting of (44).
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Fig. 5: Comparison between the oblique and minimax methods
of model M1 corresponding to (44). Region I: MSEMX <
MSENAIVE < MSEOB. Region II: MSEMX < MSEOB <
MSENAIVE. Region III: MSEOB < MSEMX < MSENAIVE.

where v = (x, y, z) and α and β are given parameters
in the range [−1, 1]. In this example the MMSE estimate
X̂MMSE = E[X|Y ] attains an MSE of 6/49 ≈ 0.12 regardless
of the values of α and β. Assume, however, that the joint
distribution of X and Y is not known so that X̂MMSE cannot
be computed. In this case, we can resort to the naive approach
X̂NAIVE = µX = 0.5, which results in an MSE of 0.25.
Alternatively, we can rely on our knowledge of pXZ(x, z)
and pY Z(y, z) to compute the oblique and minimax-regret
solutions of Sections V and VI. The MSE of these two
methods, which can be computed explicitly in our case,
depends on the parameters α and β. These, in turn, affect
the mutual information3 I(Y ;Z) between Y and Z and the
mutual information I(X;Z) between X and Z respectively.

Figure 6 depicts the MSE of the oblique and minimax-
regret methods as a function of I(Y ;Z) for various values
of I(X;Z). It can be seen that, as in the linear case, the
performance of the oblique estimator deteriorates as I(Y ;Z)

3The mutual information between two RVs A and B is defined by
I(A;B) = E[log(pAB(A,B))] − E[log(pA(A)pB(B))]. It satisfies
I(A;B) = 0 if and only if A and B are independent, and becomes larger as
the statistical dependence between A and B tightens.

I(Y ;Z)

I
(X

;Z
)

0.15 0.2 0.25 0.3 0.35 0.4

0.15

0.2

0.25

0.3

0.35

0.4

I
II

III

Fig. 7: Comparison between the oblique and minimax solu-
tions of model M2 corresponding to (45). Regions are as in
Fig. 5.

becomes small, even beyond that of the naive estimator.
However, MSEOB is often lower than MSEMX for high values
of I(Y ;Z), especially when I(X;Z) is small. The regions at
which each of the approaches is preferable are shown in Fig. 7.
The behavior is very similar to that shown in Fig. 5, leading
to similar conclusions.

VIII. APPLICATION TO FACIAL FEATURE RECOVERY

We now demonstrate our approach in the context of facial
image enhancement.

Assume we are given an image y of a face taken with a
low-grade camera (e.g., a web-cam or a cellular-phone camera)
whose degradation model is unknown. Furthermore, a set of
paired examples of “clean” and degraded images is unavailable
so that standard Bayesian estimation techniques cannot be
used since fXY (x,y) cannot be learned. More specifically, in
such applications we can typically collect many examples of
“degraded” images {yi} taken with the low-grade camera as
well as many examples of “clean” facial images {xi} taken
with some high-quality sensor. However these two separate
unpaired sets are not sufficient for learning fXY (x,y).

To enhance the degraded image y via our partial-knowledge
Bayesian estimation framework, we need to be able to intro-
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(a) I(X;Z) = 0.14.
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(b) I(X;Z) = 0.25.
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(c) I(X;Z) = 0.41.

Fig. 6: MSE as a function of I(Y ;Z) of the MMSE, naive, minimax and oblique methods of model M2 in the setting of (45).

(a) Annotated clean examples.

(b) Annotated degraded examples.

Fig. 8: Examples from the clean and degraded databases.

duce an instrument z whose relations with x and with y can
be learned from examples. This can be done, for instance,
by manually marking a set of points in several predefined
locations both on the degraded images {yi} and on the clean
images {xi}. The vector z, then, comprises the locations of
the annotated points. This enables the construction of the
two paired sets of examples {yi, z

y
i }Li=1, and {xi, z

x
i }Pi=1,

as required in our framework.
Figure 8 depicts several manually annotated clean and

degraded facial images taken from the AR database [32]. The
point annotations were taken from [33]. The images were all
normalized such that the eyes appear at predefined locations. In
practice, this preliminary step can be performed automatically
[34], [35]. Here, the degradation (which is unknown to our
algorithm) is a threshold operation. Thus, y is a binary image.

It is important to observe that x and y are both images
of size 130 × 92, and thus correspond to vectors in R11960.
On the other hand, z comprises 22 points, which means
that it corresponds to a vector in R44. This huge difference
in dimensionality implies two things. First, since Q < N ,
there are infinitely many estimators satisfying the obliqueness

principle so that obliqueness seems an inadequate criterion in
this setting. Second, it indicates that the statistical relation
between x and y cannot possibly be characterized accu-
rately solely in terms of fXZ(x, z) and fY Z(y, z). Indeed,
z encompasses only geometric information about the face,
and completely lacks any gray-level information. Therefore,
one cannot expect to loyally recover the original image with
this type of instrument, but rather only the expression and
dominant facial features.

Figure 9(c) shows the recovery results for several degraded
images obtained by our nonparametric approximation (43) to
the model-M2 minimax-regret estimator (37). In this experi-
ment, we used P = 235 “clean” examples {xi, z

x
i }Pi=1 and

L = 137 degraded examples {yi, z
y
i }Li=1 of different subjects.

The person whose noisy image y was to be cleaned, was not
included in either database. The kernels KY (y) and KZ(z)
were taken to be Gaussians. The same values of hY and
hZ were used in all our experiments. In practice, automatic
bandwidth selection techniques can be applied [31].

As can be seen, the facial expression, as well as the
dominant facial features, were indeed recovered correctly by
the minimax estimator. However, the exact gray-level profile,
which is among the important cues for distinguishing identity,
was not restored accurately.

An alternative approach to treating the facial recovery task
is to project the degraded image y onto a low-dimensional
subspace learned from the clean examples {xi}Pi=1 via e.g.,
PCA [36]. We note that this methodology does not make use
of the instrument z, neither does it take into account the
degraded examples {yi}Li=1. Furthermore, it is relevant only
for applications where x and y are of the same dimension,
whereas our proposed technique is general. Nevertheless, it
relies on the observation that facial images approximately lie in
a low-dimensional subspace, as experimentally shown in [36].
Therefore, removing from y the component perpendicular to
this space, is expected to at least partially compensate for the
unknown degradation. Figure 9(d) depicts the results obtained
with the PCA approach, where the dimension of the subspace
was tuned to account for 95% of the variance in the training set
{xi}Pi=1. As can be seen, the gray-level profile in these images
is much closer to the degraded images than to the original
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(a) Original images.

(b) Degraded images.

(c) Recovery using the minimax-regret estimator.

(d) Recovery using PCA.

Fig. 9: Recovery of facial images with the minimax regret
estimator and with PCA. Each column corresponds to a
different subject.

ones. Moreover, this technique produces artifacts which lead
to unsatisfactory results. Similar artifacts were observed for
different PCA-space dimensions.

IX. APPLICATION TO IMAGE ZOOMING

We conclude with an application to image zooming.
Suppose we are given a small image, which we would like

to enlarge. Traditional approaches, such as nearest-neighbor,
bilinear, bicubic (via Keys’ kernel [37]), cubic spline and
Lanchoz interpolation, tend to produce overly blurry images,
especially at large zooming factors. An illustration of this
phenomenon is shown in Fig. 10(b), which depicts the result
of enlarging the image of Fig. 10(a) by a factor of 4 using
bicubic interpolation.

An attractive alternative to linear interpolation methods,
which has gained popularity in recent years, relies on the
employment of learning techniques. Specifically, it has been
shown that the task of image zooming can greatly benefit

from the availability of training sets of high-resolution and
down-sampled image patches [38]. Recently, it has also been
demonstrated that such a training set can even be constructed
from the given image to be enlarged itself [19], thus avoiding
the need for a set of training images. Roughly speaking, in
this type of methods, to enlarge an image by a factor of
F , one first reduces its size by a factor of F and learns
the relation between corresponding high-resolution and low-
resolution patches. This approach, which relies on the fact
that natural images often exhibit self-similarity across different
scales, leads to state-of-the-art image zooming results [19].
The major pitfall in this strategy, however, is that it cannot
be used on very small images (or with very large zooming
factors) since there are simply not enough training patches
left after reducing the size of the image. This is demonstrated
in Fig. 10(c), which shows the result of enlarging the image
of Fig. 10(a) by learning (via first-order local polynomial
regression) the relation between each high-resolution pixel
x and the corresponding 4 × 4 low resolution patch y. The
unsatisfactory result in this experiment can be attributed to
the fact that there were only 720 available training patches.

To try and overcome the lack-of-examples barrier in the
field of self training for image zooming, we can use our
partial knowledge estimation paradigm as follows. To enlarge
an image by a factor of F 2, we first reduce its size by a factor
of F (rather than F 2). This down-sampled image contains
many more training patches than in the standard approach
and can be used to learn the statistical relation between an
image patch y and its zoomed-by-F version z as well as the
relation between a zoomed-by-F patch z and a zoomed-by-
F 2 patch x. We can thus use our techniques to construct an
estimator of x based on y by relying only on the available
partial knowledge. The result of applying this method with the
M2 minimax-regret estimator is shown in Fig. 10(d). In this
experiment, there were 3624 available training patches, and
consequently the result is much more satisfactory than that
of Fig. 10(c). For comparison, Fig. 10(e) shows the result of
zooming by a factor of 3 using the algorithm of4 [19]. We note
that although this image is sharper, it is not necessarily more
faithful to the original than Fig. 10(d). For example, the fifth
and twelfths letters from the right in the bottom line, which
should be “F” and “X” respectively, were recovered correctly
in Fig. 10(d) and incorrectly in Fig. 10(c).

X. CONCLUSIONS

In this paper we proposed an approach for modeling partial
Bayesian knowledge by using an instrumental variable. We
considered two types of partial knowledge, which correspond
to knowing the joint density functions and the joint second-
order moments respectively of the instrument with the signal,
and with the measurements. We treated each of these scenarios
via two strategies: the obliqueness principle and minimax-
regret. We derived closed form expressions for the estimators
resulting from each of the design approaches, and analyzed
in which situations each is preferable. We showed that the

4The image was taken from http://www.wisdom.weizmann.ac.il/∼vision/
SingleImageSR.html, in which only zooming by a factor of 3 was presented.
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(a) (b) (c) (d) (e)

Fig. 10: Several methods for image zooming. (a) Original image. (b) Bicubic interpolation (×4). (c) Direct learning (×4).
(d) Minimax learning via two enlargements by 2 (×4). (e) The method of [19] (×3).

oblique estimator coincides with the method of instrumental
variable regression. Its main drawback is that its performance
becomes arbitrarily poor as the statistical dependency between
the instrument and measurements weakens. The performance
of the minimax regret method, on the other hand, is guaranteed
to be bounded regardless of how weak the instrument is.
Nevertheless, this behavior comes at the expense of moderate
performance at a wide variety of situations. As an example,
we presented experimental results in image zooming and in
recovering facial features from images that have undergone
unknown degradation.

APPENDIX A
PROOF OF THEOREM 1

Let ε(fXY , X̂) = EfXY [∥X̂ − X∥2] denote the MSE
incurred by an estimator X̂ ∈ Y when the joint density of
X and Y is fXY (x,y). It is easily verified that

ε(fXY , X̂LMMSE) = Tr{ΓXX − ΓXY Γ
†
Y Y ΓY X} (46)

for all fXY ∈ A. Consequently (46) is also the worst-case
MSE of X̂LMMSE over A. Now, denoting

f∗
XY = N

((
µX

µY

)
,

(
ΓXX ΓXY

ΓY X ΓY Y

))
, (47)

we note that any estimator X̂ ∈ Y satisfies

max
fXY ∈A

ε(fXY , X̂) ≥ ε(f∗
XY , X̂)

≥ min
X̂

ε(f∗
XY , X̂)

= Tr{ΓXX − ΓXY Γ
†
Y Y ΓY X}, (48)

where the first inequality follows from the fact that f∗
XY ∈ A,

and the last equality is a result of the fact that the MMSE
estimator in the Gaussian setting is linear. We have thus
established that the worst-case MSE of any estimator over
A is greater or equal to the worst-case MSE of the LMMSE
solution over A, proving that X̂LMMSE is minimax optimal.

APPENDIX B
PROOF OF THEOREM 2

We begin by showing that condition (17) implies that the
oblique method (10) coincides with the MMSE estimate,
which is given by (3) in our setting. Since X and Y are jointly
Gaussian, X|Y follows the normal distribution

N
(
ΓXY Γ

−1
Y Y (y − µY ) + µX ,ΓXX − ΓXY Γ

−1
Y Y ΓY X

)
.

(49)
Similarly, X|A is distributed as

N
(
ΓXAΓ

−1
AA(a− µA) + µX ,ΓXX − ΓXAΓ

−1
AAΓAX

)
.
(50)

Equating the covariances of both distributions yields the
condition

ΓXY Γ
−1
Y Y ΓY X = ΓXAΓ

−1
AAΓAX . (51)

Let C = (ΓZZ −ΓZY Γ
−1
Y Y ΓY Z)

−1 denote the inverse of the
error covariance of the MMSE estimate of Z given Y . Note
that by assumption, the inverse exists. Then, using the matrix
inversion lemma, the matrix Γ−1

AA in (51) can be written as

Γ−1
AA =

(
ΓY Y ΓY Z

ΓZY ΓZZ

)−1

=

(
Γ−1
Y Y + Γ−1

Y Y ΓY ZCΓZY Γ
−1
Y Y −Γ−1

Y Y ΓY ZC

−CΓZY Γ
−1
Y Y C

)
.

(52)

With this relation, and using the fact that ΓXA = ΓT
AX =

( ΓXY ΓXZ ), the right-hand side of (51) becomes

ΓXY Γ
−1
Y Y ΓY X+(
ΓXZ − ΓXY Γ

−1
Y Y ΓY Z

)
C

(
ΓXZ − ΓXY Γ

−1
Y Y ΓY Z

)T
.

(53)

Therefore, (51) implies that ΓXZ = ΓXY Γ
−1
Y Y ΓY Z , or equiv-

alently, that
ΓXZΓ

−1
Y Z = ΓXY Γ

−1
Y Y . (54)
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This, in turn, implies that that the oblique estimate (10)
coincides with (3).

Next, we show that if (10) and (3) coincide, then (17) holds.
As we have seen, the equivalence of (10) and (3) implies that
D , ΓXZ − ΓXY Γ

−1
Y Y ΓY Z = 0, which in turn implies that

the covariances of the distributions of X|Y and X|A are equal.
Therefore, all that remains to be shown is that if (10) coincides
with (3) then the the means of the distributions (49) and (50)
also coincide. Using (52), it is easily verified that

ΓXAΓ
−1
AA =

(
ΓXY Γ

−1
Y Y −DCΓZY Γ

−1
Y Y DC

)
=

(
ΓXY Γ

−1
Y Y 0

)
, (55)

which implies that ΓXY Γ
−1
Y Y (y−µY ) = ΓXAΓ

−1
AA(a−µA)

so that the means of (49) and (50) are indeed equal.

APPENDIX C
PROOF OF THEOREM 3

Every RV X can be uniquely expressed in terms of its
LMMSE estimate given Z as X = ΓXZΓ

†
ZZ(Z − µZ) +

µX + V , where V is a zero-mean RV uncorrelated with Z.
Direct calculation shows that Cov[X] = ΓXZΓ

†
ZZΓZX +

Cov[V ], so that the constraint Cov[X] = ΓXX translates into
Cov[V ] = ΓXX −ΓXZΓ

†
ZZΓZX . Furthermore, Cov[X,Y ] =

ΓXZΓ
†
ZZΓZY +Cov[V, Y ] and therefore the inner maximiza-

tion in problem (21) is equivalent to

max
(V,Y,Z)∈B

E
[∥∥∥ΓXZΓ

†
ZZΓZY Γ

†
Y Y (Y − µY ) + µX

+ Cov[V, Y ](Y − µY )− X̂
∥∥∥2] , (56)

where B is the set of triplets of RVs (V, Y, Z) satisfy-
ing E[V ] = 0, E[Y ] = µY , E[Z] = µZ , Cov[V ] =
ΓXX − ΓXZΓ

†
ZZΓZX , Cov[Y ] = ΓY Y , Cov[Z] = ΓZZ ,

Cov[V,Z] = 0, and Cov[Y, Z] = ΓY Z .
To prove that X̂M1

MX of (22) is the solution to (21), we
establish a lower bound on the minimax regret value and
show that X̂M1

MX achieves this bound. Expanding the norm,
(56) becomes

max
(V,Y,Z)∈B

{
E
[∥∥∥Cov[V, Y ]Γ†

Y Y (Y − µY )
∥∥∥2+ ∥∥∥X̂M1

MX − X̂
∥∥∥2]

+2E
[(

X̂M1
MX − X̂

)T

Cov[V, Y ]Γ†
Y Y (Y − µY )

]}
. (57)

Our key insight is that for every triplet (V, Y, Z) ∈ B we also
have (−V, Y, Z) ∈ B. Furthermore, the first term in (57) is
symmetric in V , whereas the second is anti-symmetric in V .
This implies that if V maximizes the first term, then either
V or −V yields at least the same value for the objective

comprising both terms. Consequently,

min
X̂∈YL

max
fXY Z∈A

E
[∥∥∥Cov[X,Y ]Γ†

Y Y (Y − µY ) + µX − X̂
∥∥∥2]

≥ min
X̂∈YL

max
(V,Y,Z)∈B

{
E
[∥∥∥Cov[V, Y ]Γ†

Y Y (Y − µY )
∥∥∥2]+

+E
[∥∥∥X̂M1

MX − X̂
∥∥∥2]}

≥ max
(V,Y,Z)∈B

min
X̂∈YL

{
E
[∥∥∥Cov[V, Y ]Γ†

Y Y (Y − µY )
∥∥∥2]+

+E
[∥∥∥X̂M1

MX − X̂
∥∥∥2]}

= max
(V,Y,Z)∈B

E
[∥∥∥Cov[V, Y ]Γ†

Y Y (Y − µY )
∥∥∥2] , (58)

where the second inequality follows from exchanging the min-
imum and maximum and the last equality is a result of solving
the inner minimization, which is obtained at X̂ = X̂M1

MX.
We next show that equality is achieved with X̂ = X̂M1

MX.
Indeed, (57) implies that for this estimator

min
X̂∈YL

max
fXY Z∈A

E
[∥∥∥Cov[X,Y ]Γ†

Y Y (Y − µY ) + µX − X̂
∥∥∥2]

= max
(V,Y,Z)∈B

E
[∥∥∥Cov[V, Y ]Γ†

Y Y (Y − µY )
∥∥∥2] (59)

from which the theorem follows.

APPENDIX D
PROOF OF THEOREM 5

Assume first that condition (27) holds. We will show that
this implies that the minimax regret method (22) coincides
with the MMSE estimate, which is given by (3) in our setting.
Since X , Y and Z are jointly Gaussian, X|Z follows the
normal distribution

N
(
ΓXZΓ

−1
ZZ(z − µZ) + µX ,ΓXX − ΓXZΓ

−1
ZZΓZX

)
,
(60)

whereas X|A is distributed according to (50). Equating the
covariances of both distributions yields the condition

ΓXZΓ
−1
ZZΓZX = ΓXAΓ

−1
AAΓAX . (61)

Let C = (ΓY Y −ΓY ZΓ
−1
ZZΓZY )

−1 denote the inverse of the
error covariance of the MMSE estimate of Y given Z, which
exists by assumption. Then, using the matrix inversion lemma,
the matrix Γ−1

AA in (51) can be written as

Γ−1
AA =

(
ΓY Y ΓY Z

ΓZY ΓZZ

)−1

=

(
C −CΓY ZΓ

−1
ZZ

−Γ−1
ZZΓZY C Γ−1

ZZΓZY CΓY ZΓ
−1
ZZ + Γ−1

ZZ

)
.

(62)

With this relation, and using the fact that ΓXA = ΓT
AX =

( ΓXY ΓXZ ), the right-hand side of (61) becomes

ΓXZΓ
−1
ZZΓZX+(
ΓXY − ΓXZΓ

−1
ZZΓZY

)
C

(
ΓXY − ΓXZΓ

−1
ZZΓZY

)T
.

(63)
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Therefore, (61) implies that ΓXY = ΓXZΓ
−1
ZZΓZY , or equiv-

alently, that

ΓXY Γ
−1
Y Y = ΓXZΓ

−1
ZZΓZY Γ

−1
Y Y . (64)

This, in turn, implies that that the minimax regret solution (22)
coincides with (3).

Next, we show that if (22) and (3) coincide, then (27) holds.
As we have seen, the equivalence of (22) and (3) implies that
D , ΓXY − ΓXZΓ

−1
ZZΓZY = 0, which in turn implies that

the covariances of the distributions of X|Z and X|A are equal.
Therefore, all that remains to be shown is that if (22) coincides
with (3) then the the means of the distributions (60) and (50)
also coincide. Using (62), it is easily verified that

ΓXAΓ
−1
AA =

(
DC ΓXZΓ

−1
ZZ −DCΓY ZΓ

−1
ZZ

)
=

(
0 ΓXZΓ

−1
ZZ

)
, (65)

which implies that ΓXZΓ
−1
ZZ(z − µZ) = ΓXAΓ

−1
AA(a− µA)

so that the means of (60) and (50) are indeed equal.

APPENDIX E
PROOF OF THEOREM 6

Direct computation of the error E[∥X − X̂M1
MX∥2] yields

Tr {ΓXX} − 2Tr
{
ΓXZΓ

†
ZZΓZY Γ

†
Y Y ΓY X

}
+Tr

{
ΓXZΓ

†
ZZΓZY Γ

†
Y Y ΓY ZΓ

†
ZZΓZX

}
= Tr

{
ΓXX − ΓXY Γ

†
Y Y ΓY X

}
+Tr

{
ΓBY Γ

†
Y Y ΓY B

}
,

(66)

where B = ΓXZΓ
†
ZZ(Z − µZ) − (X − µX). The first term

in this expression is the MSE of the LMMSE estimate of X
given Y . Recalling that the MSE of the LMMSE estimate of
B from Y is given by Tr{ΓBB} − Tr{ΓBY Γ

†
Y Y ΓY B} ≥ 0,

the second term is bounded by Tr{ΓBB}.
Letting A = ΓXZΓ

†
ZZ(Z−µZ), so that B = A−(X−µX),

Tr{ΓBB} = Tr{ΓAA} − 2Tr{ΓAX}+Tr{ΓXX}

= Tr
{
ΓXZΓ

†
ZZΓZX − 2ΓXZΓ

†
ZZΓZX + ΓXX

}
= Tr

{
ΓXX − ΓXZΓ

†
ZZΓZX

}
, (67)

which is the MSE of the LMMSE estimate of X from Z. This
completes the proof.

APPENDIX F
PROOF OF THEOREM 8

We establish a lower bound on the optimal minimax regret
value and then show that X̂M2

MX of (37) achieves this bound,
which proves that it is optimal.

The RV X can be uniquely written as

X = E[X|Z] + U = ϕ(Z) + U, (68)

where U is a zero-mean RV uncorrelated with every function
of Z. It follows that E[∥X∥2] = E[∥ϕ(Z)∥2] + E[∥U∥2], so
that the constraint E[∥X∥2] = ρ2 translates into E[∥U∥2] =
ρ2−E[∥ϕ(Z)∥2]. Substituting (68), and noting that E[ϕ(Z)|Y ],

which equals X̂M2
MX, is fixed over the set A, the inner maxi-

mization in (36) becomes

E
[∥∥∥X̂M2

MX − X̂
∥∥∥2]+

max
(U,Y,Z)∈B

{
E
[
∥E[U |Y ]∥2 + 2

(
X̂M2

MX − X̂
)T

E[U |Y ]

]}
(69)

where B is the set of triplets of RVs (U, Y, Z) such that U is
uncorrelated with every function of Z, E[U ] = 0, E[∥U∥2] =
ρ2−E[∥ϕ(Z)∥2] and

∫
RM fUY Z(u,y,z)du = fY Z(y, z). The

set B is symmetric in U , namely for every triplet (U, Y, Z) ∈ B
we also have (−U, Y, Z) ∈ B. Furthermore, the first term
within the maximum in (69) is symmetric in U , whereas
the second is anti-symmetric in U . This implies that if U
maximizes the first term, then either U or −U yields at
least the same value for the objective comprising both terms.
Consequently, noting that E[ϕ(Z)|Y ] = X̂M2

MX,

min
X̂∈Y

max
fXY Z∈A

E
[∥∥∥E[X|Y ]− X̂

∥∥∥2] ≥

≥ min
X̂∈Y

{
E
[∥∥∥X̂M2

MX − X̂
∥∥∥2]+ max

(U,Y,Z)∈B

{
E
[
∥E[U |Y ]∥2

]}}
= max

(U,Y,Z)∈B
E
[
∥E[U |Y ]∥2

]
, (70)

where the equality follows from the fact that the solution to
the minimization is obtained at X̂ = X̂M2

MX.
We now show that the inequality can be achieved with X̂ =

X̂M2
MX. Indeed, with this choice of X̂ , (69) implies that

max
fXY Z∈A

E
[
∥E[X|Y ]− X̂∥2

]
= max

(U,Y,Z)∈B
E
[
∥E[U |Y ]∥2

]
,

from which the theorem follows.
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